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Abstract

Quantifying cell abundance through computer vision
approaches in an instance segmentation task can greatly
streamline cell-based assays and workflows for researchers
in the biological sciences. Instance segmentation of cells
in phase microscopy images, a relatively non-disruptive
method of imaging live cells, is thus an important and high-
demand task in computer vision. Recent work and the gen-
eration of a large-scale labeled dataset have greatly ex-
pedited progress on this task. However, given the highly
heterogenous and diverse array of cell types and growth
conditions, there still exists a need for generalizable mod-
els that can transfer and perform well on data from a cell
type or condition not encountered in the training dataset.
In this paper, I explore the usage of data augmentations to
improve model performance on test data drawn from pre-
viously unseen cell types. In my experiments, I find that
improvement in the transfer task following single data aug-
mentation varies greatly depending on the transformation
applied and the testing cell type. Pooling together trans-
formations through stacking or random selection is able to
vield augmentation strategies with much more generaliz-
able improvements on the transfer task across all or nearly
unseen cell types.

1. Introduction

Cell instance segmentation of phase contrast microscopy
images through computer vision is a labor-efficient way of
streamlining experiments in biological sciences research.
Many experimental setups use cell abundance or survival
as a functional readout following an induced stressor or
treatment condition, for example when validating hits in
a CRISPR genetic knockout screen. However, manual
segmentation and/or counting of cell numbers is a time-
consuming process. As such, various computer vision ap-
proaches have been applied to this task, often using models
based on state of the art instance segmentation and tech-
niques such as CNNs [13]], Cascade Mask R-CNN [5] and
U-Net [12]].

Phase contrast microscopy is a method that allows live
cells to be visualized with relatively minimal disruptions
to their native state. However, unlike in fluorescence mi-
croscopy where cellular features are brightly demarcated
by stains with fluorescent dyes or via expression of fluo-
rescent marker proteins, phase contrast microscopy images
are much lower in contrast, which increases the difficulty in
performing the instance segmentation task. Another major
challenge in instance segmentation of cells is the diversity
in cell shapes, morphology and density. Certain cell types
have highly globular, ordered shape while others take on
an elongated, fibrotic appearance. Moreover, cell morphol-
ogy is a highly dynamic quality that can undergo signifi-
cant variation under different biological conditions such as
growth, apoptosis or certain drug treatments. Given the la-
bor intensive process of annotating cell images, there exists
a need for highly generalizable instance segmentation per-
formance which can accomodate for the wide diversity of
cellular morphologies. This would allow for researchers to
use pre-trained instance segmentation models with images
taken from different cell lines or growth conditions without
the need for costly hand-annotation.

Data augmentation has emerged as a promising method
to enhance generalizability and robustness of deep learning
models, particularly when datasets are relatively small in
size. In computer vision tasks, this typically involves var-
ious geometric and color transformations being applied to
the image to generate new training examples. In this pa-
per, I explore the usage of data augmentation techniques to
improve generalizability across cell types for the instance
segmentation task.

2. Related Works
2.1. Cell instance segmentation approaches

Existing work to improve generalizability of cell in-
stance segmentation performance relies heavily on the cu-
ration of large labeled datasets. For example, in CellPose,
Stringer et al. proposed the usage of a community-sourced
data approach that utilizes a large and highly heterogenous
dataset of cell images with the goal of training a gener-



alizable cell instance segmentation model [12]. However,
the image dataset used largely consists of images obtained
through fluorescence microscopy and contains relatively
few phase contrast microscopy images.

A recent advance in improving instance segmentation of
phase microscopy images was the curation of a large la-
beled dataset called LiveCell [5]. This dataset consists of
over 1.6 million total examples drawn from 8 different cell
types of diverse morphologies imaged at various cell densi-
ties [5]. The authors trained two different models based on
Cascade R-CNN and CenterMask architectures respectively
on an instance segmentation task. The model input consists
of phase microscopy labeled images of cells and the out-
put is bounding boxes and instance segmentation masks of
predicted cell instances. Overall, both models performed
well on the cell instance segmentation task with an aver-
age precision score of 47.8 and 47.9% with each respective
underlying architecture, Cascade Mask R-CNN or Center-
Mask [5]. The authors also trained the models on subsets
of the image dataset consisting of only a single cell type to
assess how well the models were able to transfer knowledge
learned to perform the segmentation task on a different cell
type [3]. Unsurprisingly, transferability was highly variable
with test performance on certain single cell types varying
greatly depending on the training set cell type [3].

2.2. Data augmentations

Data augmentations are a powerful and widely used tech-
nique in computer vision tasks to prevent model overfitting
and increase generalizability of learning by increasing the
size of the dataset and providing new views of the the same
training examples [11]. Commonly used methods to aug-
ment computer vision image datasets include both color and
geometric transforms such as cropping, flipping, scaling,
blurring and color jittering [11]. For the task of instance
segmentation specifically, additional techniques have been
proposed such as cut-and-paste strategies; Ghiasi ef al. [6]
demonstrate that a simple copy-and-paste approach, which
operates in a context-independent manner, is able to achieve
robust improvements on both COCO and LVIS object detec-
tion benchmarks.

Naturally, automated approaches for data augmentation
are of great interest. One such approach is generative ad-
versarial networks (GANs), where the objective is to mini-
mize loss between the generated augmented images and the
original image dataset through a paired generator and dis-
criminator network module [7]. However, this technique
is difficult to adapt for image segmentation since the new
images generated would lack bounding boxes and segmen-
tation masks. Although this could be countered through
an unsupervised clustering approach to produce labels, like
used in Jain et al. [9]], this augmentation strategy is problem-
atic because it ultimately does not make use of the ground

truth label. Another approach is to try to learn the best data
augmentation policy, i.e. what sequence or combinations
of transformations will be most useful. Ratner et al. use
a generative approach to learn policies that produce aug-
mented images with a distribution that is similar to the train-
ing dataset [10]. In AutoAugment [4]], the authors instead
use a reinforcement learning approach to explore a search
space of data augmentation policies, with the aim of finding
a policy that generates augmented data to allow the model
to achieve the best accuracy on the validation dataset. This
same approach was also extended to object detection tasks
by Zoph et al. [15]].

3. Dataset

I used the publicly available LiveCell dataset collected
by Sartorious which includes over 1.6 million labeled
cell instances gathered across 8 cell types, available here:
https://github.com/sartorius—-research/
LIVECelll Each cell instance was hand-annotated with a
bounding box and segmentation mask label and an example
from each cell type class with the mask annotation is shown
in Figure 4.

4. Methods
4.1. Models

(a) Faster R-CNN

(b) Cascade R-CNN

Figure 1. Comparison of Faster R-CNN and Cascade R-CNN
architectures, reproduced from [2])

I used models from Edlund et al. [S] which employ
a Cascade Mask R-CNN architecture [2] with a ResNeSt
backbone [14] for image feature extraction. Although the
performances of the two model architectures used by Ed-
lund et al. were generally comparable, I chose to use the
Cascade Mask R-CNN for the following experiments be-
cause it displayed better performance in the single-cell train
and evaluate task. Briefly, Cascade Mask R-CNN is a vari-
ant on the Mask R-CNN approach, which uses an underly-
ing Faster R-CNN network architecture [2]. Like Mask R-
CNN, Cascade Mask R-CNN similarly uses an image fea-
ture extraction backbone network, which is then coupled
with a region proposal network (RPN) to suggest regions of
interest which are then fed into a fully connected network
which outputs class labels, bounding boxes and mask pre-
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dictions [2]]. However, Cascade Mask R-CNN uses a series
of RPN-FC networks with increasing IoU thresholds, where
a bounding box or mask segmentation prediction is consid-
ered a “’positive” or “correct” prediction if its IoU (intersec-
tion over union) with the ground truth label exceeds a given
ToU threshold [2] (Figure 1).

4.2. Data Augmentations

I used the CLoDSA [3] and Albumentation [1] augmen-
tation libraries and an open-source implementation of the
simple copy paste transformation [6]. A brief description
of each data augmentations used is written below. Figure
2 contains select examples of some of the naive spatially
variant augmentation strategies.

Flip along horizontal/vertical axes

Copy-paste X% of instances from another image

Random crop and resize (aspect ratio maintained)

Lateral stretch along horizontal/vertical axes

Figure 2. Examples of spatially variant data augmentation strat-
egy methods (flip, simple copy paste, random crop resize, lateral
stretch)

4.2.1 Flip

Flip image, bounding boxes and segmentation masks across
either horizontal or vertical axes.

4.2.2 Lateral stretch

Crop along horizontal or vertical dimension of image by
a random scaling factor, then resize to original starting di-
mensions, achieving a lateral stretch transformation.

4.2.3 Crop

Perform a random crop along both axes of image by a ran-
dom scaling factor, then resize to original starting dimen-
sions, maintaining original aspect ratio.

4.2.4 Color jitter

Randomly change brightness, contrast, and saturation of
image. Bounding boxes and mask segmentation labels are
unaffected by this transformation.

4.2.5 Simple copy paste

For each image i, choose an image i), at random from the
training dataset. Then, select cell instances 7, from 7; with
a probability p = 0.25. For all instances ¢, , copy each in-
stance’s image representation, bounding box and segmen-
tation mask onto the image, bounding box and mask of the
original image ;.

4.2.6 Random scaled copy paste

All images in the dataset are randomly scaled prior to the
simple copy paste procedure outlined in 4.2.5 to achieve
cut-and-paste from variably sized source images.

4.2.7 Stacked augmentations

Each image was passed through a sequence of all naive data
transformations with a tunable parameter p, where a given
transformation is applied to the image with a probability p.

4.2.8 Random choice augmentations

Out of the set of all naive data transformations, one is cho-
sen at random and applied to the data example.

4.2.9 Automated augmentation selection

Tused a generative approach over the set of data transforma-
tions similar to that outlined in [10]. Here, the objective is
to minimize the loss between augmented data produced by
the proposed augmentation policy and the original training
data. The exact implementation is based off of a compute-
efficient approach called FasterAutoAugment implemented
by Hataya et al. 8] and is available through the open source
Albumentations library as AutoAlbument [[1]]. Similar to
AutoAugment, FasterAutoAugment explores a search space
of sub-policies, or image transformations, which have dif-
ferentiable parameters such as the magnitude p or probabil-
ity of being applied p [8].
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Figure 3. FasterAutoAugment search strategy
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Figure 4. Example image with instance segmentation mask of each cell type

During training, each transformation is applied to the im-
age with a learnable weight and the resulting augmented im-
age is the weighted sum of all the transformed images [8].
Then, using the learned weights, the model can then ulti-
mately choose the best policy of transformations to apply
(Figure 3) [8]. The main advantage of FasterAutoAugment
is that the authors make certain approximations to allow
for backpropagation through image transformations that are
not normally differentiable [8]. FasterAutoAugment ap-
plies a generated augmentation policy and then computes a
loss against the distribution of produced images and ground
truth images, which is then backpropagated through the
model [8].

Since the library was only written for classification and
semantic segmentation tasks, I decided that modifying my
input data to a semantic segmentation mask format was
the best compromise. Since I only have one object class,
a classification-centered augmentation approach would be
unlikely to be successful. On the other hand, I hypothesized
that changing the instance segmentation masks to a binary
semantic segmentation mask might still allow the generative
model to learn augmentations that preserve some informa-
tion about spatial segmentation of the image.

4.3. Image feature analysis

To supplement secondary analyses of the performance of
different data augmentations, I generated size and convex-
ity distributions of cell instances for each of the different
cell types. I used the test dataset annotation labels to find
the area of each mask and the number of vertices in the
polygon segmentation mask for each instance and plotted
distributions of each cell instance feature.

5. Results

For my experiments, I chose a model pre-trained on the
dataset containing images of only the A172 cell line us-
ing the Cascade Mask R-CNN architecture described above.
I chose this cell line for the pre-trained model because it
demonstrated the best transfer performance when evaluated
on the other cell type datasets. I used the same hyperparam-
eters as those used during pre-training, froze the backbone
parameters and fine tuned the pre-trained model on an aug-
mented training dataset with single cell type images for 15
epochs. The A172 single cell type fine-tuned model is then
evaluated at test time on unaugmented test datasets for each
of the 8 cell types (Figure 5).

I report the average precision at an IoU threshold of 0.5
(AP50) for the mask segmentation as a metric for compar-
ison between the various augmentation approaches. The
baseline model is one that is pre-trained on the unaug-
mented training dataset alone on the A172 single cell type
images. The post-augmentation training dataset size was
kept constant at 3-fold the original training set size and con-
served a full copy of unaugmented images.

Pre-
single cell type training dataset

Fine-tune on augmented A172
single cell type training dataset

¢ valuat
single cell type testing datasets

Figure 5. Experimental pipeline



Average Precision None Lateral Flip Simple Scaled Crop  Color
@IoU=0.5 stretch copy paste  copy paste jitter

Al72 73.76  74.09 73,51 71.94 73.32 73.86 72.54
BT474 47.55 499 53.3 54.52 50.41 49.35 553

BV2 62.33 6246 66.70 66.33 60.27 61.23  62.35
HUH7 7232 73.57 7349 7221 73.74 74.73  71.66
MCF7 41.51 48.04 4749 47.38 45.36 45.32 50.19
SHSYSY 41.66 45.11 47.03 45.78 43.79 43.74 45.92
SKBR3 87.01 87.15 88.13 88.01 87.65 86.87 88.17
SKOV3 8351 84.73 82.69 80.51 83.50 84.24 81.29

Table 1. AP50 segmentation mask results for single augmentation strategies compared to unaugmented baseline performance. A172 trained

model evaluated across all 8 single cell types

Average Precision None  Stacked Stacked Random AutoAlbument
@IoU=0.5 p=0.5 p=0.8 choice

Al172 73.76  73.78  71.77  73.25 71.61

BT474 47.55 5393 49.29 51.89 57.62

BV2 62.33 6236 49.83 63.19 60.25

HUH7 7232 75.61 7245 73.33 71.67

MCF7 41.51 4798 4279 4993 48.67
SHSYSY 41.66 4336 39.77 46.92 41.47

SKBR3 87.01 88.09 86.54 88.03 87.72

SKOV3 8351 83.74 81.07 82.95 79.96

Table 2. AP50 segmentation mask results for combined naive augmentation and autonomous augmentation search strategies compared to
unaugmented baseline performance. A172 trained model evaluated across all 8 single cell types

5.1. Naive single augmentation strategies

Various geometric and color transformations were ap-
plied to the A172 training image dataset, with variable im-
provements in transfer performance onto previously unseen
cell type image data. The one augmentation technique that
seems to improve test performance across all of the single
cell type tasks is the lateral stretch transformation. I would
speculate that this distortion of original aspect ratio likely
helps to generalize to different morphologies displayed by
other cell types. Interestingly, many of the transformations
did not improve the test performance on the training cell
type (A172) despite significant improvements for transfer
learning onto other cell types. As such, this suggests that
the augmentation seems to mostly provide cell type gen-
eralizable information about segmenting cell instances and
not just creating new examples of the same cell type class.
However, this result is particularly interesting for the flip
transformation since each individual image’s instances are
altered only positionally and not through any other geomet-
ric transformation. This suggests that simply increasing
the number of training examples of a single cell type, in
the absence of more aggressive distortions or cut-and-paste
techniques, generally helps improve performance when the
model is transferred to new cell types.

5.2. Naive combined augmentation strategies

Given that different transformation worked well for en-
hancing transfer onto different novel cell types, I hypoth-
esized that stacking or combining the single augmentation
approaches would provide better holistic enhancement cov-
erage across all the cell types. I tried applying augmenta-
tions sequentially with a probability p = 0.5 and p = 0.8.
The higher p value ablated the improved transfer perfor-
mance across all cell types; possibly this may be due to
repeated application of resizing transformations that might
too severely alter magnify or distort cell instances. For ex-
ample, BV2 cells have a relatively smaller and less convex
shape compared to the A172 training cell type (Figure 6)
which may explain why the stacked augmentation approach
with higher p values actually performs much worse than the
baseline unaugmented approach. To counter the potentially
deleterious effects of applying multiple transformations to
the same image while still pooling , I tried a random choice
approach where a single transformation is selected at ran-
dom and applied to the image.

5.3. Automated augmentation strategies

Given the growing body of literature exploring learned
data augmentation policies, I hypothesized that using a sim-
ilar approach would more thoroughly search the sample



Figure 6. Distributions of cell size (green) and convexity (purple) across the test datasets of each of the 8 different cell types

space of possible combinations of augmentations. How-
ever, the augmentation policy found through AutoAlbu-
ment (an Albumentations library implementation of the
FasterAutoAugment algorithm) demonstrated significant
improvement in the transfer task for only two of the 7 novel
cell types. Since the automated search approach was built
for a semantic segmentation task and adapted for instance
segmentation, the ground truth bounding box and separa-
tion of instances was ignored in the augmentation selec-
tion process. As such, the discriminator in the autonomous
augmentation search algorithm would have the objective of
minimizing the difference in the distributions of images and
their semantic segmentation masks, losing the information
about the distributions of instances, for example the sizes
or shapes of individual cell instances. Ideally, to learn aug-
mentations to best improve at the downstream transfer task,
the discriminator should minimize the loss between dis-
tributions of generated images and instance segmentation
bounding boxes/masks from the training dataset and the un-
seen cell type. The objective here would be to provide more
guidance in learning transformations to bridge between dif-
ferent cell types. The major challenge is that these new cell
type datasets would typically be unlabeled so would neces-
sitate an unsupervised approach to generate weak labels.

5.4. Discussion

Interestingly, it seems like there are certain downstream
task cell types that robustly improved with data augmen-
tation on the training A172 dataset, for example BT474,
MCF7 and SHSYSY. I looked at the distribution of cell in-
stance size and convexity across the test datasets for all 8
cell types to try to identify qualitative reasons why certain
cell types would be consistently improved with upstream

data augmentation. One possible explanation is that these
three cell lines have slightly smaller size distributions than
the training cell type A172, but not nearly as small as BV2
(Figure 6). Perhaps the size distortions are beneficial to
help transfer between A172 and slightly smaller cell type
instances. Why a similar reasoning does not apply to a cell
type like SKBR3 may be due to the fact that SKBR3 seg-
mentation performance is already quite good and cannot be
that much improved by data augmentations, whereas model
performance on BT474, MCF7 and SHSYSY is much more
modest.

6. Conclusions

Cell type generalizable instance segmentation models
provide a time and labor efficient way to quantify cell abun-
dance in live cell imaging experiments. In this paper, I
propose the usage of data augmentations to help a model
trained on a single cell type generalize to other cell types
at test time. I apply various naive approaches consisting
of both geometric and color-based image transformations,
which achieve fairly variable downstream improvements
when models are evaluated on new cell types. Combining
these transformations in either a stacked or random choice
approach helps to smooth out this variability, yielding a data
augmentation strategy that can improve transfer learning to
all or almost all of the new cell types.

Future work should consider an experimental setup
where models are pre-trained on unaugmented and aug-
mented training data drawn from multiple different cell
types and then evaluated on a single unseen cell type. This
would provide additional insight as to which transforma-
tions are broadly useful for generalizing across cell types,
not only transformations that would help in the A172-



specific training set case. Another interesting experiment
would be to examine the scaling effect of various data aug-
mentation policies for this task particularly for the com-
bined augmentation strategies. In this paper, my augmen-
tations only expand the dataset size by 200% which may
in it of itself limit the generalizability of the model, as the
model may still overfit the augmented data. Ideally, later re-
searchers should train on the augmented datasets and avoid
the fine-tuning approach where the backbone parameters
were frozen to allow the model’s feature extraction network
to also learn from the newly augmented data. Especially
since the dataset is relatively small, compared to ImageNet
for example, it is quite possible that the feature extraction
module is also overfitted to the training cell type and would
benefit from learning from the augmented data.

7. Contributions and Acknowledgements

For all modeling, I used the pre-trained mod-
els, images and annotations from the Sartori-
ous LIVECell Github repository, available here:
https://github.com/sartorius—-research/
LIVECell. For data augmentation, I used the
frameworks from the CLoDSA library, available
here: https://github.com/joheras/CLoDSA
and the Albumentations library, available here:
https://github.com/albumentations-team/albumentations.
For the copy-paste data augmentation I used open-source
code written by Ryan Conrad available on Github: https:
//github.com/conradry/copy—-paste—aug. For
automated augmentation search, I used the AutoAlbument
code, available here on Github: https://github.
com/albumentations—team/autoalbument.
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