Lecture 2:
Image Classification pipeline
Administrative: Piazza

For questions about midterm, poster session, projects, use Piazza instead of staff list!

SCPD students: Use your @stanford.edu address to register for Piazza; contact scpdcustomerservice@stanford.edu for help.
Administrative: Assignment 1

Out tonight, due 4/18 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
- Two-layer neural network
- Image features
Python Numpy Tutorial

This tutorial was contributed by Justin Johnson.

We will use the Python programming language for all assignments in this course. Python is a great general-purpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing.

http://cs231n.github.io/python-numpy-tutorial/
Google Cloud Tutorial

For the class project and assignments, we offer an option to use Google Compute Engine for developing and testing your implementations. This tutorial lists the necessary steps of working on the assignments using Google Cloud. For each assignment, we will provide you with an image containing the starter code and all dependencies that you need to complete the assignment. This tutorial goes through how to set up your own Google Compute Engine (GCE)

http://cs231n.github.io/gce-tutorial/
Image Classification: A core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}
The Problem: Semantic Gap

What the computer sees

An image is just a big grid of numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)
Challenges: Viewpoint variation

All pixels change when the camera moves!

This image by Nikita is licensed under CC-BY 2.0
Challenges: Illumination
Challenges: Deformation
Challenges: Occlusion
Challenges: Background Clutter
Challenges: Intraclass variation
An image classifier

```python
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.
Attempts have been made

Find edges

Find corners

John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986
Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```
First classifier: **Nearest Neighbor**

```python
def train(images, labels):
    # Machine learning!
    return model
```

Memorize all data and labels

```python
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Predict the label of the most similar training image
Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images

Example Dataset: **CIFAR10**

10 classes
50,000 training images
10,000 testing images

Test images and nearest neighbors

Distance Metric to compare images

L1 distance: \[d_1(I_1, I_2) = \sum_p |I^p_1 - I^p_2| \]

<table>
<thead>
<tr>
<th>test image</th>
<th>training image</th>
<th>pixel-wise absolute value differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 32 10 18</td>
<td>10 20 24 17</td>
<td>46 12 14 1</td>
</tr>
<tr>
<td>90 23 128 133</td>
<td>8 10 89 100</td>
<td>82 13 39 33</td>
</tr>
<tr>
<td>24 26 178 200</td>
<td>12 16 178 170</td>
<td>12 10 0 30</td>
</tr>
<tr>
<td>2 0 255 220</td>
<td>4 32 233 112</td>
<td>2 32 22 108</td>
</tr>
</tbody>
</table>

\[\text{add} \rightarrow 456 \]
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N ""
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for ""
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros((num_test, dtype = self.ytr.dtype))

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred

Nearest Neighbor classifier
Memorize training data
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """X is N x D where each row is an example. Y is 1-dimension of size N ""
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """X is N x D where each row is an example we wish to predict label for ""
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred

Nearest Neighbor classifier

For each test image:
Find closest train image
Predict label of nearest image
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N ""
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred

Q: With N examples, how fast are training and prediction?
Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)
Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

A: Train $O(1)$, predict $O(N)$

This is bad: we want classifiers that are fast at prediction; slow for training is ok
What does this look like?
K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

![Diagram showing K = 1, K = 3, and K = 5](image-url)
What does this look like?
What does this look like?
K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

\[d_1(I_1, I_2) = \sum_p |I_{1p}^p - I_{2p}^p| \]

L2 (Euclidean) distance

\[d_2(I_1, I_2) = \sqrt{\sum_p (I_{1p}^p - I_{2p}^p)^2} \]
K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$
K-Nearest Neighbors: Demo Time

http://vision.stanford.edu/teaching/cs231n-demos/knn/
Hyperparameters

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about the algorithm that we set rather than learn.
Hyperparameters

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about the algorithm that we set rather than learn

Very problem-dependent.
Must try them all out and see what works best.
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

Your Dataset
Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: $K = 1$ always works perfectly on training data

Idea #2: Split data into train and test, choose hyperparameters that work best on test data
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: $K = 1$ always works perfectly on training data

Your Dataset

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train
test
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

Idea #3: Split data into **train**, **val**, and **test**; choose hyperparameters on val and evaluate on test

Better!
Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

Useful for small datasets, but not used too frequently in deep learning
Setting Hyperparameters

Example of 5-fold cross-validation for the value of k.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \approx 7$ works best for this data)
k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

(all 3 images have same L2 distance to the one on the left)
k-Nearest Neighbor on images *never used.*

- **Curse of dimensionality**

- Dimensions = 1
 - Points = 4

- Dimensions = 2
 - Points = 4^2

- Dimensions = 3
 - Points = 4^3
K-Nearest Neighbors: Summary

In **image classification** we start with a training set of images and labels, and must predict labels on the test set.

The **K-Nearest Neighbors** classifier predicts labels based on nearest training examples.

Distance metric and K are **hyperparameters**.

Choose hyperparameters using the validation set; only run on the test set once at the very end!
Linear Classification
Neural Network

Linear classifiers
Man in black shirt is playing guitar.

Boy is doing backflip on wakeboard.

Construction worker in orange safety vest is working on road.

Two young girls are playing with lego toy.

Two young girls are playing with lego toy. Boy is doing backflip on wakeboard.

Man in black shirt is playing guitar. Construction worker in orange safety vest is working on road.

Recall CIFAR10

50,000 training images
each image is 32x32x3

10,000 test images.
Parametric Approach

Image

\[f(x, W) \]

Array of **32x32x3** numbers (3072 numbers total)

W

parameters or weights

10 numbers giving class scores
Parametric Approach: Linear Classifier

\[f(x,W) = Wx \]

- **Image**
- Array of \(32 \times 32 \times 3\) numbers (3072 numbers total)
- Parameters or weights \(W\)
- 10 numbers giving class scores

\[f(x,W) \]
Parametric Approach: Linear Classifier

Image parameters or weights W

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

$\begin{bmatrix} f(x,W) \end{bmatrix} = W \cdot x$

10×1

10×3072

3072×1

10 numbers giving class scores

W

parameters or weights
Parametric Approach: Linear Classifier

\[f(x, W) = Wx + b \]

Image

Array of \(32 \times 32 \times 3\) numbers
(3072 numbers total)

\(f(x, W) \) → 10 numbers giving class scores

\(W \) parameters or weights
Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image

Stretch pixels into column

\[
\begin{bmatrix}
0.2 & -0.5 & 0.1 & 2.0 \\
1.5 & 1.3 & 2.1 & 0.0 \\
0 & 0.25 & 0.2 & -0.3 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
56 \\
231 \\
24 \\
2 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.1 \\
3.2 \\
0.25 \\
-1.2 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
-96.8 \\
437.9 \\
61.95 \\
\end{bmatrix}
\]

W

Cat score

Dog score

Ship score
Interpreting a Linear Classifier

What is this thing doing?

\[f(x, W) = Wx + b \]
Interpreting a Linear Classifier

Example trained weights of a linear classifier trained on CIFAR-10:

\[f(x, W) = Wx + b \]
Interpreting a Linear Classifier

\[f(x, W) = Wx + b \]

Array of 32x32x3 numbers
(3072 numbers total)
Hard cases for a linear classifier

Class 1: number of pixels > 0 odd

Class 2: number of pixels > 0 even

Class 1: $1 \leq L_2$ norm ≤ 2

Class 2: Everything else

Class 1: Three modes

Class 2: Everything else
So far: Defined a (linear) score function \(f(x,W) = Wx + b \)

Example class scores for 3 images for some \(W \):

<table>
<thead>
<tr>
<th>Class</th>
<th>Score 1</th>
<th>Score 2</th>
<th>Score 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>airplane</td>
<td>-3.45</td>
<td>-0.51</td>
<td>3.42</td>
</tr>
<tr>
<td>automobile</td>
<td>-8.87</td>
<td>6.04</td>
<td>4.64</td>
</tr>
<tr>
<td>bird</td>
<td>0.09</td>
<td>5.31</td>
<td>2.65</td>
</tr>
<tr>
<td>cat</td>
<td>2.9</td>
<td>-4.22</td>
<td>5.1</td>
</tr>
<tr>
<td>deer</td>
<td>4.48</td>
<td>-4.19</td>
<td>2.64</td>
</tr>
<tr>
<td>dog</td>
<td>8.02</td>
<td>3.58</td>
<td>5.55</td>
</tr>
<tr>
<td>frog</td>
<td>3.78</td>
<td>4.49</td>
<td>-4.34</td>
</tr>
<tr>
<td>horse</td>
<td>1.06</td>
<td>-4.37</td>
<td>-1.5</td>
</tr>
<tr>
<td>ship</td>
<td>-0.36</td>
<td>-2.09</td>
<td>-4.79</td>
</tr>
<tr>
<td>truck</td>
<td>-0.72</td>
<td>-2.93</td>
<td>6.14</td>
</tr>
</tbody>
</table>

How can we tell whether this \(W \) is good or bad?
Coming up:
- Loss function (quantifying what it means to have a “good” W)
- Optimization (start with random W and find a W that minimizes the loss)
- ConvNets! (tweak the functional form of f)

$$f(x, W) = Wx + b$$