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Introduction

In the problem of object detection, the input to the
model 1s an 1image and the output 1s a set of bounding
boxes on the 1image with class designations for each
box.

We are building on top of DETR (Detection with
Transformers) which removed the need of a lot of

hand-designed components of the model (such as
anchor generation and NMY) introduced by R-CNN.
DETR makes use of transformers and set matching.

Use Coco Dataset.




Motivation

e Prior work has shown that carefully
constructed object queries can boost
performance and reduce convergence time.

e Object queries are not taking the semantics of
this specific image into account. Instead, they
are learned and fixed.

e Two pass decoding can prove to be useful in
this situation to give decoder a more global
image view from the beginning
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Object Query Modulation Model Overview
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e Memory from encoder flows to both
passes of the decoder

e The first pass of the decoder is
responsible for modifying the object
gueries based on image semantics



GCN Model
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e Also tried a simpler model without GCNs but
not included here for brevity



Experimentation + Results

Base Model From Scratch (Sped Up Training Schedule)
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Conclusions:
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Need to analyze computational costs of training a specific
model relative to the time and compute one has access to
Might benefit from an alternating training approach where
the modulation network is essentially trained alternating
with the rest of the network (freeze one and train the
other) with augmented losses

In general, might also benefit by training from scratch
instead of getting model to “unlearn” from its stable state
after 500 epochs

Next Steps:
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For GCN technique, use a pairwise scoring function to
learn edge strength

Spend more time training with the spatially unaware
modulation technique because there are signs of promise
from the loss curve

Try the alternating training approach

Consider more approaches where just the encoder values
are used to modulate the object queries so we don't need
2 passes through the decoder



