
# Temporally and Spatially Novel Video Frame Synthesis Using 4D Video Autoencoder

Authors: Bidipta Sarkar, Xinyi Wang, Feiyang (Kathy) Yu Stanford University, Department of Computer Science



### Introduction

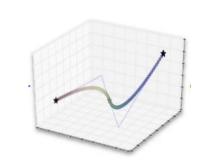
We want to turn a video into a 4D scene

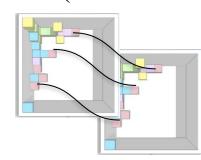


We generate **deep voxels**, a **camera trajectory**, and a **voxel flow**, which can be used for novel space-time view synthesis.

We build off of a pretrained static-scene Video Autoencoder and add flow encoder and flow decoder modules to capture **voxel flow**.

|              | <b>D-NeRF</b> | Video AE* | Deep Voxel Flow | Ours**   |
|--------------|---------------|-----------|-----------------|----------|
| 3D-Space     | <b>V</b>      | <b>✓</b>  | ×               | <b>V</b> |
| Dynamic      | <b>V</b>      | X         | <b>✓</b>        | <b>V</b> |
| Feed-forward | X             | <b>V</b>  | <b>✓</b>        | <b>V</b> |


## **Problem Statement**


Input: video frames  $(T \times C \times H \times W)$ 

#### **Encoder Output:**

Voxels (C  $\times$  H  $\times$  W  $\times$  D) Cam Trajectory (t  $\times$  6) Flow (H  $\times$  W  $\times$  D  $\times$  3)



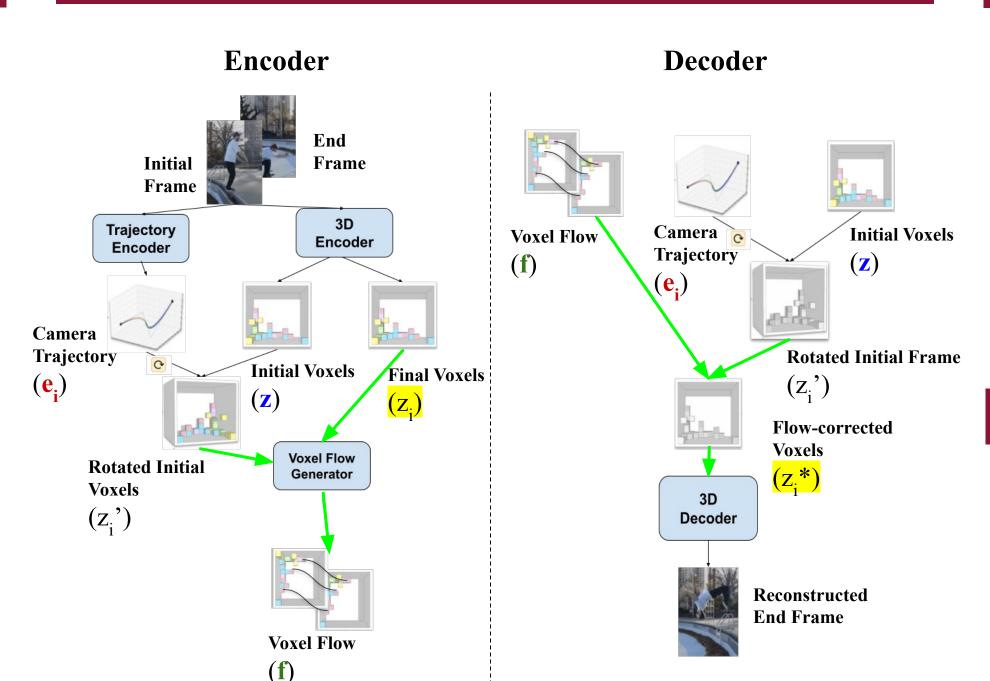




To evaluate, we compute the LPIPS, PSNR, and SSIM of novel space-time view synthesis outputs.

#### **Dataset**

HMDB51 "Stand"


HMDB51 "Run"







### Architecture



## Loss:

$$\mathcal{L} = \cos_{-\sin}(z_{i,m}^*, z_{i,m}) + \lambda_1 ||z_{i,m}^* - z_{i,m}||_1 + \lambda_{\text{perc}} \mathcal{L}_{\text{perc}}$$

- We apply this loss to interpolation and arbitrary-frame reconstruction
- To only compare relevant voxels, we create a saliency map from voxels to the final image to weight the importance of each voxel.

# **Qualitative Results**



Middle Frame Synthesis
(From left to right: Ground Truth, Baseline (M0), M5)









Frame Reconstruction (From left to right: Ground Truth, Baseline (M0), M5, Initial Frame)

# **Quantitative Results**

| Method     | LPIPS (↓) | PSNR (†) | SSIM (†) | Ext. Test |
|------------|-----------|----------|----------|-----------|
| M0         | 1.582     | 23.167   | 0.643    | T         |
| <b>M</b> 1 | 1.556     | 23.392   | 0.652    | T         |
| M2         | 1.560     | 23.416   | 0.652    | T         |
| M3         | 1.560     | 23.455   | 0.653    | T         |
| M4         | 1.889     | 21.858   | 0.586    | T         |
| M5         | 1.503     | 24.010   | 0.682    | T         |
|            |           |          |          |           |

Note: Models were tested on unseen HMDB51 action category.

## **Analysis**

- Best Model [M5]
  - o 5.0% improvement in LPIPS
  - o 3.6% improvement in PSNR
  - o 6.1% improvement in SSIM
  - Captures scene dynamics using voxel flow, while adjusting for camera trajectory
  - Localizes voxel flow and preserves the static scene
- Failure Cases:
  - Models other than M5 fail to capture object dynamics
  - The capture voxel flow is coarse, which may be attributed to the use of perceptual loss

#### Conclusions

- Our model disentangles real-world videos into a static scene, the camera trajectory and the scene flow that captures dynamics
- The flow architecture and robust losses enable learning
- Our model can generate plausible, novel middle frames
- Future work:
  - Use voxel flow to inform action classification
  - Use voxel flow for compression of videos with dynamic scenes
  - Experiment with more interpretable voxels or point clouds to better capture scene dynamics

#### References

[1] Z. Lai, S. Liu, A. A. Efros, and X. Wang, "Video autoencoder: self-supervised disentanglement of 3d structure and motion," in *ICCV*, 2021.

[2] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, "D-nerf: Neural radiance fields for dynamic scenes," CoRR, vol. abs/2011.13961, 2020.

[3] . Liu, R. Yeh, X. Tang, Y. Liu, and A. Agarwala, "Video frame synthesis using deep voxel flow," in ICCV, pp. 4473–4481, 10 2017.