
Evaluating Image Classification Models for FPGA Board Status Detection

Misha Baitemirova
Stanford University

medinab@stanford.edu

Abstract

In this project, we evaluated 2 deep learning models for
image classification: VGG-16 and EfficientNetB4 for au-
tomating field-programmable gate array, or FPGA, board
light status detection of LabsLand boards by Intel. Data
augmentation techniques were employed to improve the per-
formance of both models, and CenterCrop was the method
that was the least successful. Grad-CAM visualizations for
both models show that EfficientNetB4, in addition to includ-
ing important elements, was considering spurious features
as important. Overall, VGG-16 performed significantly bet-
ter than EfficientNetB4.

1. Introduction

Our aim for this project was to employ deep learn-
ing for computer vision techniques to automate field-
programmable gate array, or FPGA, board light status de-
tection of LabsLand boards by Intel. LabsLand is an educa-
tion technology startup that provides remote access to phys-
ical laboratories located in educational institutions in differ-
ent parts of the world. It provides real-time access to hard-
ware, thereby, enabling universities that can’t purchase cer-
tain types of laboratories, for financial reasons or otherwise,
to offer courses that rely on such laboratories. [8] One of the
many labs offered by LabsLand is an access to Intel FPGA
boards located in several countries, including at the Univer-
sity of Washington in Seattle, USA, where students can de-
velop code and test it using those FPGA boards in real-time.
Anytime a code is pushed to the board, one or more light
indicators located on the board are turned on. A persisting
problem has been identifying when those light indicators
are on and when they are off due to varying light condi-
tions and due to different positions of those boards, that to-
gether constitute a challenging condition. This project aims
to evaluate deep learning models for image classification for
detecting the light indicator status on FPGA boards. There-
fore, the input is an image of the FPGA board and we use a
CNN to predict which out of 10 LED indicators is on.

2. Related Work

2.1. Multi-Class Classification

Supervised learning is a sub-field of machine learning
and artificial intelligence that consists of using labeled data
for training a model. There are two types of supervised
learning: classification, when working with output variables
that are discrete, and regression, when working with con-
tinuous output variables. A classification task in machine
learning is performed in a self-supervised learning man-
ner. When dealing with data that consists of two discrete
classes and can be classified into 2 outcomes, the classifica-
tion task is a binary classification. In binary classification,
we only require one classifier and can visualize the results
in a very effective manner using a confusion matrix. When
the datasets consists of more than 2 discrete classes, the task
is multi-class classification that predicts a single class la-
bel for each data point. This is different from multi-label
classification, where one class can be assigned more than
one class label. Multi-class classification requires more
than one classifier: essentially, we are using binary clas-
sifies to differentiate between different pairs of data. There
are two ways of constructing such pairs: one-versus-rest,
or OvR, and one-versus-one, or OvO. In OvR, one classi-
fier is trained per class, where data points of that class are
treated as positive examples and all other classes are treated
as negative examples. A potential issue with this method
is class imbalance. Even if each class is balanced, in the
OvR approach, we have a single class with positive exam-
ples and (n-1) times more negative examples for n number
of classes. One potential way to address this is by oversam-
pling (duplicating the samples in the minority class), for ex-
ample by using a method called SMOTE, or Synthetic Mi-
nority Over-sampling Technique. [3] However, this can lead
to over-fitting the minority class. In OvO, a pair of classes
is created from the original dataset and a classifier is trained
on that pair. OvR and OvO are illustrated in Figure 1. [5]

2.2. Data Augmentation

Traditional data augmentation techniques include affine
image transformations, including shearing, color modifica-

Figure 1. One-versus-One, on the left, and One-versus-Rest, on
the right

tions, rotation, refection, and scaling. One paper found that
classical data augmentation techniques were one of the most
successful strategies for an improved performance on an
ImageNet subset when evaluating data augmentation tech-
niques and restricting the dataset to only 2 classes. [9] While
dogs versus cats classification task is substantially differ-
ent than detecting the state of FPGA boards via light de-
tectors, data augmentation is a reasonable strategy to em-
ploy. It is important to note that not all data augmenta-
tion techniques can be generalized. For example, horizontal
flipping, in some medical images and in our case, is not a
label preserving data augmentation method. [11] Another
team analyzed the effect of traditional data augmentation
methods and found that it significantly improved model’s
performance, however, they did not evaluate the impact of
each data augmentation method individually, which could
be useful in our case. [7]

2.3. Deep Transfer Learning (DTL):

Classical machine learning techniques require manual
feature design, which can be a significant disadvantage. In
contrast, deep learning techniques learn and extract features
through supervised and semi-supervised learning. The task
of understanding and identifying patterns is difficult, there-
fore, deep learning models require a substantial amount of
training data. In some fields, such as medicine, the amount
of data available is not sufficient for proper training and
learning. That is when transfer deep learning is useful: a
model is not trained from scratch, but rather is pretrained on
a large body of data. One example is VGG-16 that is pre-
trained on 1.28 million images of 1000 object categories,
the ImageNet Large Scale Visual Recognition Challenge of
2014. [4]. In their paper on the Differentiation of Active
Corneal Infections from Healed Scars Using Deep Learn-
ing, authors used VGG-16 to classify eye images acquired
from 2 hospitals into healed scars and active infections. [14]
It can be a lengthy process to set up clinical trials to gen-

erate enough data for training a deep learning model from
scratch, therefore, in certain applications, such as eye infec-
tions, transfer deep learning can be the best option. How-
ever, there can be issues due to the mismatch in domains
and input dimensions, leading to decreased accuracy and
over-fitting. One way to address the mismatch in domain
could be fine-tuning the feature learning layers of the pre-
trained model. [10] Another paper evaluated common state-
of-the-art deep learning models for detecting COVID-19 us-
ing chest CT scans. One of the models they evaluated was
VGG- 16 that was pretrained on ImageNet. They found
that using pretrained weights resulted in good model per-
formance, even if the CT scans were not part of the original
training distribution.[4] The paper shows a fast and practi-
cal method using pretrained models. However, a limitation
of this approach is that the sensitivity of the best perform-
ing model was 77.66%, which is low for healthcare. And
while they addressed the class imbalance in their evaluation
metrics, they did not perform data augmentation to address
class imbalance before the training. [7]

3. Methods
3.1. Models

The baseline model evaluated for this project was VGG-
16 against EfficientNetB4. VGG-16 is a larger model with
more than 7x parameters than EfficientNetB4. For this
project, VGG-16 was selected as the state-of-the-art model
and EfficientNetB4 for the purposes of evaluating a smaller
model and improving its accuracy using data augmentation
techniques. Details on both models are in Figure 2.

Figure 2. VGG-16 versus EfficientNetB4

3.1.1 VGG-16

In 2014, VGG-16, a model presented by Karen Simonyan
and Andrew Zisserman won the 1st and 2nd places in ob-
ject detection and classification in the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC)of 2014. It
has 134,305,611 parameters, 16 layers (13 convolutional, 3
fully connected). It was pretrained on ImageNet with an in-
put size of 224x224x3 but it can also work with 256x256x3
images. Convolutional layers are followed by a rectified lin-
ear activation unit (ReLU), which is an activation function
that outputs the input value directly when it is more than

zero, and returns zero otherwise. There are 5 max pooling
layers that down-sample the input.[7] The output node uses
softmax function that converts the output of the final layer
into a vector of probabilities that all sum to 1. [12]

Its architecture is illustrated in Figure 3.

Figure 3. VGG-16 architecture

3.1.2 EfficientNet

EfficientNet represents a family of models presented by
Google AI in 2019. They have less parameters compared to
most state-of-the-art models, such as VGG-16 (19.5 million
parameters in EfficientNetB4 versus 138 million in VGG-
16). The architecture common to all the models in the fam-
ily is illustrated in Appendices. EfficientNet proposes a
new scaling method that uniformly scales all dimensions of
depth, width, and resolution using a compound coefficient,
which means that depending on the size of the input im-
age, the network needs more or less layers to increase the
receptive field and more or less channels to capture more
fine-grained patterns. [13] The architecture common to all
models in the family and the types of scaling are illustrated
in Figures 4 and 5.

Figure 4. EfficientNet architecture common to all models in the
family

There are models that have comparable sizes, such as
ResNet-18 and -34. [6] And there are models that use scal-

ing, for example, width scaling, such as MobileNet. How-
ever, instead of only scaling in one dimensions, EfficientNet
models scale width, depth, and input size, which results in
higher capacity to learn.

Figure 5. EfficientNet scaling

3.2. Evaluation Metric

In order to quantify model’s performance, we will be us-
ing the accuracy metric, which measures how close the pre-
dicted labels are to ground truth labels. The classes are bal-
anced, therefore, accuracy is an appropriate metric to use.
The formula for accuracy is illustrated below:

In addition, we used confusion matrices as they provide
with a direct illustration of correct and incorrect classifica-
tions.

3.3. Saliency Map

We used Gradient weighted Class Activation Map, or
Grad-CAM, to visualize areas of an input image that the
model found important when making the classification de-
cision. It is class-discriminative and works by examining
the gradient information flowing into the final convolutional
layer. The output is a saliency map for the class label that
is being analyzed. Details on Grad-CAM are illustrated in
Figure 6.

4. Dataset and Features
Data was generated by capturing photos from a video

stream at three different locations at different times of the
day to capture varied light conditions. The purpose was to
generate images with each of the 10 LED lights on, and im-
ages with all of the LED lights off, resulting in 11 classes for
the classification task. Examples are illustrated in Figures
6 and 7. Number of images per location and the number of
images used for training/validation/test are summarized in
Figure 8.

	. Introduction
	. Related Work
	. Multi-Class Classification
	. Data Augmentation
	. Deep Transfer Learning (DTL):

	. Methods
	. Models
	VGG-16
	EfficientNet

	. Evaluation Metric
	. Saliency Map

	. Dataset and Features
	. Experiments/Results/Discussion
	. Model Setup
	. Results
	VGG-16 Results
	EfficientNetB4 Results
	VGG-16 versus EfficientNetB4

	. Discussion

	. Conclusion/Future Work

