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Findings

Our experiments replicated the
training instability of the Localization
Network reported by Tan et al.

Model inspections show that the
gradient signal to the Localization
Network is extremely unstable.

Model experiments show no benefit
to increasing the capacity of the
Localization Network, consistent with
the finding that its learning signal is
unreliable
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Model Experiments

= Even very significant increases in
Localization Network capacity do

not improve glimpse quality Method | ImageNet 100
= Substantially increasing the image | Accuracy

scaling factor does not encourage  baseline | 8399
the network to learn useful 2d-spatial-clue 84.16
: 2d-spatial-loc 83.81
gl!mpseS' ) 2d-spatial-loc-s7 62.00
= Minor performance improvement by  24-spatial-loc-s7-no-aux | 67.45
using 2d positional encoding to multihead-attention 83.72
describe glimpse location. pretralned 85.14
pretrained-frozen 84.75
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Model Inspections

= Glimpse parameter sweeps clearly
demonstrate the unstable gradient
signal to the Localization Network
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