Classification of cellular states for high-speed image based microfluidic cell sorting

Introduction

Dataset and Problem Statement

Can we classify 36 cellular image classes with ICS image inputs?

- Many classes are subtle biology variations within the same cell type

Methods

- Architectures: ResNet and MobileNet
- ADAM optimizer, trained over 50 epochs, 80-10-10 train/validation/test splits
- Image preprocessing to standard shape, channel normalization

Experiments and Analysis

ResNet50 had an impressive performance even without fluorescence channel information. ResNet18 had a performance comparable to that of ResNet50 when using information from all 7 channels, but less than half its inference time. MobileNetV2 had a marginally lower performance, but was able to do so with a fraction of the number of parameters used by ResNet18, which makes it an attractive choice for low-storage environments. However, it did not improve on the inference time, the main criterion of interest beyond model performance.

In the future, we can explore other interpretation methods like integrated gradients, DeepLift, and ablation experiments, which could be more promising alternatives to understand these images. We can also use other efficient models combined with additional acceleration using TPUs that would be capable of sorting 10000+ images/sec in real time, taking full advantage of deep learning on the ICS system.

Conclusion and Future Work

The study demonstrated the validity of using deep convolutional models to classify multiple cell types and cell states from a new high-throughput cellular imaging modality called Image Cell Sorting. We trained multiple ResNet and MobileNetV2 architectures to predict 36 cell types and states spanning 13 human cell lines and mouse bone marrow cell types.

ResNet50 had an impressive performance even without fluorescence channel information. ResNet18 had a performance comparable to that of ResNet50 when using information from all 7 channels, but less than half its inference time. MobileNetV2 had a marginally lower performance, but was able to do so with a fraction of the number of parameters used by ResNet18, which makes it an attractive choice for low-storage environments. However, it did not improve on the inference time, the main criterion of interest beyond model performance.

In the future, we can explore other interpretation methods like integrated gradients, DeepLift, and ablation experiments, which could be more promising alternatives to understand these images. We can also use other efficient models combined with additional acceleration using TPUs that would be capable of sorting 10000+ images/sec in real time, taking full advantage of deep learning on the ICS system.

References