Lecture 4:
Backpropagation
and
Neural Networks part 1
Administrative

A1 is due Jan 20 (Wednesday). ~150 hours left
Warning: Jan 18 (Monday) is Holiday (no class/office hours)

Also note:
Lectures are non-exhaustive.
Read course notes for completeness.

I’ll hold make up office hours on Wed Jan20, 5pm @ Gates 259
Where we are...

\[s = f(x; W) = Wx \]

scores function

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]

SVM loss

\[L = \frac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \]

data loss + regularization

want \[\nabla_W L \]
Optimization

Vanilla Gradient Descent

```python
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad  # perform parameter update
```
Gradient Descent

\[\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

Numerical gradient: slow :(', approximate :, easy to write :)

Analytic gradient: fast :), exact :), error-prone :(.

In practice: Derive analytic gradient, check your implementation with numerical gradient.
\[f = Wx \]

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]
Convolutional Network
(AlexNet)

- input image
- weights
- loss
Neural Turing Machine
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, \ y = 5, \ z = -4 \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

E.g. \(x = -2, \ y = 5, \ z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \ \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \ \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, \ y = 5, \ z = -4 \)

\[
\begin{align*}
q &= x + y & \frac{\partial q}{\partial x} &= 1, \quad \frac{\partial q}{\partial y} &= 1 \\
\end{align*}
\]

\[
\begin{align*}
f &= qz & \frac{\partial f}{\partial q} &= z, \quad \frac{\partial f}{\partial z} &= q \\
\end{align*}
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

E.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, \ y = 5, \ z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \ \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \ \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \)
 \[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
f(x, y, z) = (x + y)z

e.g. x = -2, y = 5, z = -4

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \[\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial f}{\partial z} \]
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y) z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want:
\[
\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\]

Chain rule:
\[
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial x}
\]
activations

\[f(x, y) \rightarrow z \]
activations

\(\frac{\partial z}{\partial x} \)

\(\frac{\partial z}{\partial y} \)

\(x \)

\(f \)

\(y \)

\(z \)

“local gradient”
activations

\[
\frac{\partial z}{\partial x}
\]

\[
\frac{\partial z}{\partial y}
\]

"local gradient"

\[
\frac{\partial L}{\partial z}
\]

gradients
activations

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \cdot \frac{\partial z}{\partial x} \]

"local gradient"

\[\frac{\partial z}{\partial x} \]

\[\frac{\partial L}{\partial z} \]

gradients

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 4 - 25

13 Jan 2016
The diagram illustrates the relationship between activations and gradients in a neural network. The equation $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$ shows how the gradient of the loss L with respect to the input x is decomposed into the gradient of the loss with respect to the intermediate variable z and the gradient of z with respect to x. Similarly, $\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y}$ shows the relationship for the gradient with respect to y. The term "local gradient" highlights the focus on gradients around the intermediate variable z. The diagram helps visualize the flow of information and gradient computation in neural networks.
activations

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x} \]

\[\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y} \]

“local gradient”

gradients

\[\frac{\partial L}{\partial z} \]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[f(x) = e^x \quad \Rightarrow \quad \frac{df}{dx} = e^x \]
\[f_a (x) = ax \quad \Rightarrow \quad \frac{df}{dx} = a \]
\[f_c(x) = c + x \quad \Rightarrow \quad \frac{df}{dx} = 1 \]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x & \rightarrow & \quad \frac{df}{dx} = e^x \\
 f_a(x) &= ax & \rightarrow & \quad \frac{df}{dx} = a \\
 f_c(x) &= c + x & \rightarrow & \quad \frac{df}{dx} = 1 \\
 f(x) &= \frac{1}{x} & \rightarrow & \quad \frac{df}{dx} = -\frac{1}{x^2}
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
\left(-\frac{1}{1.37^2}\right)(1.00) &= -0.53 \\
\end{align*}
\]

\[
\begin{align*}
f(x) &= e^x \\
\frac{df}{dx} &= e^x \\
f_a(x) &= ax \\
\frac{df}{dx} &= a \\
f_c(x) &= c + x \\
\frac{df}{dx} &= 1 \\
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x & \rightarrow & & \frac{df}{dx} &= e^x \\
 f_a(x) &= ax & \rightarrow & & \frac{df}{dx} &= a \\
 f_c(x) &= c + x & \rightarrow & & \frac{df}{dx} &= 1
\end{align*}
\]

\[
\begin{align*}
 f(x) &= \frac{1}{x} & \rightarrow & & \frac{df}{dx} &= -\frac{1}{x^2}
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[(1)(-0.53) = -0.53 \]

\[
\begin{align*}
 f(x) &= e^x \\
 f_a(x) &= ax
\end{align*}
\]

\[
\begin{align*}
 \frac{df}{dx} &= e^x \\
 \frac{df}{dx} &= a
\end{align*}
\]

\[
\begin{align*}
 f(x) &= \frac{1}{x} \\
 f_c(x) &= c + x
\end{align*}
\]

\[
\begin{align*}
 \frac{df}{dx} &= -\frac{1}{x^2} \\
 \frac{df}{dx} &= 1
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x & \Rightarrow & & \frac{df}{dx} &= e^x \\
 f_a(x) &= ax & \Rightarrow & & \frac{df}{dx} &= a \\
 f_c(x) &= c + x & \Rightarrow & & \frac{df}{dx} &= 1 \\
 f(x) &= \frac{1}{x} & \Rightarrow & & \frac{df}{dx} &= -\frac{1}{x^2}
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
(e^{-1})(-0.53) = -0.20
\]

\[
f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x
\]

\[
f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a
\]

\[
f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -1/x^2
\]

\[
f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1
\]

Fei-Fei Li & Andrej Karpathy & Justin Johnson
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x \]

\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]

\[f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[(-1) \times (-0.20) = 0.20 \]

\[
\begin{align*}
 f(x) &= e^x &\Rightarrow& &\frac{df}{dx} &= e^x \\
 f_a(x) &= ax &\Rightarrow& &\frac{df}{dx} &= a \\
 f_c(x) &= c + x &\Rightarrow& &\frac{df}{dx} &= 1 \\
 f(x) &= \frac{1}{x} &\Rightarrow& &\frac{df}{dx} &= -1/x^2
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

\[f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x \]

\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]

\[f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]
Another example:

\[
f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}
\]

\[
f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x
\]

\[
f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a
\]

\[
f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1
\]

\[
[\text{local gradient}] \times [\text{its gradient}]
\]

\[
[1] \times [0.2] = 0.2
\]

\[
[1] \times [0.2] = 0.2 \quad \text{(both inputs!)}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

\[
\begin{align*}
f(x) &= e^x & \Rightarrow & & \frac{df}{dx} = e^x & & f(x) = \frac{1}{x} & \Rightarrow & & \frac{df}{dx} = -\frac{1}{x^2} \\
f_a(x) &= ax & \Rightarrow & & \frac{df}{dx} = a & & f_c(x) = c + x & \Rightarrow & & \frac{df}{dx} = 1
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

[local gradient] \times [its gradient]

\[x_0: [2] \times [0.2] = 0.4 \]
\[w_0: [-1] \times [0.2] = -0.2 \]

\[f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x \]
\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]
\[f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2} \]
\[f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]
\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-x}} \right) = (1 - \sigma(x)) \sigma(x) \]

sigmoid function

sigmoid gate
The sigmoid function is defined as:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

For the derivative of the sigmoid function, we have:

\[\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}}\right) \left(\frac{1}{1 + e^{-x}}\right) = (1 - \sigma(x))\sigma(x) \]

The sigmoid gate is demonstrated in the diagram, where the output is calculated as:

\[(0.73) \times (1 - 0.73) = 0.2\]
Patterns in backward flow

add gate: gradient distributor

max gate: gradient router

mul gate: gradient… “switcher”?
Gradients add at branches
Implementation: forward/backward API

Graph (or Net) object. (Rough psuedo code)

```python
class ComputationalGraph(object):
    
    def forward(inputs):
        # 1. [pass inputs to input gates...] 
        # 2. forward the computational graph: 
        for gate in self.graph.nodes_topologically_sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss

    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs_gradients
```
Implementation: forward/backward API

\[\text{class MultiplyGate(object):} \]
\[\quad \text{def forward(x, y):} \]
\[\quad \quad z = x \times y \]
\[\quad \quad \text{return } z \]
\[\quad \text{def backward(dz):} \]
\[\quad \quad \# dx = \ldots \text{ #todo} \]
\[\quad \quad \# dy = \ldots \text{ #todo} \]
\[\quad \quad \text{return } [dx, dy] \]

\(\frac{\partial L}{\partial z} \)
\(\frac{\partial L}{\partial x} \)

\(x, y, z \) are scalars
Implementation: forward/backward API

```
class MultiplyGate(object):
    def forward(x,y):
        z = x*y
        self.x = x # must keep these around!
        self.y = y
        return z
    def backward(dz):
        dx = self.y * dz # [dz/dx * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        return [dx, dy]
```

(x,y,z are scalars)
Example: Torch Layers
Example: Torch Layers
Example: Torch MulConstant

\[f(X) = aX \]

- Initialization
- forward()
- backward()
Example: Caffe Layers
Caffe Sigmoid Layer

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

\[(1 - \sigma(x)) \sigma(x) \]

*top_diff (chain rule)
Gradients for vectorized code (x,y,z are now vectors)

This is now the Jacobian matrix (derivative of each element of z w.r.t. each element of x)

\[
\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}
\]

“local gradient”

\[
\frac{\partial L}{\partial z}
\]

\[
\frac{\partial L}{\partial y}
\]

\[
\frac{\partial z}{\partial x}
\]

\[
\frac{\partial z}{\partial y}
\]

\[
f
\]

\[
x
\]

\[
y
\]

\[
z
\]

gradients
Vectorized operations

\[f(x) = \max(0, x) \] (elementwise)

4096-d input vector \rightarrow 4096-d output vector
Vectorized operations

\[f(x) = \max(0,x) \] (elementwise)

Q: what is the size of the Jacobian matrix?
Vectorized operations

\[\frac{\partial L}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x} \end{bmatrix} \frac{\partial L}{\partial f} \]

Jacobian matrix

Q: what is the size of the Jacobian matrix? [4096 x 4096!]

Q2: what does it look like?

4096-d input vector

\(f(x) = \max(0,x) \) (elementwise)

4096-d output vector
Vectorized operations

In practice we process an entire minibatch (e.g. 100) of examples at one time:

\[f(x) = \max(0, x) \] (elementwise)

100 4096-d input vectors \rightarrow \rightarrow \rightarrow \rightarrow 100 4096-d output vectors

I.e. Jacobian would technically be a \([409,600 \times 409,600]\) matrix \(\vdash\)
Assignment: Writing SVM/Softmax

Stage your forward/backward computation!

E.g. for the SVM:

```python
# receive W (weights), X (data)
# forward pass (we have 8 lines)
scores = #...
margins = #...
data_loss = #...
reg_loss = #...
loss = data_loss + reg_loss
# backward pass (we have 5 lines)
dmargins = # ... (optionally, we go direct to dscores)
dscores = #...
dW = #...
```

\[f = Wx \]

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]

Margins
Summary so far

- neural nets will be very large: no hope of writing down gradient formula by hand for all parameters
- **backpropagation** = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the **forward() / backward()** API.
- **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory
- **backward**: apply the chain rule to compute the gradient of the loss function with respect to the inputs.
Neural Network: without the brain stuff

(Before) Linear score function: \[f = Wx \]
Neural Network: without the brain stuff

(Before) Linear score function: $f = Wx$

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$
Neural Network: without the brain stuff

(Before) Linear score function: \(f = Wx \)

(Now) 2-layer Neural Network

\(f = W_2 \max(0, W_1 x) \)
Neural Network: without the brain stuff

(Before) Linear score function: $f = W x$

(Now) 2-layer Neural Network

$$f = W_2 \max(0, W_1 x)$$
Neural Network: without the brain stuff

(Before) Linear score function:

\[f = Wx \]

(Now) 2-layer Neural Network or 3-layer Neural Network

\[f = W_2 \max(0, W_1 x) \]

\[f = W_3 \max(0, W_2 \max(0, W_1 x)) \]
Full implementation of training a 2-layer Neural Network needs ~11 lines:

```python
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1
syn1 = 2*np.random.random((4,1)) - 1
for j in xrange(60000):
    l1 = 1/(1+np.exp(-(np.dot(X,syn0))))
    l2 = 1/(1+np.exp(-(np.dot(l1,syn1))))
    l2_delta = (y - l2)*(l2*(1-l2))
    l1_delta = l2_delta.dot(syn1.T) * (l1 * (1-l1))
    syn1 += l1.T.dot(l2_delta)
    syn0 += X.T.dot(l1_delta)
```

from @iamtrask, http://iamtrask.github.io/2015/07/12/basic-python-network/
Assignment: Writing 2layer Net

Stage your forward/backward computation!

```python
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:

h1 = #... function of X,W1,b1

scores = #... function of h1,W2,b2

loss = #... (several lines of code to evaluate Softmax loss)

# backward pass:

dscores = #...

dh1,dW2,db2 = #...

dW1,db1 = #...
```
Neuron diagram:

- **Dendrites**: Impulses carried toward cell body.
- **Nucleus**: Central control center.
- **Cell Body**: Origin of the axon.
- **Axon**: Main conductive pathway that branches out.
- **Branches of axon**: Impulses carried away from cell body.
- **Axon terminals**: End points of the axon for synaptic connections.
impulses carried toward cell body

branches of axon

impulses carried away from cell body

dendrites

nucleus

cell body

axon

axon terminals

$\mathbf{x}_0 \rightarrow w_0$ synapse

$w_0 \mathbf{x}_0$ axon from a neuron
dendrite

cell body

$\sum_i w_i x_i + b \rightarrow f$ activation function

output axon

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 72 13 Jan 2016
class Neuron:
 # ...
 def neuron_tick(inputs):
 """ assume inputs and weights are 1-D numpy arrays and bias is a number """
 cell_body_sum = np.sum(inputs * self.weights) + self.bias
 firing_rate = 1.0 / (1.0 + math.exp(-cell_body_sum)) # sigmoid activation function
 return firing_rate
Be very careful with your Brain analogies:

Biological Neurons:
- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Rate code may not be adequate
Activation Functions

Sigmoid
\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

\text{tanh} \, \text{tanh}(x)

\text{ReLU} \, \max(0, x)

Leaky ReLU
\[\max(0.1x, x) \]

Maxout
\[\max(w_1^T x + b_1, w_2^T x + b_2) \]

ELU
\[f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \leq 0 \end{cases} \]
Neural Networks: Architectures

“2-layer Neural Net”, or “1-hidden-layer Neural Net”

“Fully-connected” layers

“3-layer Neural Net”, or “2-hidden-layer Neural Net”
Example Feed-forward computation of a Neural Network

```python
class Neuron:
    # ...
    def neuron_tick(inputs):
        """ assume inputs and weights are 1-D numpy arrays and bias is a number """
        cell_body_sum = np.sum(inputs * self.weights) + self.bias
        firing_rate = 1.0 / (1.0 + math.exp(-cell_body_sum))  # sigmoid activation function
        return firing_rate
```

We can efficiently evaluate an entire layer of neurons.
Example Feed-forward computation of a Neural Network

```python
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
```
Setting the number of layers and their sizes

3 hidden neurons

6 hidden neurons

20 hidden neurons

more neurons = more capacity
Do not use size of neural network as a regularizer. Use stronger regularization instead:

(\(\lambda = 0.001\)) \hspace{1cm} (\(\lambda = 0.01\)) \hspace{1cm} (\(\lambda = 0.1\))

(you can play with this demo over at ConvNetJS: http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)
Summary

- we arrange neurons into fully-connected layers
- the abstraction of a layer has the nice property that it allows us to use efficient vectorized code (e.g. matrix multiplies)
- neural networks are not really neural
- neural networks: bigger = better (but might have to regularize more strongly)
Next Lecture:

More than you ever wanted to know about Neural Networks and how to train them.
reverse-mode differentiation (if you want effect of many things on one thing)
\[\frac{\partial y}{\partial x} \text{ for many different } x \]

forward-mode differentiation (if you want effect of one thing on many things)
\[\frac{\partial y}{\partial x} \text{ for many different } y \]