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which can be used for novel space-time view synthesis.
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Failure Cases:
Loss: * . : .
Problem Statement o Models other than M5 fail to capture object dynamics
Input: video frames (T x C x H x W) L = cos_sim( z;"’m Zim) + A1l Z;;k,m — Zim||1 + ApercLperc o The capture voxel flow is coarse, which may be attributed to
the use of perceptual loss
Encoder Output: e We apply this loss to interpolation and arbitrary-frame reconstruction Conclusi
Voxels (C x H x W x D) Cam Trajectory (t x 6) Flow (H x W x D x 3) e To only compare relevant voxels, we create a saliency map from Onciusions

voxels to the final image to weight the importance of each voxel e Our model disentangles real-world videos into a static scene, the
Qualitative Results camera trajectory and the scene flow that captures dynamics
- — e The flow architecture and robust losses enable learning

e Our model can generate plausible, novel middle frames
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To evaluate, we compute the LPIPS, PSNR, and SSIM of novel
space-time view synthesis outputs.

e Future work:
o Use voxel flow to inform action classification
o Use voxel flow for compression of videos with dynamic scenes
o Experiment with more interpretable voxels or point clouds to
better capture scene dynamics
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Dataset

Middle Frame Synthesis

(From left to right: Ground Truth, Baseline (M0), M5)

HMDBS51 “Stand” HMDB5S51 “Run”

Frame Reconstruction
(From left to right: Ground Truth, Baseline (M0), M5, Initial Frame)




