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Methods

Visualization of global unstructured pruning masks on layer 4 attention
matrices at 95% sparsity. We can observe structural patterns that implicitly
arise, and result in whole attention heads being pruned.
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We apply all pruning strategies after standard training is run to convergence.
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= Global: remove low-magnitude weights, regardless of layer
= Layerwise: remove a uniform ratio of low-magnitude weights per layer
» Random: shuffle masks, maintaining per-layer sparsity ratios o
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