_ecture 6:

Training Neural Networks,
Part 2
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Administrative

A2 is out. It's meaty. It's due Feb 5 (next Friday)

You'll implement:
Neural Nets (with Layer Forward/Backward API)
Batch Norm
Dropout
ConvNets
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Mini-batch SGD

Loop:

Sample a batch of data

Forward prop it through the graph, get loss
Backprop to calculate the gradients
Update the parameters using the gradient
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Activation Functions
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original data zero-centered data normalized data
Data .. £ |
i ; ;
Preprocessing

decorrelated data whitened data
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input layer had mean 8.001880 and std 1.001311

hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden

layer
layer
layer
layer
layer
layer
layer
layer
layer
layer

1 had
2 had
3 had
4 had
5 had
6 had
7 had
8 had
9 had
1

mean
mean
mean
mean
mean
mean
mean
mean
mean

0.001198 and std 0.627953
-0.000175 and std ©.486051
0.008055 and std 0.407723
-0.000306 and std ©.357108
0.000142 and std 0.320917
-0.000389 and std ©.292116
-0.000228 and std 0.273387
-0.000291 and std ©.254935
0.000361 and std 0.239266

8 had mean 8.000139 and std ©.228008

layer mean

W = np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization

layer std

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

Fei-Fei

Li & Andrej Karpathy & Justin Johnson

Weight
Initialization
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Batch Normalization [loffe and Szegedy, 2015]

Normalize: - Improves gradient flow
through the network

~(k) _ I(k) — E[iﬂ(k)} ) 9 . .

LY = - Allows higher learning rates

v/ Var[z(®)] - Reduces the strong

dependence on initialization

And then allow the network to squash

the range if it wants to: - Acts as a form of
” r " regularization in a funny way,
y® =1 Fzk) 4 gk and slightly reduces the need

for dropout, maybe
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Babysitting the Cross-validation
learning process

Grid Layout Random Layout

model = init_two_layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best_model, stats = trainer.train(X_train, y_train, X _val, y val,

I U
model, two_layer net, i a
num_epochs=10, reg=0.080001, T k]
update='sgd', learning_rate_decay=1, E =
pre—bateh v a T
Ilearning rate=1e-6.[verbose=True) 5 a
o =1
Finished epoch 1 / 10:|cost 2.302576, |trair|: 0.080008, 1 0.103000, 1lr 1.000000e-06 = -
Finished epoch 2 / 10:|cost 2.302582, |trair|: ©.121008, 1 0.124000, 1lr 1.000000e-06 r:u g
Finished epoch 3 s 10:|cost 2.302558, |trairf: ©.119000, 1 0.138000, lr 1.0000008e-06 £ +
Finished epoch 4 s 10:|cost 2.302519, |trairf: ©.127000, 1 ©.151000, lr 1.0000008e-06 o] o
Finished epoch 5 / 10:|cost 2.302517, |trairf: ©.158000, 1 ©.171000, 1lr 1.000008e-06 o a
Finished epoch 6 / 10:|cost 2.302518, |trairf: ©.179000, Vgl ©.172000, lr 1.000000e-06 E E
Finished epoch 7 / 10:|cost 2.302466, |trairl: 0.180000, 1 @.176000, lr 1.000000e-06 = . . . =
Finished epoch 8 s 10:|cost 2.302452, |trair|: 0.175000, 1 @.185000, lr 1.000800e-06 = =)
Finished epoch 9 s 10:|cost 2.302459, |trair|: 0.206000, 1 ©.192000, lr 1.0000008e-06
Finished epoch 1@ / 10} cost 2.302420| trajn: ©.190000, fjval 0.192000, lr 1.000000e-06
i Ogtimizatim_ hest yalidstiod acclTETyE Important parameter Important parameter

Loss barely changing:
Learning rate is probably
too low
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TODO

- Parameter update schemes
- Learning rate schedules

- Dropout

- Gradient checking

- Model ensembles
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Parameter Updates
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Training a neural network, main loop:

True:
data batch = dataset.sample data batch()
loss = network.forward(data batch)

dx = network.backward()
X += - learning rate * dx
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Training a neural network, main loop:

True:
data batch = dataset.sample data batch()
loss = network.forward(data batch)

dx = network.backward()
X += - learning rate * dx

simple gradient descent update
now: complicate.
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sgd
momentum ||
nag

adagrad
adadelta
rmsprop

AEMm

-2 -1 0 1 2z 3 4 5

A

0 20 40 60 80 100 120

Image credits: Alec Radford
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Suppose loss function is steep vertically but shallow horizontally:

—

Q: What is the trajectory along which we converge
towards the minimum with SGD?
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Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with SGD?
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Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with SGD? very slow progress
along flat direction, jitter along steep one
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Momentum update

= - learning rate * dx

- learning rate * dx

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)
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Momentum update

= - learning rate * dx

- learning rate * dx

- Allows a velocity to “build up” along shallow directions
- Velocity becomes damped in steep direction due to quickly changing sign
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e Isgd |
SG D : :‘;c;mentum

—— adagrad
VS adadelta |4

—— rmsprop
Momentum

\ notice momentum

[ overshooting the target,
but overall getting to the
3 4 5 minimum much faster.

80 100 120
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Nesterov Momentum update

- learning rate * dx

Ordinary momentum update:

momentum
step
actual step

>

gradient
step
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Nesterov Momentum update

Momentum update

momentum
step
actual step

>

gradient
step

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

actual step
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Nesterov Momentum update

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum

step
actual step

actual step

>

gradient Nesterov: the only difference...

ste
i v = pve-1 — €V f(Or—1 H pvs1))

0 = 0i1—1 + vy

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 22 25 Jan 2016




Nesterov Momentum update

) Slightly inconvenient...
usually we have :

vt = pvg-1 — €V (01 + pvr 1
0: = 0:1+ v 0:-1, Vf(0i-1)
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Nesterov Momentum update

Slightly inconvenient...
usually we have :

0: = 0:1+ v 0:-1, Vf(0i-1)

vy = pve—1 — €V f(0i—1 + pve—1))

Variable transform and rearranging saves the day: (,bt_1 — 95_1 —+ KUt 1
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Nesterov Momentum update

vt = pve1 — €V (01 + pvg 1

)

0: = 0:—1 + vy

Slightly inconvenient...
usually we have :

0:—1,Vf(0i-1)

Variable transform and rearranging saves the day: Cbt—l — 95_1 —+ KUt 1

Replace all thetas with phis, rearrange and obtain:

vt = g1 — €V f(Pi-1)
Ot = Pp—1 — pv—1 + (1 + p)vg

vV _pr

LT —
¥ 4=

Fei-Fei Li & Andrej Karpathy & Justin Johnson

ev = Vv
mu * v - learning rate * dx
-mu * v_prev + (1 + mu) * v
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sgd
momentum ||
nag <-——4
adagrad
adadelta

rmsprop nag -

’ :,..-;,;i?f'f N Nesterov
i ® Accelerated
. \ Gradient

=5 =3 5

A

0 20 40 60 80 100 120
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AdaGrad update [Duchi et al., 2011]

cache += dx**2

X += - learning rate * dx|/ (np.sqrt(cache) + le-7)

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension
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AdaGrad update

cache += dx**2

X += - learning rate * dx|/ (np.sqrt(cache) + le-7)

—

Q: What happens with AdaGrad?
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AdaGrad update

cache += dx**2

X += - learning rate * dx|/ (np.sqrt(cache) + le-7)

—

Q2: What happens to the step size over long time?
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RMSPrOp UDdate [Tieleman and Hinton, 2012]

j cache += dx**2
X += - learning rate * dx / (np.sqrt(cache) + le-7)

Icache = decay rate * cache + (1 - decay rate) * dx**2 I
- learning rate * dx / (np.sqrt(cache) + le-7)
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rmsprop: A mini-batch version of rprop Introduced in a slide in

Geoff Hinton’s Coursera

* rprop is equivalent to using the gradient but also dividing by the size of the
gradient. class, lecture 6

— The problem with mini-batch rprop is that we divide by a different number
for each mini-batch. So why not force the number we divide by to be very
similar for adjacent mini-batches?

* rmsprop: Keep a moving average of the squared gradient for each weiggt
MeanSquare(w, t) =0.9 MeanSquare(w, t-1) + 0.1 (a%w (t))

+ Dividing the gradient by JMBGHSQMGW(W, ) makes the learning work much
better (Tijmen Tieleman, unpublished).
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rmsprop: A mini-batch version of rprop Introduced in a slide in

Geoff Hinton’s Coursera

* rprop is equivalent to using the gradient but also dividing by the size of the
gradient. class, lecture 6

— The problem with mini-batch rprop is that we divide by a different number
for each mini-batch. So why not force the number we divide by to be very
similar for adjacent mini-batches?

* rmsprop: Keep a moving average of the squared gradient for each weiggt
MeanSquare(w, t) =0.9 MeanSquare(w, t-1) + 0.1 (a%w (t))

+ Dividing the gradient by .\/MeanSquare(w, ) makes the learning work much
better (Tijmen Tieleman, unpublished).

Cited by several papers as: [52] T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.,
2012.
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sgd
momentum ||
nag

adagrad
adadelta

rmsprop ™~ adagrad

i ®\\\\ rmsprop
LU

=5 =3 5

A

0 20 40 60 80 100 120
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[Kingma and Ba, 2014]

Adam update

(incomplete, but close)

m = betal*m + (1l-betal)*dx
v = beta2*v + (1l-beta2)*(dx**2)
X += - learning rate * m / (np.sqrt(v) + le-7)
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[Kingma and Ba, 2014]

Adam update

(incomplete, but close)

momentum

= betal*m + (1l-betal) *dx

= beta2*v + (l-beta2)*(dx**2)
- learning rate * m / (np.sqrt(v) + le-7)

RMSProp-like
Looks a bit like RMSProp with momentum
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[Kingma and Ba, 2014]

Adam update

(incomplete, but close)

momentum
m = betal*m + (1l-betal)*dx
v = beta2*v + (1l-beta2)*(dx**2)
X += - learning rate * m / (np.sqrt(v) + le-7)
RMSProp-like

Looks a bit like RMSProp with momentum

cache = decay rate * cache + (1 - decay rate) * dx**2
X += - learning rate * dx / (np.sqrt(cache) + le-7)
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[Kingma and Ba, 2014]

Adam update

m,v =
t in xrange(l, big number):

dx = momentum

m = betal*m + (1-betall*dx

v = beta2*v + (1l-beta2)*(dx**2)
m/(1l-betal**t)
v/(1-beta2**t)
- learning rate * mb / (np.sqgrt(vb) + le-7)

bias correction

(only relevant in first few
iterations when t is small)

RMSProp-like

The bias correction compensates for the fact that m,v are
initialized at zero and need some time to “warm up”.
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

low learning rate

high learning rate

good learning rate

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Q: Which one of these

learning rates is best to use?
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

low learning rate

high learning rate

good learning rate

Fei-Fei Li & Andrej Karpathy & Justin Johnson

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

a = O ekt

1/t decay:
a=aog/(1+ kt)
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Second order optimization methods

second-order Taylor expansion:

|

5 (0—6,) H(0— 6)

J(0)~ J(0p)+ (0 — &) " VoJ(6) +

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0,)

Q: what is nice about this update?
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Second order optimization methods

second-order Taylor expansion:

|

5 (0—6,) H(0— 6)

J(0)~ J(0p)+ (0 — &) " VoJ(6) +

Solving for the critical point we obtain the Newton parameter update:

9* — 90 . H_IVQJ(HD) notice:

no hyperparameters! (e.g. learning rate)

Q2: why is this impractical for training Deep Neural Nets?
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Second order optimization methods

0" =0, — H 'VoJ(0,)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n"3)), approximate
inverse Hessian with rank 1 updates over time (O(n"2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.
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L-BFGS

- Usually works very well in full batch, deterministic mode
l.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting L-BFGS to large-scale, stochastic
setting is an active area of research.
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In practice:

- Adam is a good default choice in most cases

- If you can afford to do full batch updates then try out
L-BFGS (and don't forget to disable all sources of noise)
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Evaluation:

Model Ensembles
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1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance
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Fun Tips/Tricks:

- can also get a small boost from averaging multiple
model checkpoints of a single model.
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Fun Tips/Tricks:

- can also get a small boost from averaging multiple
model checkpoints of a single model.

- keep track of (and use at test time) a running average
parameter vector:

True:
data batch = dataset.sample data batch()
loss = network.forward(data batch)
dx = network.backward()
X += - learning rate * dx
X test = 0.995*x test + 0.005*%X
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Regularization (dropout)
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[Srivastava et al., 2014]
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(b) After applying dropout.

ave 2 Oavers!
Y] KN
CHRR DR
> &._..h 4 Qh..._“r*“

07 ‘c.. %S
%\0 ,,( > \

n

Standard Neural Net

Y
fas]
 —

“‘randomly set some neurons to zero in the forward pass”

Regularization: Dropout

C
o
(2}
C
i
O
-
=
-
(2}
>
-
o
>
e
ol
©
(O
| S
@®
X
o
| S
©
C
<
o
U
ko)
T
ko)
L



p=0.5# probability of keeping a unit active. higher = less dropout Example forward
def train_step(X): pass with a 3-
""" X contains the data """ Iayer network
using dropout
# forward lfj?‘c".?f:.‘ﬁ for example 3- LJ\,'* I neural network

H1 = np.maximum(0, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p # first dropout mask
H1 *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, H1l) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3
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Waaaait a second...
How could this possibly be a good idea?
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Waaaait a second...
How could this possibly be a good idea?

Forces the network to have a redundant representation.

has an ear

has a talil R

is furry —X—— . cat
" score

has claws +/
mischievous

look

T
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Waaaait a second...
How could this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble
of models (that share parameters).

Each binary mask is one model, gets
trained on only ~one datapoint.
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At test time....

Ideally:
want to integrate out all the noise

Monte Carlo approximation:

do many forward passes with
different dropout masks, average all
predictions
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At test time....
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

(this can be shown to be an
approximation to evaluating the
whole ensemble)
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At test time....
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at
test time the output of this neuron is x.

What would its output be during training
time, in expectation? (e.g. if p = 0.5)
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At test time....
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

during test: a = w0*x + w1*y

° during train:
E[la] = V4™ (wO*0 + w1*0
wO0*0 + w1*y
wo w1 wO0*x + w10

wO*x + w1*y)
=% (2w0*™ + 2 w1y)
=% * (Ww0*x + w1*y)
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At test time....
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

during test: a = wO0*x + w1 *y With p=0.5, using all inputs

in the forward pass would

? du ring train: inflate the activations by 2x
— 1/ * * * from what the network was
E[a] - A (WO O T W1 O “used to” during training!
* * => Have to compensate b
+ pensate by
WO O W1 y scaling the activations back
w0 w1 wO*x + w1*0 down by V5

wO*x + w1*y)
=% (2w0*™ + 2 w1y)
=% * (Ww0*x + w1*y)
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We can do something approximate analytically
def predict(X):

Hl = np.maximum(®, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(©, np.dot(W2, H1l) + b2) * p # NOTE =
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time
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""" Vanilla Dropout: Not recommended implementation (see notes below) """

Dropout Summary

p=0.5# probability of keeping a unit active. higher = less dropout

def train step(X):
"X contains the data ""'

dE - i

Hl p.maximum(€@, np.dot(Wl, X} + bl)
Ul = np.random.rand(*Hl.shape) < p # first dropout mask
H1 *= Ul # drop! .
AZ = np.maximum(0, np.dot(WZ, HI] + bZ) drop N forward paSS
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

- T1a3uvar natiral natun ek
= Layer:} dl nNetwor

amp le

def predict(X):

Hl = np.maximum(®, np.dot(Wl, X) + bl}
H2 = np.maximum(0, np.dot(W2, H1) + b2
out = np.dot(W3, H2) + b3

scale at test time
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More common: “Inverted dropout”

- B oo L T o S D o PR I
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
Hl1 *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, H1l) + b2)

u2 (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

o nace Far ovamnla = 17 -~ malira ] At el
ard pass tor example ?-Eoy?f neural network

# backward pass: compute gradients... (not shown)

S e
perrori

e T fro (Ll
n parameter upaate... (not shown)

test time is unchanged!
def predietin): = /

H1 = np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 np.maximum(©, np.dot(W2, H1) + b2)
out = np.dot(W3, H2) + b3
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<fun story time>
(Deep Learning Summer School 2012)
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Gradient Checks

[ ] n in theory, performing a gradient check is as simple as comparing the analytic gradient to the numerical gradient. In
practice, the process is much more involved and error prone. Here are some tips, tricks, and issues to watch out
for.

Use the centered formula. The formula you may have seen for the finte difference approximatin when evaluating

the numerical gradient looks as follows:

aitz) _ w (et )

whiere f is & very small number, in practice approximately

(Se e C I a SS n OteS . 1o use the centevedidifference formula of the form:

dile) _ fle+h) = flz—h)
dz 2h

5 or so. In practice, it tums out that it is much better

use instead)

This requires you to evaluate the loss function twice to check every single dimension of the gradient (so it is about
2times as expensive), but the gradient approximation tUrns oUt to be much more precise. To See this, you can use
Tayior expansion of f(z+ k) and f(Z — k) and verify that the first formula has an error on order of O(R), while
f t d the second formula only has errar terms on order of O(A?) (i.e. it is a second order approximatior)

u n g u a ra n ee L Use relative eror for the comparison What are the details of comparing the numnerical gradient ff and analytic
gradient f47 That is, how do we know if the two are not compatible? You might be temped to keep track of the
difference | f4 — f4| or its square and define the gradient check as failed if that difference is above a threshold.
However, this is problematic. For example, consider the case where their difference is Te-4. This sesms like a very
appropriate difference if the two gradients are about 1.0, so we'd consider the two gradients to match. But if the
aradients were bath on order of 16-5 or lower, then we'd consider 124 to be a huge difference and likely a failure.
Hence, it is always more appropriate to consider the refative emor.

1fa—fal
max(] fi [T fa1)

which considers their ratio of the differences to the ratio of the absolute values of both gradients. Notice that
normially the relative error formula only includes one of the two terms (sither one), but | prefer to max (or add) both
to make it symmetric and to prevent dividing by zere in the case where one of the two is zero (which can often
happen, especizlly with ReLLs). However, one must explicitly keep track of the case where both are zero and pass
the gradient check in hat edge case. In practice

relative error = 1e-2 usually means the oradient is probably wrong

1e-2 > relative emor > 1e-4 should make you fel uncomfortable

Te > relative eror is usually okay for objectives with kinks. But if there are no kinks (e.0. use of tanh
nonlinearities and softman), then 1e-4 is too high.

1e-7 and less you should be happy.

Also keep in mind that the deeper the network, the higher the relative errors will be. So if you are gradient checking
the input data for & 10-layer network, a relative error of Te-2 might be okay because the errors build up on the way.
Conversely, an eror of Te-2 for a single differentiable function likely indicates incorrect gradient.

Use double precision. A commen pitfall is using single precision fioating point to compute gradient check. It is
often that case that you might get high relative emors (as high as Te-7) even with a correct gradient
implementation. In my experience I've sometimes seen my relative errors plummet from 1e-2 to Te-8 by switching
1o double precision

Stick around active range of floating point It's a good idea 1o read through
s it may demystify your errors and Enable you to write more careful code.
For example, in neural nets it can be common to nommalize the loss function aver the batch. However, if your
gradients per datapoint are very small, then additionally dividing them by the number of data paints is starting to
give very small numbers, which in tumn will leed to mare numerical issues. This is why | like to always print the raw
numerical/analytic gradient, and make sure that the numbers you are comparing are not extremely small (e.g.
roughly 1e-10 and smaller in absolute value is warrying). If they are you may want to temporarity scale your loss
function up by a constant to bring them to a "nicer” renge where floats are more dense - ideally on the order of
where your float exponent is 0.

Kinks in the objective. One source of inaccuracy to be aware of during gradient checking is the problem of kinks
Kinks refer to non-differentiable parts of an abjective function, introduced by functions such as ReLU (maz (0, z))
or the SYM loss, Maxout neurons, etc. Gonsider gradient checking the ReLU function at £ = —1e6. Since 2 < 0
the analytic gradient at this point is exactly zero. However, the numerical gradient would suddenly compute a non-
zero gradient because f(z+h) might cross over the kink (eg. if A le — 6} and introduce @ non-
You might think that this is a patholagical case, but in fact this case can be very common. For
example, an SVM for CIFAR-10 contains up to 450,000 maz (0, z) terms because there are 50,000 examples and
each example yields @ terms to the objective. Moreover, a Neural Network with an SWM classifier will contain many
more kinks due to RelUs.

Note that it is possible to know if a kink was crossed in the evaluation of the loss. This can be done by keeping
track of the identities of all "winners’ in a function of form maz(z, y}; That is, was x or y higher during the forward
pass. If the identity of at least one winner changes when evaluating f(= -+ k) and then f(x — h), then a kink was
crossed and the numerical gradient will not be exact

Use only few datapoints. One fix to the above problam of kinks is to use fewer datapoints, since loss functions that
contain kinks (e.g. due to use of ReLUs or margin losses etc.) will have fewer kinks with fewer datapoints, sa it is
less likely for you to crass one when you perform the finite different approximation. Moreaver, if your gradcheck for
only ~Z or 3 datapoints then you would almost certainly gradcheck for an entire batch. Using very few datapaints
also makes your gradient check faster and more efficient

Be careful with the step size h it is not necessarily the case that smaller is betier, because when h is much
smaller, you may start running into numerical precision problems. Sometimes when the gradient doesn't check, it is
possible that you change h 1o be Te-4 or 1e-6 and suddenly the gradient will be correct. This
contains a chart that plots the vaiue of h on the x-axis and the numerical gradient error on the y-axis.

Gradcheck during a “characteristic’ mode of operation. |t is important o realize that & gradient check is performed
at a particular {and usually random), single point in the space of parameters. Even if the gradient check sucoeeds
at that point, it is not immediately certain that the gradient is correctly implemented globally. Additicnally, a random
initiglization might not be the most “characteristic’ point in the space of parameters and may in fact introduce
pathological situations where the gradient seems to be corectly implemented but isn't. For instance, an SVM with
very small weight initialization will assign almost exactly zero scores to all datapoints and the gradients will exhibit
a particular pattern across all datapoints. An incormect implementation of the gradient could still produce this
pattern and not generalize to @ more characteristic mode of operation where some scores are larger than others.
Therefore, to be safe it is best to use a short bum-i e during which the network is allowed to learn and perform
the gradient check after the loss starts ta go down. The danger of performing it at the first iteration is that this
could introduce pathological edge cases and mask an incorrect implementaticn of the gradient.

Don't let the regularization overwheim the data. It is often the case that a loss function is a sum of the data loss
and the reqularization loss (e.0. L2 penalty on weights). One danger to be aware of is that the regularization loss
may overwhelm the data loss, in which case the gradients will be primarily coming from the regularization term
ch usually has a much simpler gradient expression). This can mask an incorrect implementation of the data
loss gradient. Therefare, it is recommended to turn off regularization and check the data loss alone first, and then
the regularization term second and independently. One way to perform the latter is to hack the code to remove the
data loss contribution. Another way is to increase the regularization strength =0 as to ensure that its effect is non-
negligible in the gradient check, and that an incorect implementation would be spotted.

1o tumn off drope When performing gradient check, remember to tumn off any non-
deterministic effects in the network, such as dropout, random data augmentations, etc. Otherwise these can riy
introduce huge errors when estimating the numerical gradient. The downside of turning off these effects is that
you wouldn't be gradient checking them (e.g. it might be that dropout isn't backpropagated carrectly). Therefore, a
better solution might be to force a particular random seed before evaluating both f(z+ k) and f(z — h), and
when evaluating the analytic gradient

Check only few dimensions. In practice the gradients can have sizes of million parameters. In these cases it is only
practical to check some of the dimensions of the gradient and assume that the others are correct. Be careful One
issue to be careful with is to make sure to gradient check a few dimensions for every separate parameter. In some
applications, people combine the parameters into a single large parameter vector for convenience. In these cases
for example, the biases could only take up a tiny number of parameters from the whole vector, so it is impartant to
not sample at random but to take this into account and check that all parameters receive the comect gradients
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Convolutional Neural Networks

C1: feature maps 541 maps 16@5x5

| FullcmAemion | Gaussian connections

Convolutions Subsampling Cormvolutions  Subsampling Full connection

[LeNet-5, LeCun 1980]
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Video time https://youtu.be/8VdFf3egwfg?
t=1m10s
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https://youtu.be/8VdFf3egwfg?t=1m10s
https://youtu.be/8VdFf3egwfg?t=1m10s
https://youtu.be/8VdFf3egwfg?t=1m10s

A bit of history

Topographical mapping in the cortex:
nearby cells in cortex represented
nearby regions in the visual field
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Hierarchical organization

Hubel & Weisel featural hierarchy
topographical mapping

hyper-complex
cells

complex cells

simple cells

- low level

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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“sandwich” architecture (SCSCSC...)

A blt Of h|St0ry simple cells: modifiable parameters

complex cells: perform pooling

Neurocognitron
[Fukushima 1980]

e—————— visual area »<association area —

g e — _, lower-order __ higher-order . _grandmother
erGI LGB sanTple compfex hyper et complex cell
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A bit of history:

Gradient-based learning

applied to document G o’ 2%
recognition (ﬂ\?—/p
[LeCun, Bottou, Bengio, Haffner Tt | Tansome

1 9 9 8] Interpretation

Graph

Recognition
Transformer

Segmentation
Graph

Subsampling Comvolutions u

LeNet-5
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A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks

[Krizhevsky, Sutskever, Hinton, 2012]
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“AlexNet”
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Fast-forward to today: ConvNets are everywhere

Classification Retrieval

mite

mite container ship

black widow | | lifeboat
cockroach amphibian

fireboat

drilling platform

vertible | agaric iquirrel monkey
grille | mushroom spider monkey
pickup jelly fungus eiderberry titi
beach wagon gill fungus dshire bullterrier indri L ;
fire engine ﬂ.Wmnn'l—ﬂnqtuFrM currant howler monkey | |5 @i sl
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Fast-forward to today: ConvNets are everywhere

Segmentation
AT 5‘ iRy oSk

[Faster R-CNN: Ren, He, Girshick, Sun 2015]
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Fast-forward to today: ConvNets are everywhere

9- PROCE ™™ (HLECT 1D
4\ = CAUTIONARY OBJECT

[H = sTanomaRy DeJECT
[« movinG ogECT
I = TRMVIAL DRUECT

NVIDIA Tegra X1

self-driving cars
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Fast-forward to today: ConvNets are everywhere

~3

{ -

REPRESENTATION
SFC labels

IA2: 3 La: L5: L6:
Calista_ Fjgcﬁgq_mo}jpg Frontalization I2w11x11x3 I3xinid? 16x9 932 16:9%9x16 16x7xTx16 16x5x5x16
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 E@55x55 @25x25 @21x21

F7: F&
4096d 4030d

Spat'i'ai stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 || fullé full7 ||softmax
TXTXO6 ||5x5x256 || 3x3x512 || 3x3x512 [ 3x3x512 || 4096 2048

siride 2 || sfride 2 || stride 1 || sfride 1 (| stride 1 || dropout || dropout
norm. nomm. pool 2x2
poal 2x2 || pool 2x2

Temporal stream ConvNet

conv2 || conv3 || conv4 || conv5 fulle full?
Sx5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 1 stride 1 || stride 1 || dropout || dropout
pool 22 pool 2x2 |

conv1
TxTx86

siride 2
norm.
pool 2x2

[Simonyan et al. 2014]
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Fast-forward to today: ConvNets are everywhere

[Mnih 2013]
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Fast-forward to today: ConvNets are everywhere

[Ciresan et al. 2013] [Sermanet et al. 2011]
[Ciresan et al.]
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Fast-forward to today: ConvNets are everywhere

1 caught this movie on the Sci-Fi channel recently. It scually trned out 10 be pretty decent as far as B-list horror/suspense films go. [T @0ys (one naive and oné
loud mouthed & **) take a road trip to stop a wedding but have the worst possible luck when a maniac in a freaky, make-shift tank/truck hybrid decides
to play cat-and-mouse with them. Things are further complicated when they pick up  ridiculously whorish hitchhiker. What makes this film unique is that the
combination of comedy and terror actually work in this movie, unlike so many others. The two guys are likable enough and there are some good chase/suspense
seenes. Nice pacing and comic timing make this movie more than passable for the tely

1 just saw this on a local independent station in the New York City area. The cast showed promise but when 1 saw the direcior, George Cosmatos, | became

And it was every bit as bad, every bit as pointless and stupid as every George Cosmotos movie 1 ever saw. He's like u stupid man's
Michael Bey — with all the awfulness that accolade promises. There's o point 1o the conspiracy, no burming issues that urge the conspirators on. We are left to
ourselves to connect the dots from one bit of graffiti on varieus walls in the film to the next. Thus, the current budget crisis, the war in Iraq, Tslamic extremism, the
fate of social security, 47 million Americans without health care, stagnating wages, and the death of the middle class are all subsumed by the sheer terror of graffiti. A
tsuly. stunningly idiotic film

Giraphics is far fron the best part of the game. [THiS 1 the Buniber one best TH ganie in e Series. Next 10 Underground. It déServes strong love. If Is an insaiie
jgame. There are massive levels, massive unlockable characters... it's just a massive game. Waste your money on this game. This is the kind of money that is
‘wasted properly, And even though graphics suck, thats doesa't make a game good. Actually, the graphics were good at the time. Today the graphics are crap. WHO
CARES? As they say in Canada, This is the fun game. aye. (You get to go to Canada in THPS3) Well, I don’t know if they say that, but they might. who knows. Well,
Canadian people do. Wait a minute, I'm getting off topic. This game rocks. Buy it, play it, enjoy it, love it. It's PURE BRILLIANCE.

Traini g Testing Training Testing
5 ) . ";"1 ; 1 . AL

“The first was good and eriginal. T was a not bad horror/comedy movie. So I heard a second one was made and | had to watch it . What really makes this movie work
is Judd Nelson's character and the sometimes clever script. & prefty good script for & persan wha wrate the Final Destination filns and the direction was okay.
Sametimes there’s scenes where it looks like it was filmed using a home videa camera with a grainy - look. Great made - for - TV movie. It was worth the rental
and probably worth buying just to get that nice erie feeling and watch Judd Nelson's Stanley doing what he does best. | suzgest newcomen to watch the first
one before watching the sequel. just so you'll have an idea what Stanley is like and get a little history background.

[Denil et al. 2014]

Huma
segmentation.

‘components
CN affini

[Turaga et al., 2010]
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Whale recognition, Kaggle Challenge Mnih and Hinton, 2010
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=& Image
' Captioning

by

A dog s jumping to
frisbee.

; Arﬂuridng =
motorcycle on a dirt road.

{ - =

. - y L 10 e — k-
A group of young people Two hockey players are fighting A little girl In a pink hat is
playing a game of frisbee. over the puck. blowing bubbles, A refrigeraior fled with lots of

food and drinks.

A herd of elephants walking A close up of a cat laying A red motorcycle parked on the A yellow school bus parkedin  [Vinyals et al., 2015]
across a dry grass field. on a couch. side of the road. a parking lot.
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reddit.com/r/deepdream
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Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition

[Cadieu et al., 2014]
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Model Representations

Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition
[Cadieu et al., 2014]
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