
Evaluating Deep Learning Approaches for Out-of-Domain Land Cover
Classification

Matthew Kolodner Jack Xiao
Stanford University

{mkolod, jackxiao}@stanford.edu

Abstract

Training a classifier that performs well on out-of-domain
data is often challenging, especially if the out-of-domain
data has a significantly different distribution from the in-
domain training data. One problem where training an ef-
fective out-of-domain classifier would be applicable is the
mapping of land cover in low-income regions based on low-
resolution satellite imagery. With access to a high volume
of well labeled land cover data from various regions around
the world and a smaller set of labeled data specific to sub-
Saharan Africa, we aim to explore the ability of 3 differ-
ent deep learning approaches to generalize well on out-of-
domain test data: a Convolutional Neural Network, a Long
Short-Term Memory network, and a Transformer Model.
We find that deep learning models achieve some success
over a K-Nearest Neighbors baseline model, with the LSTM
model outperforming the others. We also investigate how
performance changes on out-of-domain data compared to
in-domain data when several deep learning changes are to
normalization methods, dropout values, and batch sizes. We
hope these experiments can inform decisions for others re-
garding general approaches to out-of-domain tasks.

1. Introduction
1.1. Motivation

Understanding changes to Earth’s surface is one of the
keys to combating the loss of natural habitats and fertile
land. Having a way to accurately map land cover around
the globe and monitor changes would be a valuable tool in
the preservation of our planet. The primary challenge in
creating such a model is the lack of viable land-cover data
in low-income regions. There is, however, plenty of ac-
curate land cover data from higher-income regions, which
suggests taking an approach that leverages the information
we do have (despite it being from completely different re-
gions) to have a more consistent model. We will explore
methods to more accurately classify land cover given low-

resolution satellite data with minimal data from target re-
gions. Not only would having the ability to correctly clas-
sify land cover in developing regions be useful in informing
policy decisions to achieve sustainability goals, but the re-
sults of our generalization experiments can potentially be
applicable to other classification problems.

1.2. Problem

The land cover data from lower-income regions are lim-
ited in both quantity and resolution. There are not enough
accurately labeled data points from areas such as sub-
Saharan Africa to train a good classifier. Developing a
classifier for land cover in that region will require the use
of the more abundant data from higher-income areas and
other out-of-domain techniques. In addition, the data that is
available for those regions is primarily low-resolution satel-
lite imagery that does not lend itself well to training effec-
tive land cover classifiers due to the large area aggregated
by each individual pixel and the lack of finer details that
might differentiate between land cover types. The data that
is available is much more suitable for classification method
based on individual pixels from the satellite data rather than
one based on full images.

1.3. Approach

In this paper, we evaluate the ability of various deep
learning models to accurately classify land cover on both in-
domain and out-of-domain data points. The input is a 7 x 46
time series of a satellite image pixel representing 7 channels
extracted over 46 days, which we will run through a classi-
fier to obtain 1 of 17 land cover labels. In this paper, we use
four different models (a KNN baseline, a CNN model, and
LSTM model, and a Transformer model) on the input to see
which one results in the highest performance. We also hope
that the results of our experiments can be useful to inform
solutions and model designs for other out-of-domain tasks.



2. Related Work
There have been promising results in developing tech-

niques for few-shot land cover classification. A meta-
learning approach was presented in [12], which utilized
MAML (Model-Agnostic Meta Learning) to achieve higher
accuracy compared to standard CNN models on a Land
Cover classification task. The meta-learning model learns
optimal weight initializations to better adapt to tasks with-
out much data. The drawbacks of meta-learning approaches
comes from the difficulty of implementation and training,
and the in-domain performance of the meta-learning ap-
proach tends to be weaker.

However, more traditional deep learning models are have
been one of thee most popular approaches to land cover
classification. Convolutional models have been perhaps the
most common approach given the image-based nature of
the problem and have achieved great performance [2] [10],
but its robustness on out-of-domain data is less established.
Similarly, versions of RNN and LSTM models have been
used successfully to classify time-series land cover image
data [3] [5]. Transformers are a more recent type of at-
tention [11] based deep learning model that have less com-
monly been used for land cover classification tasks, but have
still seen some applicability, especially in time-series image
data [14] [6] where longer dependencies are present. In gen-
eral, for all these standard deep learning approaches, out-of-
domain classification remains a problem. This is what we
seek to explore in this paper, to determine which of these
approaches lends itself best to out-of-domain generalization
on our dataset.

One interesting approach relevant to standard deep learn-
ing models is representation learning, which has been used
in conjunction to achieve higher accuracies. Tile2Vec [4]
is an unsupervised representation learning algorithm that
learns continuous representations for individual tiles (small
image patches), and has been utilized with a predicting
noise as a feature extractor for improved performance on
land cover classification [9]. Other self-supervised methods
have demonstrated effectiveness at learning feature repre-
sentations for land cover mapping tasks as well [1]. The
results demonstrate the usefulness of representation learn-
ing for generalizing tasks, but the lack of high-resolution
imagery in our data means that a representation learning
approach may not be feasible using our dataset without sig-
nificant modification.

3. Dataset and Features
3.1. Data

We use the SDG 15: Life on Land datasets from Sustain-
Bench [13], which are among several datasets constructed
to target various SDGs (sustainable development goals, as
stated by the UN). The 2 datasets in this collection each are

Figure 1. Distribution of meta-train, meta-validation, and meta-
test data. We see the meta-test represents out-of-domain data

geared towards a specific kinds of few-shot techniques: one
is designed for transfer learning, and the other is designed
for representation learning. We intend to use the transfer
learning dataset, which is comprised of satellite images
from the MODIS satellite collected over the course of
2018, containing 500 points sampled from each of 692
10km×10km regions around the globe. For each point,
we have the MODIS Terra Surface Reflectance 8-Day
time series for 2018, which contains information for 7
bands, yielding an input dimension of 7 × 46. Time series
coordinates are thus discretized by 8 days per measurement.
These 7 bands are Red, Green, Blue, Short-waved Infrared
1, Short-waved Infrared 2, Thermal, and Near-infrared.
The labels are the land cover classification for each image.

This dataset has a meta-train, meta-validation, and
meta-test split. The meta-test data consists of data taken
from Sub-Saharan Africa while the meta-validation data is
from approximately the same distribution as the training
data. As the naming of the data splits suggest, this dataset
was designed for meta-learning, but the data splits also lend
themselves well to standard deep learning. In this sense,
the meta-train set represents the in-domain training data,
the meta-validation represents in-domain validation set,
and the meta-test represents an out-of-domain validation
set. Comparing the in-domain with the out-of-domain set
is important for understanding how well our algorithm is
at generalizing to out-of-domain data. In total, there are
210774 training points, 45916 in-domain validation points,
and 49721 out-of-domain validation points.

3.2. Pre-Processing

Although the data was provided to us, meaning we didn’t
have to use any satellite imagery downloading libraries,
there are many pre-processing steps we took with the data.
For example, many of the images had missing data in cer-
tain channels and days in the time series, so we had to clean
the data extensively. In addition, we normalized the images,
normalizing across the mean and standard deviation of each



Index Land Cover

0 Evergreen Broadleaf Forests
1 Permanent Wetlands
2 Croplands
3 Permanent Snow and Ice
4 Urban Lands
5 Evergreen Needleleaf Forests
6 Woody Savannas
7 Closed Shrublands
8 Deciduous Needleleaf Forests
9 Grasslands
10 Open Shrublands
11 Savannas
12 Deciduous Broadleaf Forests
13 Cropland Natural Vegetation
14 Barren
15 Mixed Forests
16 Water Bodies

Table 1. Land Cover Classes in Data

of the 7 channels using Eq. (1) for each channel i [??? add
info about why we normalized]. For the in-domain and out-
of-domain validation datasets, we used the same mean and
standard deviation from the training set. We also assigned
numeric labels from 0-16 for each of 17 output classes, de-
tailed in Tab. 1

X̂i =
Xi − µi

σi
(1)

4. Methods
For our experiments, we focus on three deep learning

classifiers: a CNN model, an LSTM model, and a Trans-
former model. We will train each of these models on the
in-domain data, and evaluate the performance of each of
the models on both the in-domain data and out-of-domain
data. As a baseline for comparison, we train a KNN classi-
fier on the in-domain training data. For each model, we test
various hyperparameters to optimize training and attempt
to achieve the best possible performance for each classifier
before comparing their performances relative to the other
models.

4.1. K-Nearest Neighbors Baseline

To establish a straightforward baseline, we utilized a
KNN model with K = 3. KNN classifiers, which clas-
sify examples based on the K closest datapoints from the
training set, are relatively simple to implement and do not
require significant training time, despite having a long test
time, while still yielding reasonable results that can serve
as a solid base of comparison for deep learning approaches.

More specifically, we see that train time is fast because all
we have to do is provide the data to the model. Prediction is
slow in comparison because this is where the distance com-
parisons happen between all other points on the predicted
inputs. We elected to use K = 3 because it yielded the
best overall performance for our model. We use standard
Euclidean distance for measuring the distance between any
two given points in the feature space, as shown in Eq. (2).
We implemented this model using [8].

Distance(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (2)

4.2. Convolutional Neural Network Approach

Our CNN model consists of the architecture outlined in
Fig. 2. These convolution and max-pool layers take place
in a 1-dimensional space, given that our data consists of
time series of individual pixels (of shape [num channels ×
num days]) rather than full 2-dimensional images (which
would be shape [[num channels × height × width]). We
start out with 64 5×1 filters and a padding of 2 for the
first convolution, decrease to 32 3×1 filters after the sec-
ond convolution with 1 padding, and decrease again to 16
3×1 filters after the third convolution with 1 padding. Us-
ing 2-padding with filter size of 5 and 1-padding with filter
sizes of 3 allow the data to maintain the same number of di-
mensions within each convolution. Instead, we rely on the
maxpooling layer for decreasing the dimensions of the data,
having a window of 3, a stride of 1, and 1 padding.

Despite not working directly with full 2-dimensional im-
ages, we are still handling pixels with a certain amount of
channels over a range of time, and a 1D CNN would still
be useful in this situation because it can effectively learn
features and patterns within the pixel time series while be-
ing computationally efficient. Convolutional models are
broadly applicable to image-based data (our pixel time se-
ries data are sampled from full images and thus can still
be considered image-based), and 1D CNNs are widely used
for time-series data. Thus, using a 1D CNN for our image-
based pixel time-series data is a natural and logical choice.

4.3. Long Short-Term Memory Approach

Given the sequential nature of our data as the time-series
of a pixel over the course of a year, an LSTM-based clas-
sifier might be effective way to learn more complex and
longer-term relationships within the different components
of a single data point.

LSTM models are recurrent neural networks that main-
tain an additional cell state in addition to the hidden state.
This cell state encodes information that we carry over from
previous states, and is maintained using four gates that de-
termine how the cell is updated (e.g. what information is



Figure 2. CNN Architecture

kept and what information is erased) and how the cell is uti-
lized in the calculation of the hidden state. An LSTM layer
functions as follows: Starting from an initial hidden state
and an initial cell state, the hidden state and the input at the
current step are are used together with some weights and
a bias term using Eq. (3) to compute a vector a of size 4h
where h is the size of the hidden state. a is then divided into
4 separate vectors, each with an activation function applied
as in Eq. (4) to obtain the 4 gates. These 4 gates are then
used in Eq. (5) and Eq. (6) to calculate the current cell state
and the current hidden state . The process is then repeated
until the end of the sequence.

a = Wxa+Whh+ b (3)
i
f
o
g

 =


σ
σ
σ

tanh

 a (4)

ct = f ⊙ ct−1 + i⊙ g (5)

ht = o⊙ tanh(ct) (6)

In order make a prediction for classification, we flatten
the last hidden layer and run it through a fully connected
layer to produce a scores for the 17 outputs.

4.4. Transformer Approach

Attention based models have achieved great results in
recent years, and despite being designed for NLP tasks,
transformer models have been successfully applied to vi-
sion problems. Again, since our data contains time-series of
pixel data over the course of a year, attention would seem to
be a useful method to encode dependencies and learn what
parts of the input are relevant to certain classifications.

Our Transformer model consists of 3 encoding layers,
each of which is made up of self-attention combined with a
feed-forward network. The result of the 3 encoding layers
is then passed through a fully connected layer to interpret
the results of the self-attention and provide scores for clas-
sification.

Self-attention allows the inputs to attend to other parts of
the input via a system of keys, queries, and values. Each
part of the input (in this case, each pixel state with 7 chan-
nels) gets multiplied by a set of key weights Wk, query
weights Wq , and value weights Wv . These products are
then used to calculate attention scores across all the inputs
using Eq. (7).

Y = softmax
(
(XWq)(XWk)

⊤
√
D

)
(XWv) (7)

In order to include more expressivity in the attention
calculation, we use multi-headed self-attention instead of
general attention. The difference is that multi-headed self-
attention performs multiple parallel self-attention calcula-
tions on the input, which are then concatenated to form one
full attention score. For our model, we use 7 heads (1 head
for each channel) since the number of heads needs to divide
the input “embedding” dimension exactly.

Within the multi-headed attention step, we also pass each
input through a positional encoding layer. This is because
attention cannot by default take advantage of sequence of
inputs since there are no recurrences or convolutions. As a
result, position needs to be encoded through an additional
embedding layer. To do this, we define a matrix P ∈ Rl×d,
where l = 46 and d = 7, and use Eq. (8) to encode the
sequential information. When run through the model, we
add P to the data.

After the multi-headed attention step, each encoding
layer also runs through a feed-forward network. We fine-
tuned the dimension of the feed-forward layer, concluding
with an optimal value of 100.

P (i, j) =

{
sin (i ∗ 10000−

j
d ), if j is even

cos (i ∗ 10000−
j−1
d ), otherwise

}
(8)

4.5. Loss Function

Since we are framing this as a multi-class classification
problem, we find that using cross-entropy loss, detailed in
Eq. (9), is most suitable for the n classes scenario, where ŷi
is the predicted data and yi is 1 or 0 depending on whether
the label is correct. The softmax function in Eq. (10) is
applied to the outputs from the model before calculating the
loss to condense the results into a probability between 0 and
1. All our deep models are implemented in Pytorch [7]

L = − 1

n

n∑
i=1

yi ∗ log ŷi (9)



σ(x)i =
exi∑n
j=1 e

xj
(10)

5. Experiments and Results
5.1. Evaluation Metrics

To decide our evaluation metrics, we considered which
metrics would be most appropriate for a multi-class classi-
fication setting. We are using the following metrics:

• Accuracy, identified by Eq. (11) measures the amount
of correct class predictions over the whole number of
predictions.

• F1-Score is a harmonic mean of the precision and re-
call, established by Eq. (12) Eq. (13) Eq. (14). We
calculate the F1-score of each class and take the mean
over all classes. This metric does not reward True Neg-
ative classifications.

• Average Precision (AP), identified by Eq. (15), is the
weighted mean of precisions achieved at each thresh-
old n, using increase in previous recall as the weight.
We calculate the AP of each class and take the mean
over all classes, resulting in the Macro AP (mAP).

• Macro AUROC is the area under the Receiver Operat-
ing Characteristic Curve, which measures false posi-
tive rate against true positive rate. We determine the
AUROC for each class and take the mean over all
classes.

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(14)

AP =
∑
n

(Recalln − Recalln−1) ∗ Precisionn (15)

5.2. Model Experiments

For each of the deep models we experimented with, we
used a batch size of 64 and trained every model under 10
epochs. For each model, we fine-tuned the model specific
hyperparameters (such as architecture, dimensions, etc.) for
best performance and report our best results. We experiment
later with more general parameters on our best model. The

model-specific hyperparameters we ultimately ended up us-
ing follow the model architectures discussed in Sec. 4. We
also fine-tuned the learning rate of each of the models, with
the Transformer model having an optimal learning rate of
0.001, the LSTM model having an optimal learning rate of
0.003, and the Convolution model having an optimal learn-
ing rate of 0.002. We also uniformly apply the SGD op-
timizer with Nesterov momentum for training the models,
with Nesterov momentum detailed in Eq. (16) Eq. (17). Al-
though we experimented with several optimizers, we only
report SGD with Nesterov momentum since it was the best
performing. SGD with Nesterov momentum is similar to
the standard SGD update, with the addition of a velocity
term vt to prevent the gradient from getting stuck at local
minima and saddle points, while also looking ahead and
calculating the gradient where the velocity leads to improve
convergence of training.

vt+1 = ρvt − α∇f(xt + ρvt) (16)

xt+1 = xt + vt+1 (17)

Looking at the results in Tab. 2, we can see that all 3
of the deep learning models significantly outperformed the
baseline KNN model. Within the three deep learning mod-
els, the CNN and LSTM classifiers outperformed the Trans-
fomer model. This may be due to the fact that the dimen-
sion of a single input into the Transformer is not very large
(our 7×46 datapoints translates to an single input dimen-
sion of 7 and a sequence length of 46). Thus, there may
not be enough information there for the transformer model
to properly learn dependencies, especially with the long se-
quence length. While the in-domain validation accuracy for
the Transformer lags behind the CNN and LSTM, the out-
of-domain test accuracy is much closer (see Tab. 3). How-
ever, this is likely due simply to a favorable distribution of
data in the test set where a few classes that the classfier per-
forms well on dominates the data, as the out-of-domain test
F1 score is significantly lower for the Transformer model.

The out-of-domain confusion matrices for the best
LSTM model (Figs. 5 and 6) and the CNN models are very
similar. But, there are some notable differences with the
confusion matrices for the Transformer confusion matrix
(Fig. 3). The Transformer model often incorrectly classifies
data with a true label of 0 (“Evergreen Broadleaf Forests”)
as label 15 (“Mixed Forests”), as opposed to the CNN and
LSTM models which rarely do so. Interestingly, the incor-
rect labeling from the Transformer model closely reflects
the distribution of data in the training set, where “Mixed
Forests” about equally as often as “Evergreen Broadleaf
Forests”. Moreover, the Transformer falsely classifies over
4500 test examples with label 2 (“Croplands”), which is
something the LSTM model does fewer than 1200 times.



Figure 3. Out-of-Domain Confusion Matrix for Transformer

Again, this reflects the distribution of the training data,
where “Croplands” appear relatively more frequently. An-
other example of this includes incorrectly classifying label
10 (“Barren”) examples as label 9 (“Grasslands”). This in-
dicates that the Transformer model was less adaptable to
changes in the distribution of data between the in-domain
training and out-of-domain test sets.

On the other hand, the CNN and LSTM models had very
similar performances, with the LSTM classifier slightly out-
performing the CNN. Due to the sequential time-series na-
ture of our pixel data, it is likely that the LSTM better learns
the longer-term dependencies between the pixel states at
different parts of the year (as LSTM models are designed to
do), wheres the CNN model with the kernel size of 5 allows
for at most a contiguous window of size 5 for which differ-
ent parts of the input can interact with each other. Overall,
we can see in Fig. 4 that the accuracy on the test set quickly
flattens out and oscillates around without consistently in-
creasing. This is indicative that additional measures need
to be taken in order to increase out-of-domain performance,
whether it be utilizing more complex models that adapt bet-
ter or adding additional regularization strategies.

5.3. Additional Ablation Studies

In addition to running experiments regarding our four
primary models, we also conducted ablation studies to pre-
cisely evaluate the effect of these general hyperparameters
or training choices on both in-domain and out-of-domain
performance. We conducted these experiments on the best-

Model Accuracy F1 Score mAP AUROC

KNN 0.445 0.404 0.679 0.230
ConvNet 0.654 0.552 0.755 0.378
LSTM 0.657 0.591 0.781 0.408

Transformer 0.547 0.376 0.664 0.242

Table 2. Unseen In-Domain Model Results

Model Accuracy F1 Score mAP AUROC

KNN 0.359 0.278 0.697 0.174
ConvNet 0.520 0.423 0.757 0.295
LSTM 0.517 0.467 0.791 0.324

Transformer 0.509 0.275 0.693 0.189

Table 3. Unseen Out-of-Domain Model Results

Figure 4. Validation Accuracies by Model

performing LSTM model, only modifying one aspect at a
time for more precise performance analysis.

5.3.1 Normalization

In Tab. 4 and Tab. 5, we analyze the effects of our choice
to normalize the validation data by the training mean and
standard deviation. In the TrainNorm case, we maintain our
current normalization strategy while in the DatasetNorm



Normalization Accuracy F1 Score mAP AUROC

TrainNorm 0.657 0.591 0.781 0.408
DatasetNorm 0.629 0.564 0.741 0.383

Table 4. Unseen In-Domain Normalization Results

Normalization Accuracy F1 Score mAP AUROC

TrainNorm 0.517 0.467 0.791 0.324
DatasetNorm 0.297 0.253 0.754 0.177

Table 5. Unseen Out-of-Domain Normalization Results

case, we instead normalize the validation sets by their re-
spective mean and standard deviations, rather than that of
the training set. We can see that the TrainNorm case results
in a higher performance across the board, especially with a
significantly higher performance on the out-of-domain set.
This makes sense, it is generally best practice to scale all
the data by the same factors, and also to avoid touching the
validation and test sets.

When we scale/normalize the validation and test set dif-
ferently from the training sets, we change the characteristics
of the data completely and affect the performance of our
learned model. Especially since the the out-of-domain test
set has a very different distribution of labels compared to
the training set, normalizing by the very different statistics
of the test set would essentially alter the nature of the test
set entirely. The model learns which features and values to
care about when running on the normalized training data,
and by normalizing the test set using test statistics instead
of training statistics, we lose information on certain values
which could have been important to accurate classification.
This explains why the performance of DatasetNorm on the
validation data is lower but much closer to the TrainNorm
performance, since the distribution of the in-domain valida-
tion data is closer to the distribution of the training data than
the test data is.

5.3.2 Batch Size

In Tab. 6 and Tab. 7, we evaluate the effect of batch size
on the performance of our LSTM model. We can see that
the batch size of 32 generally results in the highest perfor-
mance across the majority of metrics (except for accuracy
in the out-of-domain test set). However, during the process
of training these models, we find that the batch size off 32
results in a substantially longer training time, and due to
the comparable results obtained using a batch size of 64,
we continue experimentation with a batch size of 64 for the
sake of efficiency.

Batch Size Accuracy F1 Score mAP AUROC

32 0.666 0.595 0.797 0.419
64 0.657 0.591 0.781 0.408
128 0.639 0.565 0.763 0.385

Table 6. Unseen In-Domain Batch Size Results

Batch Size Accuracy F1 Score mAP AUROC

32 0.511 0.473 0.809 0.332
64 0.517 0.467 0.791 0.324
128 0.529 0.441 0.774 0.316

Table 7. Unseen Out-of-Domain Batch Size Results

p(drop) Accuracy F1 Score mAP AUROC

0 0.657 0.591 0.781 0.408
0.1 0.666 0.594 0.776 0.417
0.4 0.661 0.587 0.779 0.406

Table 8. Unseen In-Domain Dropout Results

p(drop) Accuracy F1 Score mAP AUROC

0 0.517 0.467 0.791 0.324
0.1 0.547 0.476 0.793 0.333
0.4 0.524 0.449 0.780 0.321

Table 9. Unseen Out-of-Domain Dropout Results

5.3.3 Dropout

Finally, in Tab. 8 and Tab. 9, we conduct experiments to
see how adding regularization to our model in the form of
dropout may improve performance on in-domain and out-
of-domain unseen examples. These experiments also give
us further insight into the extent in which our model is over-
fitting. We can see from the results that a dropout value of
p = 0.1 results in increased performance in both the val-
idation and test sets. The test set performance is notably
increased, with accuracy going up by 3 percent and also im-
proving in all other metrics. This indicates some overfitting
in our model, and dropout serves as an effective regular-
izer to reduce the amount of overfitting and increase perfor-
mance on the unseen validation and test sets. In this sense,
regularization through dropout can help prevent overfitting
improve performance on out-of-domain unseen data in ad-
dition to in-domain unseen data.

5.4. Analysis of Best Overall Model

Overall, we decided our best model that most balanced
performance and runtime was the LSTM model with batch



Figure 5. In-Domain Confusion Matrix for Best Performing
Model

size 64 and dropout of 0.1. In Fig. 5 and Fig. 6, we have
plotted the confusion matrices for this model on the in-
domain and out-of-domain data. Many of the common mis-
takes for our best LSTM classifier makes sense in the con-
text of the labels: Looking at Fig. 6, we can see that some
commonly missed examples are label 6: “Woody Savan-
nas” incorrectly labeled as label 11: “Savannas” (and vice
versa), and label 9: “Grasslands” being labeled as label 2:
“Croplands” (and vice versa). Thinking about the general
colors and characteristics associated with each of these land
cover types, we can see that many of these mis-labelings
can be attributed to outright similarities between the satel-
lite pixels/data points themselves. This is not to say that the
LSTM model is not vulnerable to changes in the distribu-
tion as we observed the Transformer model to be. Some of
the frequent incorrect labels in the confusion matrix (e.g.
falsely classifying many test examples as label 6: “Woody
Savannas”) are reflected by the distribution of the in-domain
training data, which contains a much higher frequency of
“Woody Savannas” compared to the out-of-domain test set.

6. Conclusion/Future Work
In the end, we find that the LSTM classifier performed

the best on the in-domain validation and out-of-domain test
sets, slightly outperforming the CNN classifier and signifi-
cantly outperforming the Transformer model. This is likely
because the sequential nature of the time-series pixel data
better lends itself to a classifier that can learn longer-term
dependencies, like an LSTM model. Despite the ability of

Figure 6. Out-of-Domain Confusion Matrix for Best Performing
Model

Transformers to use attention and learn such dependencies,
the size of each input might not be large enough to con-
tain adequate (embedding dimension of 7, sequence length
of 46) information for the Transformer model to encode a
long sequence of 46 pixel states.

Generally analyzing the results, we see that many of the
classification errors reflect the difference in the distribution
of the in-domain training set and the out-of-domain test set,
where the models often mislabel test examples with a land
cover type that is more frequent in the training set than in
the test set. Other than that, we can observe some classifica-
tion errors that are a result of inherent similarity in different
types of land cover, in which the models have a tougher time
differentiating between land covers with similar colors and
characteristics.

Additionally, we see that implementing general deep
learning techniques such as normalization using training
values, dropout, and batch size adjustment can help improve
performance on out-of-domain datasets in addition to in-
domain. Nevertheless, if we had more time and compute,
there are more experiments we would like to run to poten-
tially improve the performance on the out-of-domain data,
such as running deeper and more complex models and also
investigating other techniques such as few-shot fine-tuning
on out-of-domain data. We would also consider incorporat-
ing more significant generalization techniques such as rep-
resentation learning combined with our existing models.



7. Contributions and Acknowledgements
Both Matt and Jack contributed equally to the com-

pletion of this project. Matt: Data Processing, Architec-
ture Design, Experimentation, Paper Jack: Data Processing,
Model Fine-tuning, Experimentation, Paper. We would also
like to thank our mentor Bohan Wu for his support and guid-
ance throughout this process as well as the CS231N staff for
their guidance in this course.

References
[1] Rahul Ghosh, Xiaowei Jia, Chenxi Lin, Zhenong Jin, and

Vipin Kumar. Clustering augmented self-supervised learn-
ing: Anapplication to land cover mapping, 2021. 2

[2] Yunfeng Hu, Qianli Zhang, Yunzhi Zhang, and Huimin Yan.
A deep convolution neural network method for land cover
mapping: A case study of qinhuangdao, china. Remote Sens-
ing, 10(12), 2018. 2

[3] Dino Ienco, Raffaele Gaetano, Claire Dupaquier, and Pierre
Maurel. Land cover classification via multitemporal spatial
data by deep recurrent neural networks. IEEE Geoscience
and Remote Sensing Letters, 14(10):1685–1689, 2017. 2

[4] Neal Jean, Sherrie Wang, Anshul Samar, George Azzari,
David Lobell, and Stefano Ermon. Tile2vec: Unsupervised
representation learning for spatially distributed data, 2018. 2

[5] Xiaowei Jia, Ankush Khandelwal, Guruprasad Nayak, James
Gerber, Kimberly Carlson, Paul West, and Vipin Kumar. In-
cremental dual-memory lstm in land cover prediction. In
Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD
’17, page 867–876, New York, NY, USA, 2017. Association
for Computing Machinery. 2

[6] Ioannis Papoutsis, Nikolaos-Ioannis Bountos, Angelos Za-
vras, Dimitrios Michail, and Christos Tryfonopoulos. Effi-
cient deep learning models for land cover image classifica-
tion, 2021. 2

[7] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 4

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011. 3

[9] Marshal Arijona Sinaga, Fadel Muhammad Ali, and
Aniati Murni Arymurthy. Tile2vec with predicting noise
for land cover classification. In Teddy Mantoro, Minho Lee,
Media Anugerah Ayu, Kok Wai Wong, and Achmad Nizar

Hidayanto, editors, Neural Information Processing, pages
87–99, Cham, 2021. Springer International Publishing. 2

[10] Andrei Stoian, Vincent Poulain, Jordi Inglada, Victor
Poughon, and Dawa Derksen. Land cover maps production
with high resolution satellite image time series and convo-
lutional neural networks: Adaptations and limits for opera-
tional systems. Remote Sensing, 11:1986, 08 2019. 2

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2017. 2

[12] Sherrie Wang, Marc Rußwurm, Marco Körner, and David B.
Lobell. Meta-learning for few-shot time series classification.
In IGARSS 2020 - 2020 IEEE International Geoscience and
Remote Sensing Symposium, pages 7041–7044, 2020. 2

[13] Christopher Yeh, Chenlin Meng, Sherrie Wang, Anne
Driscoll, Erik Rozi, Patrick Liu, Jihyeon Lee, Marshall
Burke, David Lobell, and Stefano Ermon. Sustainbench:
Benchmarks for monitoring the sustainable development
goals with machine learning. In Thirty-fifth Conference
on Neural Information Processing Systems, Datasets and
Benchmarks Track (Round 2), 12 2021. 2

[14] Yuan Yuan and Lei Lin. Self-supervised pretraining of trans-
formers for satellite image time series classification. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 14:474–487, 2021. 2


	. Introduction
	. Motivation
	. Problem
	. Approach

	. Related Work
	. Dataset and Features
	. Data
	. Pre-Processing

	. Methods
	. K-Nearest Neighbors Baseline
	. Convolutional Neural Network Approach
	. Long Short-Term Memory Approach
	. Transformer Approach
	. Loss Function

	. Experiments and Results
	. Evaluation Metrics
	. Model Experiments
	. Additional Ablation Studies
	Normalization
	Batch Size
	Dropout

	. Analysis of Best Overall Model

	. Conclusion/Future Work
	. Contributions and Acknowledgements

