Classifying Sign Languages and Fingerspellings with Convolutional Neural Networks
Brandon Vu, Richard Chen, Nyle Wong; Mentor: Haochen Shi

Introduction
- Sign language originates from the deaf community and is a language where handshapes and gestures are the main modes of communication
- American Sign Language (ASL) is the most studied and has many existing datasets and models developed for it
- There are many low-resource sign languages including Japanese Sign Language (JSL), Irish Sign Language (ISL), and Arabic Sign Language (ArASL)
- Our goal is to build a model that addresses this gap, taking the resources available to develop a robust classifier

Methods
- We separate our approach into two steps: hand-detection and sign classification. Each step has a separately trained model

Hand Detection
- Model trained on data in order to localize hand within image
- Used Faster-RCNN-R50-FPN-3x pretrained model
- Fine-tuned on EgoHands and David Lee’s ASL Dataset
- Detect bounding box for hand

Sign Classification
- Model is trained on the combined data of all sign languages
- Each sign + language combination is given a unique id
- To predict an image, it’s first cropped to the bounding box, resized and grayscale, then passed through the classifier

Data
- **Hand Detection:** We use the EgoHands dataset and David Lee’s ASL dataset
 - EgoHands Dataset: 15,053 images, 720 x 1,280 pixels RGB
 - David Lee’s ASL Dataset: 1,728 images, 384 x 384 pixels RGB
- **Sign Classification:** We use fingerspelling data from four sign languages: American, Japanese, Irish, and Arabic
 - 8,055 images per language, 32,220 images total, 28 x 28 pixels B&W

Preprocessing
- Crop hand
- Resize to 28 x 28
- Grayscale

Experiments
- **Hand Detection:** Learning rate: 1e-5, Batch Size: 8, Adam Optimizer, Cross Entropy Loss, 4 epochs
- **Sign Classification:** Learning rate: 1e-4, Batch Size: 10, Adam Optimizer, Cross Entropy Loss, 2 epochs + 2 epochs with 5e-5 learning rate

Results
- **Sign Classifier:**
 - Validation Accuracy: 90.22%
 - Test Accuracy: 90.25%

- **Hand Detector:**
 - The metric used for the hand detection model is Average Precision (AP), which combines precision and recall. This takes in an intersection of union (IOU) value, which is in parentheses below
 - Validation Set:
 - MAP(0.5:0.95): 66.447%
 - AP(0.5): 96.071%
 - AP(0.75): 80.632%
 - Test Set:
 - MAP(0.5:0.95): 66.508%
 - AP(0.5): 94.661%
 - AP(0.75): 82.385%

- **Time Trials:**
 - Hand Detector: 36min, 0.036s
 - Sign Classifier: 5min, 0.027s

Convolutional Layer Weights Visualization
- As another analysis tool, we display the weights of each convolutional layer, from left to right respectively
- The visualized weights show what we expect to see: different features of the hand and sign are being highlighted in each image
- Detail is lost in later layers
- Model is making general abstractions from the initial image in order to make classifications

Weights for each convolutional layer: 32, 64, and 64 respectively

Conclusion
- With the two-model approach, we were able to develop a method of translating fingerspelling for potentially low-resource sign languages
- Both models were able to achieve high-performing results
- Limitations of our approach are due to data: despite the hand detection step, it’s difficult to avoid overfitting due to the artificial nature of the datasets used
- Next steps would involve data augmentation and engineering to make the models more resistant to noise and backgrounds