Zero-Shot Object Detection for Chest X-Rays
Ellie Talius, Ruhi Sayana
Department of Computer Science, Stanford University

Introduction

- Using deep learning for object detection in medical imaging is challenging
 ○ Requires large amounts of labelled data
 ○ Expensive, time-consuming to annotate
- OpenAI’s CLIP model uses contrastive learning to build associations between images and text → can be used to understand medical image and radiology report pairs
 ○ Promising for zero-shot object detection
- No previous research on performing zero-shot object detection on chest x-ray images

Methods

- **Training**: Train CLIP architecture on a mini-batch of image-text pairs
 ○ Model learns to maximize cosine similarity between correct pairs and minimize cosine similarity of incorrect pairs
- **Evaluation**: Use learned image and text encoders to predict labelled bounding boxes
 ○ Use superpixel segmentation or selective search to generate RoI’s
 ○ Encode image crops with image encoder and labels with text encoder
 ○ Return boxes with similarity greater than threshold (t=0.5)

Datasets

- **Training**: MIMIC-CXR (300,000 images and reports)
- **Test**: Kaggle VinBigData Chest X-ray Abnormalities detection (3,000 images)
- Preprocessing: Resizing to 224 x 224, and 3 data augmentation set ups (random crop, random horizontal flip, full transformation pipeline)

Experiments

- **Pathology Detection**
 - **Zero-Shot vs. Fully Supervised**
Supervision	Model	mAP Score
Fully Supervised	Detection 1	0.235
CLIP-Multiple-No Train	0.037	
CLIP-Multiple-No Train	0.045	
Best CLIP	0.052	

- **Text Query**
 - Prompts
 1) a chest x-ray with { } = 0.036
 2) part of a chest x-ray with { } = 0.025
 3) { } present in a chest x-ray = 0.035
 4) crop of a chest x-ray showing { } = 0.027

- **Data Augmentation**
 - Data Augmentation
mAP Score
Random Crop
Random Flip
All Transforms

- **Region Proposal Selection**
 - Region Proposal Method
mAP Score
Superpixel Segmentation
Selective Search

Conclusions + Future Work

- We are able to perform zero-shot object detection for pathologies in chest x-ray images
- Key takeaway: zero-shot object detection can greatly benefit the medical field by helping automate and verify chest x-ray diagnosis without the need for expensive labelled data for training
- Our results are currently limited by the amount of compute (restricting batch size to a maximum of 128) and the use of a slow region proposal and object detection pipeline
- **Future steps**:
 ○ Developing a region proposal method that operates on the model image embeddings instead of raw pixels
 ○ Switching to a queue-based method for training to avoid the need for a large batch size

References