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Lecture 3:
Loss Functions 

and Optimization
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Administrative

Assignment 1 is released: 
http://cs231n.github.io/assignments2017/assignment1/

Due Thursday April 20, 11:59pm on Canvas

(Extending due date since it was released late)
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http://cs231n.github.io/assignments2017/assignment1/
http://cs231n.github.io/assignments2017/assignment1/
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Administrative

Check out Project Ideas on Piazza

Schedule for Office hours is on the course website

TA specialties are posted on Piazza 
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Administrative
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Details about redeeming Google Cloud Credits should go out today;
will be posted on Piazza

$100 per student to use for homeworks and projects
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Recall from last time: Challenges of recognition
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This image is CC0 1.0 public domain This image by Umberto Salvagnin 
is licensed under CC-BY 2.0

This image by jonsson is licensed 
under CC-BY 2.0

Illumination Deformation Occlusion

This image is CC0 1.0 public domain

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

Viewpoint

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
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Recall from last time: data-driven approach, kNN
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1-NN classifier 5-NN classifier

train test

train testvalidation
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Recall from last time: Linear Classifier

7

f(x,W) = Wx + b
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Recall from last time: Linear Classifier 
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1. Define a loss function 
that quantifies our 
unhappiness with the 
scores across the training 
data.

2. Come up with a way of 
efficiently finding the 
parameters that minimize 
the loss function. 
(optimization)

TODO:

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg
https://www.flickr.com/photos/malfet/1428198050
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

A loss function tells how 
good our current classifier is

Given a dataset of examples

Where       is image and 
                  is (integer) label

Loss over the dataset is a 
sum of loss over examples:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

“Hinge loss”
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

= max(0, 5.1 - 3.2 + 1) 
   +max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Losses: 2.9
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Losses:

= max(0, 1.3 - 4.9 + 1) 
   +max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 002.9
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Losses:

= max(0, 2.2 - (-3.1) + 1) 
   +max(0, 2.5 - (-3.1) + 1)
= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.912.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Loss over full dataset is average:

Losses: 12.92.9 0 L = (2.9 + 0 + 12.9)/3 
   = 5.27
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q: What happens to 
loss if car scores 
change a bit?Losses: 12.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q2: what is the 
min/max possible 
loss?Losses: 12.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q3: At initialization W 
is small so all s ≈ 0.
What is the loss?Losses: 12.92.9 0



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201721

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q4: What if the sum 
was over all classes? 
(including j = y_i)Losses: 12.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q5: What if we used 
mean instead of 
sum?Losses: 12.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q6: What if we used

Losses: 12.92.9 0
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Multiclass SVM Loss: Example code

24
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E.g. Suppose that we found a W such that L = 0. 
Is this W unique? 
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E.g. Suppose that we found a W such that L = 0. 
Is this W unique?

No! 2W is also has L = 0! 
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

= max(0, 1.3 - 4.9 + 1) 
   +max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

0Losses: 2.9

Before:

With W twice as large:
= max(0, 2.6 - 9.8 + 1) 
   +max(0, 4.0 - 9.8 + 1)
= max(0, -6.2) + max(0, -4.8)
= 0 + 0
= 0
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Data loss: Model predictions 
should match training data
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Data loss: Model predictions 
should match training data
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Data loss: Model predictions 
should match training data
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Data loss: Model predictions 
should match training data
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Data loss: Model predictions 
should match training data

Regularization: Model 
should be “simple”, so it 
works on test data
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Data loss: Model predictions 
should match training data

Regularization: Model 
should be “simple”, so it 
works on test data

Occam’s Razor: 
“Among competing hypotheses, 
the simplest is the best”
William of Ockham, 1285 - 1347
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Regularization

34

= regularization strength
(hyperparameter)

In common use: 
L2 regularization
L1 regularization
Elastic net (L1 + L2)
Max norm regularization (might see later)
Dropout (will see later)
Fancier: Batch normalization, stochastic depth
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L2 Regularization (Weight Decay)

35
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L2 Regularization (Weight Decay)
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(If you are a Bayesian: L2 
regularization also corresponds 
MAP inference using a 
Gaussian prior on W)
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

cat

frog

car

3.2
5.1
-1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

cat

frog

car

3.2
5.1
-1.7

where
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

cat

frog

car

3.2
5.1
-1.7

where

Softmax function
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

Want to maximize the log likelihood, or (for a loss function) 
to minimize the negative log likelihood of the correct class:cat

frog

car

3.2
5.1
-1.7

where
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

Want to maximize the log likelihood, or (for a loss function) 
to minimize the negative log likelihood of the correct class:cat

frog

car

3.2
5.1
-1.7 in summary:

where
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities

normalize
0.13
0.87
0.00

probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities

normalize
0.13
0.87
0.00

probabilities

L_i = -log(0.13)
      = 0.89
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13)
      = 0.89

Q: What is the min/max 
possible loss L_i?
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13)
      = 0.89

Q2: Usually at 
initialization W is small 
so all s ≈ 0.
What is the loss?
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Softmax vs. SVM
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Softmax vs. SVM

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: Suppose I take a datapoint 
and I jiggle a bit (changing its 
score slightly). What happens to 
the loss in both cases?
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Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss
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Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

How do we find the best W?
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Optimization
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This image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201756
Walking man image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
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Strategy #1: A first very bad idea solution: Random search
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Lets see how well this works on the test set...

15.5% accuracy! not bad!
(SOTA is ~95%)
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Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives) along 
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]
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gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322
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gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353
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gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6
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gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347
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gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201768

This is silly. The loss is just a function of W:

want
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This is silly. The loss is just a function of W:

want

This image is in the public domain This image is in the public domain

https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg
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This is silly. The loss is just a function of W:

want

This image is in the public domain This image is in the public domain

Calculus!

Hammer image  is in the public domain

Use calculus to compute an 
analytic gradient

https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg
https://pixabay.com/en/hammer-tool-metal-hit-break-33617/
https://pixabay.com/en/hammer-tool-metal-hit-break-33617/
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gradient dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

dW = ...
(some function 
data and W)
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In summary:
- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check 
implementation with numerical gradient. This is called a 
gradient check.
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Gradient Descent
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original W

negative gradient direction
W_1

W_2
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https://docs.google.com/file/d/0Byvt-AfX75o1ZWxMRkxrUFJ2ZUE/preview
https://docs.google.com/file/d/0Byvt-AfX75o1NndHNjVoVU1RRzQ/preview
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Stochastic Gradient Descent (SGD)

76

Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common
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Interactive Web Demo time....

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/ 

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
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Interactive Web Demo time....

https://docs.google.com/file/d/0Byvt-AfX75o1RmJtME41TzV2OHM/preview
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Aside: Image Features

79
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Image Features: Motivation

80

x

y

r

θ

f(x, y) = (r(x, y), θ(x, y)) 

Cannot separate red 
and blue points with 
linear classifier

After applying feature 
transform, points can 
be separated by linear 
classifier
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Example: Color Histogram

81

+1
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Example: Histogram of Oriented Gradients (HoG)

82

Divide image into 8x8 pixel regions
Within each region quantize edge 
direction into 9 bins

Example: 320x240 image gets divided 
into 40x30 bins; in each bin there are 
9 numbers so feature vector has 
30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005
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Example: Bag of Words

83

Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Step 2: Encode images

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005
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Feature Extraction

Image features vs ConvNets

84

f
10 numbers giving 
scores for classes

training

training

10 numbers giving 
scores for classes
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Next time:

Introduction to neural networks

Backpropagation

85


