Lecture 6: Training Neural Networks, Part I

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 1 April 20, 2017

Administrative

Assignment 1 due Thursday (today), 11:59pm on Canvas

Assignment 2 out today

Project proposal due Tuesday April 25

Notes on backprop for a linear layer and vector/tensor derivatives linked to Lecture 4 on syllabus

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 2 April 20, 2017

Computational graphs

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 3 April 20, 2017

Neural Networks

Linear score function:

2-layer Neural Network

 $egin{aligned} f &= Wx \ f &= W_2 \max(0, W_1 x) \end{aligned}$

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 4 April 20, 2017

Convolutional Neural Networks

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 5 April 20, 2017

Convolutional Layer

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 6 April 20, 2017

Convolutional Layer

activation maps 32 28 **Convolution Layer** 32 28 6

We stack these up to get a "new image" of size 28x28x6!

Fei-Fei Li & Justin Johnson & Serena Yeung

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

Lecture 6 - 7

April 20, 2017

Learning network parameters through optimization

Lecture 6 - 8

April 20, 2017

Vanilla Gradient Descent

while True:

Fei-Fei Li & Justin Johnson & Serena Yeung

weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update

Landscape image is CC0 1.0 public domain Walking man image is CC0 1.0 public domain

Mini-batch SGD

Loop:

- 1. Sample a batch of data
- 2. **Forward** prop it through the graph (network), get loss
- 3. Backprop to calculate the gradients
- 4. Update the parameters using the gradient

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 9 April 20, 2017

Next: Training Neural Networks

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 10 April 20, 2017

Overview

1. One time setup

activation functions, preprocessing, weight initialization, regularization, gradient checking

2. Training dynamics

babysitting the learning process, parameter updates, hyperparameter optimization

3. Evaluation

model ensembles

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 11 April 20, 2017

Part 1

- Activation Functions
- Data Preprocessing
- Weight Initialization
- Batch Normalization
- Babysitting the Learning Process

Lecture 6 - 12

April 20, 2017

- Hyperparameter Optimization

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 13 April 20, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 14 April 20, 2017

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 15 April 20, 2017

$$\sigma(x)=1/(1+e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

Sigmoid

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 16 April 20, 2017

Sigmoid

 $\sigma(x) = 1/(1+e^{-x})$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

1. Saturated neurons "kill" the gradients

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 17 April 20, 2017

What happens when x = -10? What happens when x = 0? What happens when x = 10?

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 18 April 20, 2017

Sigmoid

 $\sigma(x) = 1/(1+e^{-x})$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

- 1. Saturated neurons "kill" the gradients
- 2. Sigmoid outputs are not zero-centered

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 19 April 20, 2017

Consider what happens when the input to a neuron (x) is always positive:

What can we say about the gradients on w?

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 20 April 20, 2017

Consider what happens when the input to a neuron is always positive...

$$f\left(\sum_i w_i x_i + b
ight)$$

What can we say about the gradients on **w**? Always all positive or all negative :((this is also why you want zero-mean data!)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 21 A

April 20, 2017

Sigmoid

 $\sigma(x) = 1/(1+e^{-x})$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

- 1. Saturated neurons "kill" the gradients
- 2. Sigmoid outputs are not zero-centered
- 3. exp() is a bit compute expensive

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 22 April 20, 2017

Squashes numbers to range [-1,1]

- zero centered (nice)
- still kills gradients when saturated :(

tanh(x)

[LeCun et al., 1991]

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 23 April 20, 2017

Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible than sigmoid

ReLU (Rectified Linear Unit)

[Krizhevsky et al., 2012]

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 24 April 20, 2017

ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible than sigmoid
- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 25 April 20, 2017

What happens when x = -10? What happens when x = 0? What happens when x = 10?

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 26 April 20, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 27 April 20, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 28 April 20, 2017

[Mass et al., 2013] [He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
 will not "die".

Leaky ReLU $f(x) = \max(0.01x, x)$

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 29 April 20, 2017

Leaky ReLU $f(x) = \max(0.01x, x)$

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
 will not "die".

Parametric Rectifier (PReLU) $f(x) = \max(lpha x, x)$

backprop into \alpha (parameter)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 30

April 20, 2017

[Clevert et al., 2015]

Exponential Linear Units (ELU)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases} - \text{Computation requires exp}$$

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 31 April 20, 2017

Maxout "Neuron"

- Does not have the basic form of dot product -> nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

$$\max(w_1^Tx+b_1,w_2^Tx+b_2)$$

Problem: doubles the number of parameters/neuron :(

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 32 April 20, 2017

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don't expect much
- Don't use sigmoid

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 33 April 20, 2017

Data Preprocessing

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 34 April 20, 2017

Step 1: Preprocess the data

(Assume X [NxD] is data matrix, each example in a row)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 35 April 20, 2017

Remember: Consider what happens when the input to a neuron is always positive...

$$f\left(\sum_i w_i x_i + b
ight)$$

Always all positive or all negative :((this is also why you want zero-mean data!)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 36

<u>April 20, 2017</u>
Step 1: Preprocess the data

(Assume X [NxD] is data matrix, each example in a row)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 37 April 20, 2017

Step 1: Preprocess the data

In practice, you may also see **PCA** and **Whitening** of the data

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 38 April 20, 2017

TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet) (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet) (mean along each channel = 3 numbers)

Not common to normalize variance, to do PCA or whitening

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 39 April 20, 2017

Weight Initialization

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 40 April 20, 2017

- Q: what happens when W=0 init is used?

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 41 April 20, 2017

- First idea: Small random numbers

(gaussian with zero mean and 1e-2 standard deviation)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 42 April 20, 2017

- First idea: Small random numbers

(gaussian with zero mean and 1e-2 standard deviation)

$$W = 0.01^*$$
 np.random.randn(D,H)

Works ~okay for small networks, but problems with deeper networks.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 43 April 20, 2017

Lets look at some activation statistics

E.g. 10-layer net with 500 neurons on each layer, using tanh non-linearities, and initializing as described in last slide.

```
# assume some unit gaussian 10-D input data
D = np.random.randn(1000, 500)
hidden_layer_sizes = [500]*10
nonlinearities = ['tanh']*len(hidden_layer_sizes)
```

```
act = {'relu':lambda x:np.maximum(0,x), 'tanh':lambda x:np.tanh(x)}
Hs = {}
for i in xrange(len(hidden_layer_sizes)):
    X = D if i == 0 else Hs[i-1] # input at this layer
    fan_in = X.shape[1]
    fan_out = hidden_layer_sizes[i]
    W = np.random.randn(fan_in, fan_out) * 0.01 # layer initialization
```

```
H = np.dot(X, W) # matrix multiply
H = act[nonlinearities[i]](H) # nonlinearity
Hs[i] = H # cache result on this layer
```

```
# look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer means = [np.mean(H) for i,H in Hs.iteritems()]
layer_stds = [np.std(H) for i,H in Hs.iteritems()]
for i,H in Hs.iteritems():
    print 'hidden layer %d had mean %f and std %f' % (i+1, layer means[i], layer stds[i])
```

```
# plot the means and standard deviations
plt.figure()
plt.subplot(121)
plt.plot(Hs.keys(), layer_means, 'ob-')
plt.title('layer mean')
plt.subplot(122)
plt.plot(Hs.keys(), layer_stds, 'or-')
plt.title('layer std')
```

```
# plot the raw distributions
plt.figure()
for i,H in Hs.iteritems():
    plt.subplot(1,len(Hs),i+1)
    plt.hist(H.ravel(), 30, range=(-1,1))
```

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 44 April 20, 2017

input layer had mean 0.000927 and std 0.998388 hidden layer 1 had mean -0.000117 and std 0.213081 hidden layer 2 had mean -0.000001 and std 0.047551 hidden layer 3 had mean -0.000002 and std 0.010630 hidden layer 4 had mean 0.000001 and std 0.002378 hidden layer 5 had mean 0.000002 and std 0.000532 hidden layer 6 had mean -0.000000 and std 0.000019 hidden layer 7 had mean 0.000000 and std 0.000026 hidden layer 8 had mean -0.000000 and std 0.000006 hidden layer 9 had mean 0.000000 and std 0.000006 hidden layer 9 had mean -0.000000 and std 0.000006

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 45 April 20, 2017

input layer had mean 0.000927 and std 0.998388 hidden layer 1 had mean -0.000117 and std 0.213081 hidden layer 2 had mean -0.000001 and std 0.047551 hidden layer 3 had mean -0.000002 and std 0.010630 hidden layer 4 had mean 0.000001 and std 0.002378 hidden layer 5 had mean 0.000002 and std 0.000532 hidden layer 6 had mean -0.000000 and std 0.000119 hidden layer 7 had mean 0.000000 and std 0.000026 hidden layer 8 had mean -0.000000 and std 0.000006 hidden layer 9 had mean -0.000000 and std 0.000006 hidden layer 10 had mean -0.000000 and std 0.000000

All activations become zero!

Q: think about the backward pass. What do the gradients look like?

Hint: think about backward pass for a W*X gate.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 46 April 20, 2017

W = np.random.randn(fan in, fan out) * 1.0 # layer initialization

input layer had mean 0.001800 and std 1.001311 hidden layer 1 had mean -0.000430 and std 0.981879 hidden layer 2 had mean -0.000849 and std 0.981649 hidden layer 3 had mean 0.000566 and std 0.981651 hidden layer 4 had mean 0.000483 and std 0.981755 hidden layer 5 had mean -0.000682 and std 0.981614 hidden layer 7 had mean -0.000401 and std 0.981560 hidden layer 7 had mean -0.000448 and std 0.981520 hidden layer 8 had mean -0.000448 and std 0.981913 hidden layer 9 had mean -0.000844 and std 0.981738 hidden layer 10 had mean 0.000584 and std 0.981736

*1.0 instead of *0.01

laver std laver mean 9.815e-0.00045 0.0000 0.00040 0.0004 0.00035 0.00030 0.0000 0.00025 -0.0002 0.00020 -0.00040.00015 -0.0006 0.00010 -0.0008 0.00005 -0.0010250000 20000 15000 150 150 100000 100 100 50000

Almost all neurons completely saturated, either -1 and 1. Gradients will be all zero.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 47 April 20, 2017

input layer had mean 0.001800 and std 1.001311 hidden layer 1 had mean 0.001198 and std 0.627953 hidden layer 2 had mean 0.000175 and std 0.486051 hidden layer 3 had mean 0.000055 and std 0.407723 hidden layer 4 had mean 0.000142 and std 0.357108 hidden layer 5 had mean 0.000142 and std 0.320917 hidden layer 6 had mean 0.000389 and std 0.292116 hidden layer 7 had mean -0.00028 and std 0.273387 hidden layer 8 had mean -0.000291 and std 0.254935 hidden layer 9 had mean 0.000361 and std 0.239266 hidden layer 10 had mean 0.000139 and std 0.228008

Lecture 6 - 48

"Xavier initialization" [Glorot et al., 2010]

Reasonable initialization. (Mathematical derivation assumes linear activations)

April 20, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

input layer had mean 0.000501 and std 0.999444 hidden layer 1 had mean 0.398623 and std 0.582273 hidden layer 2 had mean 0.272352 and std 0.403795 hidden layer 3 had mean 0.186076 and std 0.276912 hidden layer 4 had mean 0.136442 and std 0.198685 hidden layer 5 had mean 0.099568 and std 0.140299 hidden layer 6 had mean 0.072234 and std 0.103280 hidden layer 7 had mean 0.049775 and std 0.072748 hidden layer 8 had mean 0.035138 and std 0.051572 hidden layer 10 had mean 0.018408 and std 0.038583 hidden layer 10 had mean 0.018408 and std 0.026076

W = np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization

but when using the ReLU nonlinearity it breaks.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 49 April 20, 2017

input layer had mean 0.000501 and std 0.999444 hidden layer 1 had mean 0.562488 and std 0.825232 hidden layer 2 had mean 0.553614 and std 0.827835 hidden layer 3 had mean 0.545867 and std 0.813855 hidden layer 4 had mean 0.565396 and std 0.826902 hidden layer 5 had mean 0.547678 and std 0.826902 hidden layer 6 had mean 0.587103 and std 0.8260035 hidden layer 7 had mean 0.596867 and std 0.870610 hidden layer 8 had mean 0.623214 and std 0.889348 hidden layer 10 had mean 0.552531 and std 0.844523

He et al., 2015 (note additional /2)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 50 April 20, 2017

input layer had mean 0.000501 and std 0.999444 hidden layer 1 had mean 0.562488 and std 0.825232 hidden layer 2 had mean 0.553614 and std 0.827835 hidden layer 3 had mean 0.545867 and std 0.813855 hidden layer 4 had mean 0.565396 and std 0.826902 hidden layer 5 had mean 0.547678 and std 0.834092 hidden layer 6 had mean 0.587103 and std 0.860035 hidden layer 7 had mean 0.596867 and std 0.870610 hidden layer 8 had mean 0.623214 and std 0.889348 hidden layer 9 had mean 0.567498 and std 0.845357 hidden layer 10 had mean 0.552531 and std 0.844523

W = np.random.randn(fan in, fan_out) / np.sqrt(fan_in/2) # layer initialization

He et al., 2015 (note additional /2)

Fei-Fei Li & Justin Johnson & Serena Yeung

April 20, 2017 Lecture 6 - 51

Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fei-Fei Li & Justin Johnson & Serena Yeung

. . .

Lecture 6 - 52 April 20, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 53 April 20, 2017

[loffe and Szegedy, 2015]

"you want unit gaussian activations? just make them so."

consider a batch of activations at some layer. To make each dimension unit gaussian, apply:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

this is a vanilla differentiable function...

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 54 April 20, 2017

[loffe and Szegedy, 2015]

"you want unit gaussian activations? just make them so."

1. compute the empirical mean and variance independently for each dimension.

2. Normalize

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

D

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 55 April 20, 2017

[loffe and Szegedy, 2015]

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 56 April 20, 2017

[loffe and Szegedy, 2015]

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

Problem: do we necessarily want a unit gaussian input to a tanh layer?

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 57 April 20, 2017

[loffe and Szegedy, 2015]

Normalize:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

And then allow the network to squash the range if it wants to:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

Note, the network can learn: $\gamma^{(k)} = \sqrt{\text{Var}[x^{(k)}]}$ $\beta^{(k)} = \text{E}[x^{(k)}]$ to recover the identity mapping.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 58 April 20, 2017

[loffe and Szegedy, 2015]

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathbf{BN}_{\gamma,\beta}(x_i)$ // scale and shift

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 59 April 20, 2017

[loffe and Szegedy, 2015]

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1m}\}$; Parameters to be learned: γ, β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$		Note: at test time BatchNorm layer functions differently:
$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$	// mini-batch mean	The mean/std are not computed based on the batch. Instead, a single fixed empirical mean of activations
$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$	// mini-batch variance	during training is used.
$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$	// normalize	(e.g. can be estimated during training with running averages)
$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$	// scale and shift	

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 60 April 20, 2017

Babysitting the Learning Process

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 61 April 20, 2017

Step 1: Preprocess the data

(Assume X [NxD] is data matrix, each example in a row)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 62 April 20, 2017

Step 2: Choose the architecture: say we start with one hidden layer of 50 neurons:

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 63 April 20, 2017

Double check that the loss is reasonable:

```
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden_size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```


Double check that the loss is reasonable:

```
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden_size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```


Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 65 April 20, 2017

Tip: Make sure that you can overfit very small portion of the training data

The above code:

- take the first 20 examples from CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla 'sgd'

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 66 April 20, 2017

Tip: Make sure that you can overfit very small portion of the training data

Very small loss, train accuracy 1.00, nice! model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes trainer = ClassifierTrainer() X tiny = X train[:20] # take 20 examples y tiny = y train[:20]best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny, model, two layer net. num epochs=200, reg=0.0, update='sgd', learning rate decay=1, sample batches = False. learning rate=1e-3, verbose=True) Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03 Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03 Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03 Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03 Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03 Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03 Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03 Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03 Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03 Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03 Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03 Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03 Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03 Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03 Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03 Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03 Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03 Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03 Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03 20 / 200, cost 1 205760 train. 0 650000 wal 0 650000 Finished epoch 195 / 200: cost 0.002694, train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 196 / 200: cost 0.002674, train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 197 / 200: cost 0.002655, train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 198 / 200: cost 0.002635, train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 199 / 200: cost 0.002617, train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 200 / 200: cost 0.002597, train: 1.000000, val 1.000000, lr 1.000000e-03 finished optimization. best validation accuracy: 1.000000

Lecture 6 - 67

Fei-Fei Li & Justin Johnson & Serena Yeung

April 20, 2<u>017</u>

Start with small regularization and find learning rate that makes the loss go down.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 68 April 20, 2017

Start with small regularization and find learning rate that makes the loss go down. model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes trainer = ClassifierTrainer() best model, stats = trainer.train(X train, y train, X val, y val, model, two layer net, num epochs=10, reg=0.000001, update='sqd', learning rate decay=1, sample batches = True, learning rate=le-6, verbose=True) Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, lr 1.000000e-06 Finished epoch 2 / 10: cost 2.302582, train: 0.121000, val 0.124000, lr 1.000000e-06 Finished epoch 3 / 10: cost 2.302558, train: 0.119000, val 0.138000, lr 1.000000e-06 Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, lr 1.000000e-06 Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06 Finished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, lr 1.000000e-06 Finished epoch 7 / 10: cost 2.302466, train: 0.180000, val 0.176000, lr 1.000000e-06 Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06 Finished epoch 9 / 10: cost 2.302459, train: 0.206000, val 0.192000, lr 1.000000e-06 Finished epoch 10 / 10 cost 2.302420 train: 0.190000, val 0.192000, lr 1.000000e-06 finished optimization. best validation accuracy: 0.192000

Loss barely changing

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 69 April 20, 2017

Start with small regularization and find learning rate that makes the loss go down. model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes trainer = ClassifierTrainer() best model, stats = trainer.train(X train, y train, X val, y val, model, two layer net, num epochs=10, reg=0.000001, update='sqd', learning rate decay=1, sample batches = True, learning rate=1e-6, verbose=True) Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, lr 1.000000e-06 Finished epoch 2 / 10: cost 2.302582, train: 0.121000, val 0.124000, lr 1.000000e-06 Finished epoch 3 / 10: cost 2.302558, train: 0.119000, val 0.138000, lr 1.000000e-06 Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, lr 1.000000e-06 Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06 Finished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, lr 1.000000e-06 Finished epoch 7 / 10: cost 2.302466, train: 0.180000, val 0.176000, lr 1.000000e-06 Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06 Finished epoch 9 / 10: cost 2.302459, train: 0.206000, val 0.192000, lr 1.000000e-06 Finished epoch 10 / 10 cost 2.302420 train: 0.190000, val 0.192000, lr 1.000000e-06 finished optimization. best validation accuracy: 0.192000

Loss barely changing: Learning rate is probably too low

loss not going down: learning rate too low

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 70 April 20, 2017

Start with small regularization and find learning rate that makes the loss go down. model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes trainer = ClassifierTrainer() best model, stats = trainer.train(X train, y train, X val, y val, model, two layer net, num epochs=10, reg=0.000001, update='sqd', learning rate decay=1, sample batches = True, learning rate=le-6, verbose=True) Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, lr 1.000000e-06 Finished epoch 2 / 10: cost 2.302582, train: 0.121000, val 0.124000, lr 1.000000e-06 Finished epoch 3 / 10: cost 2.302558, train: 0.119000, val 0.138000, lr 1.000000e-06 Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, lr 1.000000e-06 Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06 Finished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, lr 1.000000e-06 Finished epoch 7 / 10: cost 2.302466, train: 0.180000, val 0.176000, lr 1.000000e-06 Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06 Finished epoch 9 / 10: cost 2.302459, train: 0.206000, val 0.192000, lr 1.000000e-06 Finished epoch 10 / 10 cost 2.302420 train: 0.190000, val 0.192000, lr 1.000000e-06 finished optimization. best validation accuracy: 0.192000

loss not going down: learning rate too low

Loss barely changing: Learning rate is probably too low

Notice train/val accuracy goes to 20% though, what's up with that? (remember this is softmax)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 71 April 20, 2017

Start with small regularization and find learning rate that makes the loss go down.

Now let's try learning rate 1e6.

loss not going down: learning rate too low

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 72 April 20, 2017
Lets try to train now...

Start with small regularization and find learning rate that makes the loss go down. /home/karpathy/cs231n/code/cs231n/classifiers/neural_net.py:50: RuntimeWarning: divide by zero en countered in log

```
data_loss = -np.sum(np.log(probs[range(N), y])) / N
```

/home/karpathy/cs231n/code/cs231n/classifiers/neural_net.py:48: RuntimeWarning: invalid value enc ountered in subtract

```
probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))
```

Finished epoch 1 / 10: cost nan, train: 0.091000, val 0.087000, lr 1.000000e+06 Finished epoch 2 / 10: cost nan, train: 0.095000, val 0.087000, lr 1.000000e+06 Finished epoch 3 / 10: cost nan, train: 0.100000, val 0.087000, lr 1.000000e+06

loss not going down:

learning rate too low loss exploding: learning rate too high cost: NaN almost always means high learning rate...

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 73 April 20, 2017

Lets try to train now...

Start with small regularization and find learning rate that makes the loss go down. Finished epoch 3 / 10: cost 1.942257, train: 0.376000, val 0.352000, lr 3.000000e-03 Finished epoch 4 / 10: cost 1.827868, train: 0.329000, val 0.310000, lr 3.000000e-03

Finished epoch 5 / 10: cost inf, train: 0.128000, val 0.128000, lr 3.000000e-03 Finished epoch 6 / 10: cost inf, train: 0.144000, val 0.147000, lr 3.000000e-03

3e-3 is still too high. Cost explodes....

loss not going down:

learning rate too low loss exploding: learning rate too high => Rough range for learning rate we should be cross-validating is somewhere [1e-3 ... 1e-5]

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 74 April 20, 2017

Hyperparameter Optimization

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 75 April 20, 2017

Cross-validation strategy

coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work **Second stage**: longer running time, finer search ... (repeat as necessary)

Tip for detecting explosions in the solver: If the cost is ever > 3 * original cost, break out early

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 76 April 20, 2017

For example: run coarse search for 5 epochs

<pre>max_count = 100 for count in xrange(max_count): reg = 10**uniform(-5, 5) lr = 10**uniform(-3, -6)</pre>	note it's best to optimize
<pre>trainer = ClassifierTrainer() model = init_two_layer_model(32*3 trainer = ClassifierTrainer() best_model_local, stats = trainer</pre>	32*3, 50, 10) # input size, hidden size, number of classes r.train(X_train, y_train, X_val, y_val, model, two_layer_net, num_epochs=5, reg=reg, update='momentum', learning_rate_decay=0.9, sample_batches = True, batch_size = 100, learning_rate=lr_verbose=False)

	val acc:	0.412000,	lr:	1.405206e-04,	reg:	4.793564e-01,	(1 /	100)
-	val acc:	0.214000,	lr:	7.231888e-06,	reg:	2.321281e-04,	(2 /	100)
	val acc:	0.208000,	lr:	2.119571e-06,	reg:	8.011857e+01,	(3 /	100)
	val acc:	0.196000,	lr:	1.551131e-05,	reg:	4.374936e-05,	(4 /	100)
	val acc:	0.079000,	lr:	1.753300e-05,	reg:	1.200424e+03,	(5 /	100)
_	val acc:	0.223000,	lr:	4.215128e-05,	reg:	4.196174e+01,	(6 /	100)
	val_acc:	0.441000,	lr:	1.750259e-04,	reg:	2.110807e-04,	(7 /	100)
	val acc:	0.241000,	lr:	6.749231e-05,	reg:	4.226413e+01,	(8 /	100)
	val_acc:	0.482000,	lr:	4.296863e-04,	reg:	6.642555e-01,	(9 /	100)
-	val acc:	0.079000,	lr:	5.401602e-06,	reg:	1.599828e+04,	(10 /	(100)
	val_acc:	0.154000,	lr:	1.618508e-06,	reg:	4.925252e-01,	(11 /	100)

Fei-Fei Li & Justin Johnson & Serena Yeung

nice

Lecture 6 - 77 April 20, 2017

Now run finer search...

<pre>max_count = 100 for count in xrange(max_count): reg = 10**uniform(-5, 5) lr = 10**uniform(-3, -6)</pre>	adjust range	<pre>max_count = 100 for count in xrange(max_count): reg = 10**uniform(-4, 0) lr = 10**uniform(-3, -4)</pre>
val_acc: 0.52700 val_acc: 0.49200 val_acc: 0.51200 val_acc: 0.46100 val_acc: 0.46000 val_acc: 0.46900 val_acc: 0.46900 val_acc: 0.52200 val_acc: 0.52200 val_acc: 0.53000 val_acc: 0.48900 val_acc: 0.48900 val_acc: 0.48900 val_acc: 0.49000 val_acc: 0.47500 val_acc: 0.51500 val_acc: 0.51500 val_acc: 0.51400 val_acc: 0.50900 val_acc: 0.50900 val_acc: 0.50900 val_acc: 0.50900 val_acc: 0.50900 val_acc: 0.50900 val_acc: 0.50900 val_acc: 0.50900	90, lr: 5.340517e-04, reg: 4.097824e-01, 90, lr: 2.279484e-04, reg: 9.991345e-04, 90, lr: 8.680827e-04, reg: 1.349727e-02, 90, lr: 1.028377e-04, reg: 1.220193e-02, 90, lr: 1.113730e-04, reg: 5.244309e-02, 90, lr: 9.477776e-04, reg: 2.001293e-03, 90, lr: 9.477776e-04, reg: 2.312685e-04, 90, lr: 5.586261e-04, reg: 2.312685e-04, 90, lr: 5.586261e-04, reg: 8.259964e-02, 90, lr: 1.979168e-04, reg: 1.010889e-04, 90, lr: 2.036031e-04, reg: 2.406271e-03, 90, lr: 2.021162e-04, reg: 3.905040e-02, 90, lr: 1.135527e-04, reg: 1.562808e-02, 90, lr: 6.947668e-04, reg: 1.433895e-03, 90, lr: 3.140888e-04, reg: 2.857518e-01, 90, lr: 3.921784e-04, reg: 2.707126e-04, 90, lr: 3.921784e-04, reg: 2.707126e-04, 90, lr: 2.412048e-04, reg: 1.189915e-02, 90, lr: 2.412048e-04, reg: 2.850865e-03, 90, lr: 1.319314e-04, reg: 1.189915e-02,	$\begin{array}{c} (0 \ / \ 100) \\ (1 \ / \ 100) \\ (2 \ / \ 100) \\ (3 \ / \ 100) \\ (4 \ / \ 100) \\ (5 \ / \ 100) \\ (6 \ / \ 100) \\ (6 \ / \ 100) \\ (7 \ / \ 100) \\ (8 \ / \ 100) \\ (10 \ / \ 100) \\ (11 \ / \ 100) \\ (12 \ / \ 100) \\ (13 \ / \ 100) \\ (13 \ / \ 100) \\ (15 \ / \ 100) \\ (15 \ / \ 100) \\ (16 \ / \ 100) \\ (16 \ / \ 100) \\ (17 \ / \ 100) \\ (18 \ / \ 100) \\ (18 \ / \ 100) \\ (19 \ / \ 100) \\ (18 \ / \ 100) \\ (19 \ / \ 100) \\ (20 \ / \ 100) \end{array}$

val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 78 April 20, 2017

Now run finer search...

<u>Fei-Fei Li & Justin Johnson & Serena Yeung</u>

Lecture 6 - 79

April 20, 2017

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

April 20, 2017

Grid Layout

Illustration of Bergstra et al., 2012 by Shayne Longpre, copyright CS231n 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 80

Hyperparameters to play with:

- network architecture
- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner music = loss function

This image by Paolo Guereta is licensed under <u>CC-BY 2.0</u>

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 81 April 20, 2017

Cross-validation "command center"

	Hand State S	Description of the second seco		Second and a secon					Sector 11 Sector 2015 Sector			A constraint of the second sec
erstatur 12 Territori 12 Ter	Herber 13 Herber 13 Herbert 14 Herbert	Nervice 16 Intel 1975 Intel	A service 13 market 13 market 13 market 14 market 1	Set Alexel 11 The analysis of the set where the set of the set of the set of the set o	The second secon	Hereiter 35. The second secon	American 23 The second	Hereberg 12 International International International International International International International International International International International International International International International International International	American TA Second Second Sec	Arryster 24 	Perform 23 Stranding Devices The American Strands The American	Performance of the second seco
 Bernard and State - State	The second secon	Construction of the second sec	The second secon	Provide a stand of the second	The second secon	The second secon		The second sector of the sector of th	Provide sector of the sector o	And the second s	The second secon	
Here T	Property in the second	December 1 the more line in the more lin the more line in the more line in the	Product 15 control 10 control 10 contro	Product 21 and approximate and a set of the set of th	Performance 27 Performance and the second s	Property 15 control of the second se	DOLL 1 Internet and the second secon	Perfect 25 and sense and the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sens	Inclusive Section 2010 Control and Section	Post y see the provide the set of the set o	POCK 75 POCK 75 POC	In the second se
Exercise control of the second	 Control and Call Devices an		Contraction of the second seco	The second secon		Provide a second	relation of the second	Construction of the two readers in the second secon	An and a second		Construction of the second sec	
Lan general rest den Density of the second	Les grant reteries Service of the service of the s	Las and the second seco	Les genant mittels (Cartes) - Les annuels - Service - Cartes - Service - Service - Service - Service - Service -	In the second se	An experience of the second se	In the second se	A set all set and the set of the	A second	Let of the second secon	An ender an ender the ender and the ende	An operation and the second se	Her postar menuti- series of the series of

Fei-Fei Li & Justin Johnson & Serena Yeung

(BEDGERE) (BEDGER

Lecture 6 - 82

April 20, 2017

Monitor and visualize the loss curve

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 83 April 20, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 84 April 20, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 85 April 20, 2017

Monitor and visualize the accuracy:

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 86 April 20, 2017

Track the ratio of weight updates / weight magnitudes:

```
# assume parameter vector W and its gradient vector dW
param_scale = np.linalg.norm(W.ravel())
update = -learning_rate*dW # simple SGD update
update_scale = np.linalg.norm(update.ravel())
W += update # the actual update
print update_scale / param_scale # want ~le-3
```

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay) want this to be somewhere around 0.001 or so

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 87 April 20, 2017

Summary

We looked in detail at:

- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier init)
- Batch Normalization (use)
- Babysitting the Learning process
- Hyperparameter Optimization (random sample hyperparams, in log space when appropriate)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 88 April 20, 2017

Next time:

Training Neural Networks, Part 2

- Parameter update schemes
- Learning rate schedules
- Gradient checking
- Regularization (Dropout etc.)
- Evaluation (Ensembles etc.)
- Transfer learning / fine-tuning

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 6 - 89 April 20, 2017