Problem Statement

We work on image classification tasks. We try various (recently published) ideas that help learning be faster and more stable.

Dataset: CIFAR-100 + Preprocessing

Objective: Analyze interesting papers in top conferences, combine to get better training performance, create a module that can train any PyTorch model with any combination of these!

Our GitHub Repository: Scan the QR code!

Approximate Tensor Multiplication

- **Objective:** Reduce cost of matrix multiplications by approximation
- **Idea:** Do approximate multiplication using column-row sampling
- **Pros:** Faster, Can potentially act similar to dropout
- **Cons:** Can impact performance and learning if not used correctly

GradInit

- **Objective:** Effective initialization of weights ⇒ a smooth optimization landscape
- **Idea:** Train the weights to maximize gradients while avoiding exploding gradients
- **Pros:** Avoids unstable training, allows faster learning
- **Cons:** Loss increases quickly after overfitting because of smooth landscape

Convolutional Normalization

- **Objective:** Promote orthogonality in kernels of convolutional layers
- **Idea:** Can do more easily in Fourier domain!
- **Pros:** Promotes Lipschitzness, More stable
- **Cons:** Slower than Conv2d

Importance Sampling

- **Objective:** Sample some data points more than others
- **Idea:** Assign an importance score and sample with probability proportional to score
- **Pros:** Better accuracy in same number of epochs
- **Cons:** Increases epoch training time

Novel Idea: Use CRS-Sampling in last few (pre-final) layers!

Justification: Linear Layers at the end are more parameter-heavy, and matter less in final output compared to layers near the beginning (ripple effect)

Reference: "Faster Neural Network Training with Approximate Operations", Adelman, Menecham, et al., NeurIPS 2021

Novel Idea: Use ConvNorm for starting layers!

Justification: Starting layers more important ⇒ more stable leads to better training

Adding more ConvNorm layers follows marginally decreasing returns in time vs acc

Reference: "Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training", Liu, Sheng, et al., CVPR 2021

Importance Sampling

Problem Statement

- **Objective:** Effective initialization of weights ⇒ a smooth optimization landscape
- **Idea:** Train the weights to maximize gradients while avoiding exploding gradients
- **Pros:** Avoids unstable training, allows faster learning
- **Cons:** Loss increases quickly after overfitting because of smooth landscape

Convolutional Normalization

- **Objective:** Promote orthogonality in kernels of convolutional layers
- **Idea:** Can do more easily in Fourier domain!
- **Pros:** Promotes Lipschitzness, More stable
- **Cons:** Slower than Conv2d

Importance Sampling

- **Objective:** Sample some data points more than others
- **Idea:** Assign an importance score and sample with probability proportional to score
- **Pros:** Better accuracy in same number of epochs
- **Cons:** Increases epoch training time

Novel Idea: Use CRS-Sampling in last few (pre-final) layers!

Justification: Linear Layers at the end are more parameter-heavy, and matter less in final output compared to layers near the beginning (ripple effect)

Reference: "Faster Neural Network Training with Approximate Operations", Adelman, Menecham, et al., NeurIPS 2021

Novel Idea: Use ConvNorm for starting layers!

Justification: Starting layers more important ⇒ more stable leads to better training

Adding more ConvNorm layers follows marginally decreasing returns in time vs acc

Reference: "Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training", Liu, Sheng, et al., CVPR 2021

Importance Sampling

- **Objective:** Sample some data points more than others
- **Idea:** Assign an importance score and sample with probability proportional to score
- **Pros:** Better accuracy in same number of epochs
- **Cons:** Increases epoch training time

Novel Idea: Use CRS-Sampling in last few (pre-final) layers!

Justification: Linear Layers at the end are more parameter-heavy, and matter less in final output compared to layers near the beginning (ripple effect)

Reference: "Faster Neural Network Training with Approximate Operations", Adelman, Menecham, et al., NeurIPS 2021

Novel Idea: Use ConvNorm for starting layers!

Justification: Starting layers more important ⇒ more stable leads to better training

Adding more ConvNorm layers follows marginally decreasing returns in time vs acc

Reference: "Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training", Liu, Sheng, et al., CVPR 2021

Importance Sampling

- **Objective:** Sample some data points more than others
- **Idea:** Assign an importance score and sample with probability proportional to score
- **Pros:** Better accuracy in same number of epochs
- **Cons:** Increases epoch training time

Novel Idea: Use CRS-Sampling in last few (pre-final) layers!

Justification: Linear Layers at the end are more parameter-heavy, and matter less in final output compared to layers near the beginning (ripple effect)

Reference: "Faster Neural Network Training with Approximate Operations", Adelman, Menecham, et al., NeurIPS 2021