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Abstract

As Transformer models grow ever larger, their efficiency
becomes of increasing importance. As such, the field of
model compression, specifically network pruning, is of par-
ticular relevance. In this work, we rigorously evaluate stan-
dard magnitude-based pruning techniques on Vision Trans-
formers (ViTs) to observe ViT-specific behaviour and gain a
deeper understanding of the unique properties which con-
tribute to their high performance. Our findings suggest that
ViTs can achieve high sparsity ratios without significant
accuracy loss, both in structured and unstructured prun-
ing settings. We observe that the effects of pruning vary
when applied to different layers, and our results from this
analysis highlight the key role played by attention units in
Transformers. We also find surprising spatial patterns in
the weight matrices yielded by unstructured pruning, which
reveal an implicit structure in the underlying model. We
observe that fine-tuning after pruning has a strong effect
of recovering accuracy, mitigating sub-optimal or one-shot
pruning strategies. Lastly, we find that magnitude-based
structured pruning only marginally outperforms a random
pruning baseline, suggesting a direction for future work.

1. Introduction
Transformer networks have demonstrated state-of-the-

art results in many fields of deep learning, and Transformer-
based foundation models [3] promise great potential for
powering the next wave of deep learning solutions. This
stems from the fact that Transformers can attain better per-
formance by increasing parameter count and training time,
without suffering from the traditionally expected diminish-
ing returns [24], as well as the fact that they exhibit signifi-
cantly different scaling behaviours compared to other neural
architectures [38, 19].

Simply increasing model size to achieve better results,

however, incurs high computational costs, storage require-
ments, and environmental impacts [2]. It is therefore rele-
vant to consider how to train and deploy models with similar
performance but greater efficiency. Approaches that have
shown promise in this field are efficient attention [21, 36, 5],
model compression [17, 12], and model pruning — the last
of which, and its optimal adaptation to Vision Transformer
(ViT) models [7], is the principal focus of this paper.

Pruning methods for neural networks have enabled large
gains in efficiency (via 10-100x reductions in model size)
at little cost to accuracy [18]. Pruning has even been shown
to have a regularizing effect in which performance can in-
crease after pruning [31]. However, standard pruning meth-
ods have not yet been thoroughly evaluated in the context
of ViTs. In fact, pruning work generally suffers from a lack
of standard benchmarks. Additionally, although many com-
plex sparsification techniques have been proposed on small
datasets, many have failed to generalize to larger-scale ex-
periments, proving less effective than simple magnitude-
based pruning methods [11].

To provide a comprehensive benchmark for ViT prun-
ing, we train a small ViT on CIFAR-10 and evaluate a spec-
trum of magnitude-based train-then-sparsify pruning meth-
ods on the model. We consider whether methods that have
been shown to be successful on MLPs, Transformers for
natural language, and CNNs demonstrate comparable per-
formance on ViTs. We also investigate the shortcomings of
these pruning strategies, as well as how we can move to-
wards better pruning strategies for ViTs specifically. Our
main contributions are summarized as follows:

• By rigorously benchmarking magnitude-based pruning
methods for ViTs, we conclude that ViTs are highly
conducive to pruning.

• There is a notable difference between the prunability of
different layers, suggesting an uneven distribution of
information across layers and across layer types, high-
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lighting the importance of attention.

• Weight matrices of the ViT are highly structured, en-
abling implicit structured pruning to occur in an un-
structured setting.

• Fine-tuning strongly mitigates performance degrada-
tion, even when one-shot pruning or sub-optimal prun-
ing strategies are used.

• Magnitude-based structured pruning approaches do
not significantly outperform random pruning, suggest-
ing the potential for further research into non-standard
pruning strategies.

2. Related work

Pruning methods fall into two main categories: (1) un-
structured pruning, which removes individual weights [16],
and (2) structured pruning, which removes model sub-
structures [4]. These methods traditionally use train-then-
sparsify schedules in which the standard dense training is
run to convergence and the model is subsequently pruned
and retrained with the sparsified structure [18]. Alterna-
tive training schedules include sparsify-during-training, in
which a model is iteratively sparsified before convergence,
and fully-sparse training, where a sparse model is pruned
and regrown during training [13, 27, 18].

Hoefler et al. provide an in-depth overview of different
pruning techniques, and their work informs the approaches
we apply to ViTs [18]. Particularly relevant to our work is
the research on pruning applied to transformers and ViTs,
specifically. Gale et al. review classic pruning techniques on
a large-scale Transformer model for neural machine trans-
lation, providing general insights into the behavior of these
methods on a Transformer model [11]. Chen et al. explore
traditional pruning methods on ViTs, including the one-shot
magnitude-based pruning method [15] that we also con-
sider, and propose a sparsify-during-training approach for
both structured and unstructured pruning [4].

Work in the context of NLP models has explored prun-
ing entire attention heads [26, 1, 39, 35] or removing in-
termediate layers [32]. However, these techniques largely
rely on removing parts of the network and retraining in a
grid-search fashion, and we limit the scope of our research
to how more targeted and well-defined pruning techniques
translate to ViTs.

We also note another line of work with regards to model
compression, namely decomposing matrices via techniques
such as SVD and similar low-rank matrix approximations
[37, 14], or Kronecker products [34, 8]. While this line of
work is promising, its focus is primarily on approximating
weight matrices, and as such provides little insight into the
learning process of the Transformer and its properties, and
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Figure 1: Weight magnitudes for global unstructured prun-
ing at 99.5% sparsity. Model weights are centered around
0 and after pruning and fine-tuning, weights do not return
to their original distribution, with weights making peaks
around the pruning threshold but not clustering around 0.

as such does not align with our larger goal of moving to-
wards better understanding of the Transformer.

Lastly, we note that magnitude-based pruning is far from
the only pruning strategy, but it is the one that is most
widely used and has proven the most robust and consistent
in delivering results [18]. As such, it is the primary focus of
our work.

3. Methods

Vision Transformer We anchor our unpruned ViT to an
existing open-source baseline [28] implemented in PyTorch
[29]. This 6.3-million-parameter network, consisting of 7
layers with 12 attention heads and 384 embedding dimen-
sions, serves as the trained model on which we apply prun-
ing. Since the converged model weights are not provided
[28], we train the ViT from scratch over 200 epochs, us-
ing the same hyperparameters as the original for maximum
reproducibility. Specifically, we use the Adam optimizer
[20] with β1 and β2 coefficients set to 0.9 and 0.999 respec-
tively, a batch size of 128, and a weight decay of 5× 10−5.
The learning rate is initialized to 1× 10−3 and adjusted ac-
cording to a cosine annealing schedule with a warmup of 5
epochs. AutoAugment [6] and 10% label smoothing [33]
serve to regularize the ViT. Training the ViT with our code
takes approximately 4 hours on an NVIDIA T4 GPU.

Pruning Methodology We consider 3 pruning methods:
(1) unstructured, (2) structured per-row, and (3) structured
per-column pruning. For each method, we consider two
pruning schedules: (1) one-shot pruning with fine tuning
and (2) iterative pruning. For unstructured pruning meth-
ods, we consider global (globally pruning minimum mag-
nitude weights, agnostic to layer) and layerwise (pruning
a uniform fraction of minimum magnitude for each layer)
pruning distributions, in addition to a random baseline.
For structured pruning methods, we consider only per-layer
pruning distribution and a random baseline, since the differ-
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Figure 2: Schematic of training accuracy for the trained
model after one-shot pruning with fine-tuning vs. iterative
pruning.

ent weight scalings of each layer otherwise lead to certain
layers being pruned in their entirety, even for smaller prun-
ing ratios. While there exist ways to circumvent this issue,
such as class-distributed pruning, where sparsity ratios per
layer are scaled by the standard deviation of the weight ma-
trix, we found this to be beyond the scope of this paper.

Fine-tuning In order to maintain high accuracy it is im-
perative that the model is fine-tuned after pruning. There
has been considerable literature on the topic [25, 23], and
we follow the approach of learning rate rewinding, as sug-
gested by Renda et al. [30] — retraining for 25% of the orig-
inal training time (within the rewinding safe zone [30]) and,
notably, rewinding the learning rate schedule to its value
before the last 25% of the training schedule.

Experiment Configurations We outline three main ex-
perimental setups, through the combination of which all ex-
periments can be derived.

• Unstructured one-shot magnitude-based pruning re-
moves the p% of the weights with smallest magni-
tude after training. This pruning method updates the
weights of a model in the manner shown in Figure 1,
for example, which was generated by pruning 99.5%
of weights. We follow pruning with fine-tuning, as il-
lustrated in Figure 2.

More formally, for global pruning, for a network
f(x; θ) with parameters θ ∈ Rnθ we derive a mask
µ ∈ {0, 1}nθ on the parameters such that

µ = argmin ∥(1− µ)⊙ θ∥1 s.t.
∥1− µ∥1

nθ
= r,

where r is the desired sparsity ratio and ⊙ is the
Hadamard product. The network then continues to
fine-tuning as f(x;µ⊙ θ).

Similarly, for layerwise pruning on a layer with weight
matrix W ∈ Rm×n, we derive a mask µW ∈
{0, 1}m×n such that

µW = argmin ∥(1− µW )⊙W∥1

s.t.
∥1− µW ∥1

mn
= r.

• Structured one-shot magnitude-based pruning re-
moves entire rows or columns of a weight matrix based
on their l1 norm. Note that removing a row sets all in-
coming weights to a neuron to zero, and removing a
column removes all outgoing weights from an neuron.
In either approach, the neuron is removed; what differs
is the criteria to determine which neurons to remove. It
is notable that structured pruning allows us to achieve
tangible gains in computational efficiency during in-
ference, since it directly reduces the weight matrices.

Formally, considering a weight matrix W ∈ Rm×n,
for per-row structured pruning we consider a mask
µW ∈ {0, 1}m such that

µW = argmin (1− µW1⊤
n )⊙W

s.t.
∥1− µW ∥1

m
= r,

where 1n is an n-dimensional vector of ones. Simi-
larly, for per-column pruning we have µW ∈ {0, 1}n
such that

µW = argmin (1− (µW1⊤
m))⊙W⊤

s.t.
∥1− µW ∥1

n
= r.

• Iterative pruning We evaluate iterative versions of the
above pruning methods by utilizing an iterative prun-
ing schedule, which entails pruning in smaller steps
until the desired sparsity ratio and fine-tuning between
consecutive steps to minimize performance loss. (Fig-
ure 2).

Evaluation We evaluate the outlined magnitude-based
train-then-sparsify pruning methods on the trained model.
All linear layers within the model are eligible for pruning1.
To evaluate each pruning strategy, we compare validation
accuracy against different sparsity ratios. This performance
curve further informs the extent of over-parameterization
in the model. We also perform a qualitative evaluation of
the methods by visualizing masks, sparsity ratio distribu-
tions across modules, weight distributions, etc. To serve

1We excluded the input embedding layer for structured per-row prun-
ing and the feedforward output layer for structured per-column pruning to
avoid excluding entire input channels or entire output classes.



as a baseline, we perform random pruning by shuffling the
masks yielded by magnitude-based pruning for each layer.
This baseline illustrates the accuracy that can be trivially
achieved by a given sparsity ratio. Notably, we preserve the
per-layer sparsity ratios of the original masks rather than
determining those ratios randomly. This distinction allows
us to attribute any observed improvements to the pruning
methods specifically, with no dependence on per-layer spar-
sities.

Implementation We drew from the OpenLTH GitHub
repository to support our pruning experiments [9]. In partic-
ular, we used the Mask class and related functions that de-
termine prunable layers and apply masks, either in their en-
tirety or with minor modifications. We took heavy inspira-
tion from their sparse global pruning method and ran-
dom shuffling methods, which implement global unstruc-
tured pruning, but from that point we produced our own im-
plementations of all pruning strategies, alongside a module
experimental framework for all pruning schedules, meth-
ods, and distributions.2

Dataset CIFAR-10 is a small-scale image classification
dataset consisting of 60,000 colored images evenly dis-
tributed across 10 classes, with 50,000 training observations
and 10,000 testing observations [22]. Each image has a
fixed size of 32× 32 pixels. We preprocess the data by nor-
malizing each of the three color channels and performing
data augmentation as described in [6].

4. Results
Vision Transformer The unpruned ViT achieves 90%
test set accuracy on CIFAR-10 after 200 epochs, as shown
in Figure 3. This indicates that training iterations are fast
and computationally inexpensive. Our results are consistent
with those reported in [28]. From this base model, we de-
termined the relationship between sparsity and performance
for each pruning strategy (Figure 4).

Unstructured Pruning Pruned models sustain high ac-
curacy even at high pruning ratios. In particular, global
unstructured pruning achieves high sparsity without see-
ing performance degradation. Even at 95% sparsity, we
observe only a 1.54% drop in validation accuracy, from
90.44% to 88.90%, while random pruning drops to 59.61%.
That the model sustains high performance at 95% accuracy
reflects existing benchmarking results for CIFAR-10 on
CNNs like VGG-19 [25]. Layerwise unstructured pruning
maintains similarly strong performance until 97.5% spar-
sity, but, consistent with past findings on NMT models,

2Code for our experiments can be found on https://github.
com/sarahlc888/vit-pruning.
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Figure 3: Accuracy curve for the unpruned ViT. We achieve
a final accuracy of 90.44%, in line with results in [28].

global magnitude-based pruning is more effective than the
layerwise equivalent [31].

Structured Pruning Similarly to NMT models, ViTs are
less conducive to structured pruning. Although the prun-
ing strategy outperforms the random equivalent, its accu-
racy drops below 85% upon reaching 90% sparsity for both
per-column and per-row, and it only outperforms the ran-
dom baseline accuracy by approximately 10% upon reach-
ing 98.5% sparsity. Using structured pruning at such high
sparsity ratios is more challenging than unstructured ap-
proaches due to the removal of entire rows and columns
rather than individual elements of a weight matrix. It is
further noteworthy that structured per-row and per-column
pruning do not significantly differ in the results, suggesting
that the model can adapt to both variants.

Pruning Patterns We find that that structured trends
emerge on the per-layer level when applying global unstruc-
tured pruning (Figure 6). Even at low pruning ratios, entire
layers are pruned, revealing that their weights have smaller
magnitude than those in other matrices. For example, the
key and query attention matrices in layer 0 as well as select
MLP matrices in layers 4 and 5 are pruned to nearly 100%
sparsity, even at the relatively low pruning ratios of 25%
and 50%.

Structured trends also emerge within each layer’s weight
matrices, on the per-row and per-column level, especially
for attention layers, where we see the same rows being
pruned across keys, values, and queries, as well as whole
attention heads being pruned together (figures in Appendix
A). Similarly, in the structured pruning case, whole atten-
tion heads are implicitly pruned across query, key, and value
matrices, an effect which is especially visible in layer 4.

Chen et al. also observe per-column structural patterns
within weight matrices for unstructured methods in their
work on pruning ViTs [4]. The emergence of these struc-
tural patterns suggests that even unstructured methods may

https://github.com/sarahlc888/vit-pruning
https://github.com/sarahlc888/vit-pruning
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Figure 4: Model performance after one-shot pruning with fine-tuning (top) and iterative pruning (bottom). Each column is the
pruning method: unstructured, structured per-row, and structured per-column. On each subplot, all pruning is ℓ1 magnitude-
based with distribution variants: global and layerwise, as well as a random baseline. We find that the magnitude-based
methods consistently outperform their respective random baselines. Iterative varieties on average tend to perform better than
their one-shot counterparts, yet all methods show high resilience to pruning.
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Figure 5: Model performance when one-shot pruning is applied to MLP layers only, attention layers only, and all layers. For
every experiment, we use a set of sparsity ratios up to 100%.

offer possibilities for increased hardware efficiency.

Iterative Pruning We find that iterative pruning provides
a surprisingly small benefit for the n−fold increase in com-
putation time, where n is the number of steps. More-

over, we find that masks are very similar between one-shot
and iterative pruning strategies (Figure 7 in Appendix A).
This suggests that fine-tuning (or, more precisely, learning
rate rewinding) can recover accuracy very efficiently, even
though training a similarly sized ViT as a sparse model to
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Figure 6: Per-layer weight matrix sparsities generated by
one-shot global unstructured pruning. For each pruning ra-
tio, the observed per-layer sparsity varies across layer num-
bers and types.

the same accuracy would be intractable. This hints that the
Transformer needs to be overparametrized to train well, but
can operate in a highly sparse regime at inference time.

Analysis of Pruning on Network Modules We analyse
the pruning ratios for each layer (Figure 6). For global un-
structured pruning, we see that different layers consistently
get pruned at different ratios: specifically, the fully con-
nected and embedding layers retain more parameters than
other layers; earlier layers benefit from a higher density of
weights in the feed-forward layers, while later layers pri-
oritize the attention layers, with the MLP layers 4, 5 be-
ing almost entirely removed. This suggests that the Trans-
former optimizes a embedding/pre-process → attention →
post-process/output pipeline.

Transformer-specific Pruning To test the relative impor-
tance of feed-forward layers and attention layers, we com-
pare pruning only MLP layers and pruning only from atten-
tion layers. As per Figure 5, even when pruning all the MLP
layers, relying only on residual connections between atten-

tion, the network is able to maintain reasonable accuracy,
whereas if we prune all the attention layers, accuracy drops
down to random guessing. This highlights the fact that at-
tention is paramount in facilitating the performance of the
Transformer architecture, in line with other studies [7].

5. Conclusion & Future Work
Our findings suggest that ViTs can sustain high spar-

sity levels, especially for global unstructured pruning meth-
ods. We observe the phenomenon that Transformers ex-
hibit internal structure that enables implicit structured prun-
ing in an unstructured global pruning objective. Addition-
ally, we emphasize the importance of fine-tuning, as it has
a strong effect on recovering accuracy after pruning, even
when working with sub-optimal pruning strategies.

Our work confirms some intuitions and widely held be-
liefs about Transformers more broadly, namely that at-
tention mechanisms are principal in attaining good per-
formance. Moreover, overparameterizing the network for
training enables attaining very high performance, yet dur-
ing inference few of these parameters are actually needed
– we hypothesize that there is a fundamental difference be-
tween the number of parameters needed for training and the
number of parameters used in a trained model, i.e. training
requires a larger network capacity, which is also in support
of other works [10, 38, 19].

Lastly, we find that there is much room for improvement
in the case of structured pruning, which is a potential direc-
tion for future work.
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Figure 7: Per-layer mask similarities between one-shot and iterative pruning for l1 structured magnitude-based pruning.
Similarity is calculated as the fraction of weights that both one-shot and iterative pruning mask out for a given sparsity. The
figure begins at 70% sparsity, the point at which the pruned model fails to sustain the original unpruned accuracy.


