Lecture 7:

Training Neural Networks,
Part 2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 1 April 25, 2017



Administrative

- Assignment 1 is being graded, stay tuned
- Project proposals due today by 11:59pm
- Assignment 2 is out, due Thursday May 4 at 11:59pm

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 2 April 25, 2017



Administrative: Google Cloud
- STOP YOUR INSTANCES when not in use!

Google Cloud Platform & Assignment1 ~ Q

EE_E Compute Engine VM instances K} CREATE INSTANCE & IMPORT VM = B

B VMinstances

Filter by label or name Columns ~ @ Labels
¢4  Instance groups
= Name ~ Zone Recommendation Internal IP External IP Connect
El  Instance templates v () gpuinstance  us-westl-b 10.138.0.3 35.185.201.171 [7  SSH ~
B  Disks & instance-2 us-west1-b 10.138.0.2 104.196.245.79 [ SSH ~
Snapshots Start
Stop
=]  Images Reset
Delete

% Committed use discounts

New instance group
EE Metadata

View logs

3  Health checks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 3 April 25, 2017




Administrative: Google Cloud

- STOP YOUR INSTANCES when not in use!

- Keep track of your spending!

- GPU instances are much more expensive than CPU
iInstances - only use GPU instance when you need it
(e.g. for A2 only on TensorFlow / PyTorch notebooks)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 4 April 25, 2017



Last time: Activation Functions

S|gmo|d Leaky RelLU )
1 max(0.1x, x)
O'(.’L') T 14e 7
X 0 T - L] 10

tanh Maxout
tanh(x) max(wi x + by, ws T + by)
ReLU ELU
max (0, x) {”" ) v 20
. ale® —1) <0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7- 5 April 25, 2017



Last time: Activation Functions

Sigmoid

o(z) = 1+i—$ e
-
_J

tanh
tanh(x)

RelLU
max (0, x)

Good default choice

Fei-Fei Li & Justin Johnson & Serena Yeung

Leaky ReLU
max 0.1z, x)

Maxout

~Lo— 10

max(wi z + by, wi x + by)

ELU

{oz(ef” — 1)

x>0
r <0

Lecture 7 -

§)

April 25, 2017



Last time: Weight Initialization

Initialization too small:
Activations go to zero, gradients also zero,
No learning

Initialization too big:
Activations saturate (for tanh),
Gradients zero, no learning

Initialization just right:
Nice distribution of activations at all layers,
Learning proceeds nicely

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 7 April 25, 2017



Last time: Data Preprocessing

original data zero-centered data normalized data

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 8 April 25, 2017



Last time: Data Preprocessing

Before normalization: classification loss After normalization: less sensitive to small
very sensitive to changes in weight matrix; changes in weights; easier to optimize
hard to optimize
® A
\ A
o
® o\A A
A
® A

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 9 April 25, 2017



Last time: Batch Normalization

N
Input: : N x D 1
Hi =N Zfﬂw
1=1
Learnable params: N
Yoo i L 032- =N Z(R’?zy — )
1=1
,o: D 55— fg
Intermediates: 'u Ty = Lig — Hy
i N x D ’ 0_2 + e
J
Output: y : N x D Yii = ViZij + B;

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 10 April 25, 2017



Last time: Babysitting Learning

Train Loss Accuracy
A H
loss 17.5 0.9 - —o— f{rain
15.0 +— val
125 08 1

low learning rate
10.0

0.7 1
high learning rate 75
50

0.6 1
i 25

cumidresacin b - o000 “,.mu.“uoumumm«
epoch 0.0 05 { eeee®®
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 11 April 25, 2017



Last time: Hyperparameter Search

Grid Lavout

Fei-Fei Li & Justin Johnson & Serena Yeung

Important

Parameter

Unimportant
Parameter

Random Lavout

Important

Parameter

Unimportant
Parameter

Coarse to fine search

[ val acc: 8.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / 100) |
val_acc: B.214000, Lr: 7.231888e-86, req: 2.321281e-04, (2 / 100)
val_acc: ©.208000, lr: 2.119571e-86, reg: 8.011857e+01, (3 / 100)
val_acc: £.196000, lr: 1.551131e-85, reg: 4.374936e-05, (4 / 100)
val_acc: 0.07900@, 1r: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
val acc: 0.223000, lr: 4.215128e-85, reg: 4.196174e+81, (6 / 100)

0. Tr: 1.7502599 04, reg: 2‘1108079 ed4, (7 /
8. 6. e-0 - e+0 3
0. 4.296863e- 94 6,642555& 01 9
g a. : 5.4016002e-0b, reg: 1. 82Be+04,
val acc @.154@03 1r: 1.618508e- 06 reg: 4.925252e-01, [11 & 1@0]

val_acc:

.52790@

w

.3405175 04,

reg:

. 9975248 01,

) 4

va _El([: U.4 5 s g4e-ug reg 9.9 e-ud

val_acc: ©.512000, Lr: 8.580827¢- 04, reg: 1.349727e-02, (2 / 180)
val acc: ©.461000, Lr: 1.828377¢-04, reg: 1.220193e-02, (3 / 100)
val acc: ©.460000, Lr: 1.113730e-04, reg: 5.244309e¢-02, (4 / 100)
val_acc: 0.498808, Llr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
val acc: 0.4690060, Lr: 1.4843692-04, reg: 4.328313e-01, (6 / 100)
val _acc: ©.522000, Lr: 5.58626le 04, reg: 2.312685e-04, (7 / 160)
val acc: ©.530008, Lr: 5.808183¢-04, reg: 8.259964¢-02, (8 / 100
val acc: 0.489008, Lr: 1.979168e-04, reg: 1.010883e-04, (9 / 100)
val_acc: 0.490000, Lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
val_acc: 0.475008, Lr: 2.021162e-04, reg: 2.287867e-01, (11 / 106)
val_acc: ©.460000, Lr: 1.135527e-04, reg: 3.905040e-02, (12 / 106)
val acc: ©.515008, Lr: 6.947668c-04, reg: 1.562808e¢-02, (13 / 166)

[ val acc: ©.531008, Lr: 9.471549¢-04, reg: 1.433895e-03, (14 / 100) |

val acc: 0.509000, Lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val_acc: 0.514000, Lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100)
val_acc: ©.502000, Lr: 3.921784e-04, reg: 2.7067126e-04, (17 / 106)
val acc: ©.509008, Lr: 9.752279¢-04, reg: 2.850865¢-03, (18 / 106)
val acc: ©.500008, Lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val_acc: 0.466000, Lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val_acc: 0.516808, Lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)

Lecture 7 - 12

April 25,




Today

- Fancier optimization
- Regqularization
- Transfer Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -13 April 25, 2017



Optimization

# Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # perform parameter update

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 14 April 25, 2017



Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

—

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 15 April 25, 2017



Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 16 April 25, 2017



Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 17 April 25, 2017



Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 18 April 25, 2017



Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 19 April 25, 2017



Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

N

1
g=

N
1
VwL(W) = N > VwLi(zi,yi, W)

i=1

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 7 - 20

April 25, 2017



SGD + Momentum

SGD SGD+Momentum

Viy1 = pv + V f(x4)

Lit4+1 — Lt — AUt41

il = & — OlVf(CUt)

while True: v = 0
dx = compute_gradient(x) while True:
X += learning_rate * dx dx = compute_gradient(x)

vX = rho * vx + dx
X += learning_rate * vX

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 21 April 25, 2017



SGD + Momentum

Gradient Noise

Local Minima  Saddle points

e N\

Poor Conditioning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 22 April 25, 2017



SGD + Momentum

Momentum update:

Velocity

actual step

>

Gradient

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 23 April 25, 2017



Nesterov Momentum

Momentum update:

Velocity

actual step

Gradient

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deel learning”, ICML 2013

Fei-Fei Li & Justin Johnson & Serena Yeung

Velocity

Nesterov Momentum

Lecture 7 - 24

Gradient

actual step

April 25, 2017



Nesterov Momentum

Vi1 = pvy — aV f(xs + pug)

T4l = Tt + Vg4

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 25 April 25, 2017



Nesterov Momentum

—

Vi1 = pvy — aV f(rs + puy

Annoying, usually we want
update in terms of x;, V f(x¢)

Ti41 = Tt + Vet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 26 April 25, 2017



Nesterov Momentum

—

Vi1 = pvy — aV f(rs + puy

Annoying, usually we want
update in terms of x;, V f(x¢)

Ti41 = Tt + Vet

Change of variables T3 = Tt + pv¢ and

rearrange:

Ut41 = POt — avf(jt) dx = compute_gradient(x)

~ - old_ v = v

Li+1 = Lt — Pl + (1 i P)’Ut-|-1 vV = rho * v - learning_rate * dx
— + Vg1 ‘|‘P('Ut-|—1 — ’Ut) X += -rho * old_v + (1 + rho) * v

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 27 April 25, 2017



Nesterov Momentum

—— SGD+Momentum

wmmm==_ Nesterov

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 28 April 25, 2017



AdaGrad

grad_squared = 0

while True:

dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 29 April 25, 2017




AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

—

Q: What happens with AdaGrad?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 30 April 25, 2017



AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

—

Q2: What happens to the step size over long time?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 31 April 25, 2017



RMSProp

grad_squared = 0
while True:

AdaGrad dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

v

grad_squared = 0
while True:
RMSPrOp dx = compute gradient(x)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)

Tieleman and Hinton, 2012

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 32 April 25, 2017




RMSProp

—— SGD+Momentum

e RMSProp

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 33 April 25, 2017



Adam (almost)

first_moment = 0
second_moment = 0
while True:
dx = compute_gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 34 April 25, 2017




Adam (almost)

first_moment = 0
second_moment = 0
while True:

dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx Momentum
second_moment = betaZ * second_moment + (1 - betaZ) - dx * dX
X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7)) AdaGrad / RMSPI’Op

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 35 April 25, 2017




Adam (full form)

first_moment = 0

second_moment = 0

for t in range(num_iterations):
dx = compute gradient(x) Momentum
first_moment = betal * first _moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - betal ** t) . .
second_unbias = second moment / (1 - beta2 ** t) Bias correction

| x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1le-7))|
AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 36 April 25, 2017




Adam (full form)

first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
dx = compute gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx
| second_moment = beta2 * second_moment + (1 - beta2) * dx * dx |
[ first_unbias = ftirst_moment / (1 - betal * ty ] _ _
second_unbias = second_moment / (1 - beta2 ** t) Bias correction

| X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1le-7)) IAd Grad / RMSP
aGra rop

Bias correction for the fact that Adam with beta1l = 0.9,

first and second moment beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
estimates start at zero is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 37 April 25, 2017




Adam

SGD

SGD+Momentum

RMSProp

Adam

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 38 April 25, 2017



SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

low learning rate

| | Q: Which one of these
high learning rate

_— learning rates is best to use?

good learning rate

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 39 April 25, 2017



SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

low learning rate

high learning rate

good learning rate

Fei-Fei Li & Justin Johnson & Serena Yeung

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

a = O ekt

1/t decay:
a=aog/(1+ kt)

Lecture 7 -40

April 25, 2017



SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

A 4 Loss _

loss Learning rate decay!
N

low learning rate
high learning rate
good learning rate
=
epoch >

Epoch

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 41 April 25, 2017



SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

4 Loss _
loss Learning rate decay!

low learning rate

high learning rate

More critical with SGD+Momentum,
less common with Adam

good learning rate

Epoch

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -42 April 25, 2017



First-Order Optimization

Loss

w1

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -43 April 25, 2017



First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

S

Loss

w1

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -44 April 25, 2017



Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

Loss

w1

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 45 April 25, 2017



Second-Order Optimization

second-order Taylor expansion:

|

5 (0—6,) H(0— 6)

J(0)~ J(0p)+ (0 — &) " VoJ(6) +

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0,)

Q: What is nice about this update?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 46 April 25, 2017



Second-Order Optimization

second-order Taylor expansion:

|

5 (0—6,) H(0— 6)

J(0) = J(0y) + (0 — &) " VeJ(6p) +

Solving for the critical point we obtain the Newton parameter update:

0" =0, — H_IVGJ(BD) No hyperparameters!
No learning rate!

Q: What is nice about this update?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 47 April 25, 2017



Second-Order Optimization

second-order Taylor expansion:

|

5 (0—6,) H(0— 6)

J(0)~ J(0p)+ (0 — &) " VoJ(6) +

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N”*2) elements

. 1
0" =00—H VoJ(0o)| |nverting takes O(N"3)

N = (Tens or Hundreds of) Millions

Q2: Why is this bad for deep learning?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -48 April 25, 2017



Second-Order Optimization

0" =0, — H 'VoJ(0,)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n"3)), approximate
inverse Hessian with rank 1 updates over time (O(n"2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 49 April 25, 2017



Second-Order Optimization

0" =0, — H 'VoJ(0,)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n"3)), approximate
inverse Hessian with rank 1 updates over time (O(n"2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 50 April 25, 2017



L-BFGS

- Usually works very well in full batch, deterministic mode
l.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting L-BFGS to large-scale, stochastic
setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 51 April 25, 2017




In practice:

- Adam is a good default choice in most cases

- If you can afford to do full batch updates then try out
L-BFGS (and don't forget to disable all sources of noise)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 52 April 25, 2017



Beyond Training Error

Train Loss Accuracy

17.5 _— —e— train

15.0 *— val

125 038 1

10.0

07

15

e 0.6 1

25 -

00 05 ~¢m“0“¢ﬂ00ﬂﬂ0“* TS ——

0 2500 b000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 1500 15000 17500 20000

Better optimization algorithms But we really care about error on new
help reduce training loss data - how to reduce the gap?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 53 April 25, 2017



Model Ensembles

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 54 April 25, 2017



Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

s Single Model '
04 Standard LR Schedule /)

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 55 April 25, 2017




Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

05 Single Model ®%7 Snapshot Ensemble m 101 Cifar10 (£=100,k=24, B=300 epochs)
04 Standard LR Schedule /) 04 Cyclic LR Schedule =/} — Standard Ir scheduling
<] V _} & \ —— Cosine annealing with restart Ir 0.1
e Py 03 / 10° | | | | |
0.2 02 | | | | |
[2])
0.1 . 1 8 10t
04 M q /‘\ ‘I ?
= fa. ) \ Iz
0.1  at ST g 107
. s &
-03 & : : 10 | |
Bk A2 ,g 3 ; Model | Model | Model | Model | Model | Model
50 —== E 50 1 2 3 4 5 6
b 40 Ko iy 40 1 0—4 l I l I I
30 30 30 0 50 100 150 200 250 300
2 =0 Epochs
Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 CyCIIC Iearnlng rate SChedUIGS can
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017 make thlS Work even better!

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 56 April 25, 2017




Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

True:
data batch = dataset.sample data batch()
loss = network.forward(data batch)

dx = network.backward()
X += - learning rate * dx
X _test = 0.995*x test + 0.005%X

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 57 April 25, 2017




How to improve single-model performance?

Train Loss Accuracy
175 0. —e— train
15.0 +— val
125 08 1
10.0
0.7 4

15

50

0.6 1
25

Lﬂmm*
0.5 1

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000

see
0.0 .“.ngﬂoﬂﬂm"'““

Regularization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 58 April 25, 2017



Regularization: Add term to loss

L=+ Y, max(0, f(zi W); — f(zi; W)y, + 1) +AR(W)

In common use:

L2 regularization = B(W) =22 Wy; (Weight decay)
L1 regularization R(W) = 31 21 Wil

Elastic net (L1 + L2) R(W) =3, >, 8W2, + Wiyl

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 59 April 25, 2017




Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 60 April 25, 2017




) v Nt kean 100 a3 1UNii Srr1Ttive

p = 0.5 # probabilit)

Regularization: Dropout

def train_step(X):
""" X contains the data

exa

o.dot (W1, X) + bl)

H1 np.maximum(0,

Ul = np.random.rand(*Hl.shape) < p # first dropout mask

H1 *= Ul # drop!
H2 = np.maximum(®, np.dot(W2, H1l) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout mast

H2 *= U2 # drop!
out = np.dot(W3, H2) + b3

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 7 - 61

Example forward
pass with a
3-layer network
using dropout

April 25, 2017



Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a talil R

is furry —X—— . cat
" score

has claws +/
mischievous

look

[

T

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 62 April 25, 2017



Regularization: Dropout

How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 10%2 atoms in the universe...

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 63 April 25, 2017



Dropout: Test time

Output Input
(label) (image)
Rand
Dropout makes our output random!  [yl= fir(zllz) oo

Want to “average out” the randomness at test-time
y= @) = B.[f(@, )] = [ pe)f(, 2z

But this integral seems hard ...

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 64 April 25, 2017



Dropout: Test time

Want to approximate

the integral y= 1@ = E.[f(z,2)] = [ p(a)f (@, 2)dz

Consider a single neuron.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 65 April 25, 2017



Dropout: Test time

Want to approximate

the integral y= 1@ = E.[f(z,2)] = [ p(a)f (@, 2)dz

Consider a single neuron.

At test time we have: & [a] = W1x + W2y

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 66 April 25, 2017



Dropout: Test time

Want to approximate

the integral y= 1@ = E.[f(z,2)] = [ p(a)f (@, 2)dz

Consider a single neuron.

At test time we have: & [a] = W1x + W2y

: o : 1 1
During training we have: E[a] =1 (w1 + way) + J(wiz + 0y)
1 1

4 4
1

=§(w1:v + way)

(0x + 0y) + = (0x + woy)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 67 April 25, 2017



Dropout: Test time

Want to approximate

the integral y= 1@ = E.[f(z,2)] = [ p(a)f (@, 2)dz

Consider a single neuron.

At test time we have: & [a] = W1x + W2y

: o : 1 1
During training we have: E[a] =1 (w1 + way) + J(wiz + 0y)
1 1

+4 4

(0x + 0y) + = (0x + woy)

At test time, multiply

1
by dropout probability =§(w1:v + way)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 68 April 25, 2017



Dropout: Test time

def predict(X):

Hl = np.maximum(®, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(©, np.dot(W2, H1l) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 69 April 25, 2017



""" Vanilla Dropout: Not recommended implementation (see notes below) """

Dropout Summary

p=0.5# probability of keeping a unit active. higher = less dropout

def train step(X):
"X contains the data ""'

dE - i

Hl p.maximum(€@, np.dot(Wl, X} + bl)
Ul = np.random.rand(*Hl.shape) < p # first dropout mask
H1 *= Ul # drop! .
AZ = np.maximum(0, np.dot(WZ, HI] + bZ) drop N forward paSS
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

- T1a3uvar natiral natun ek
= Layer:} dl nNetwor

amp le

def predict(X):

Hl = np.maximum(®, np.dot(Wl, X) + bl}
H2 = np.maximum(0, np.dot(W2, H1) + b2
out = np.dot(W3, H2) + b3

scale at test time

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -70 April 25, 2017




More common: “Inverted dropout”

- B oo L T o S D o PR I
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
Hl1 *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, H1l) + b2)

u2 (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

o nace Far ovamnla = 17 -~ malira ] At el
ard pass tor example ?-Eoy?f neural network

# backward pass: compute gradients... (not shown)

S e
perrori

e T fro (Ll
n parameter upaate... (not shown)

test time is unchanged!
def predietin): = /

H1 = np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 np.maximum(©, np.dot(W2, H1) + b2)
out = np.dot(W3, H2) + b3

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 71 April 25, 2017




Regularization: A common pattern

Training: Add some kind
of randomness

Yy = fW('/EaZ)

Testing: Average out randomness
(sometimes approximate)

y = (@) = B, [f(z,2)] = / p(2)f (@, 2)dz

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -72 April 25, 2017



Regularization: A common pattern

Training: Add some kind Example: Batch
of randomness Normalization
= fw (% 2) Training:

Normalize using
stats from random

Testing: Average out randomness AN
minibatches

(sometimes approximate)

y = f(z) = E.[f(z,2)] = /P(Z)f(ﬂ?a 2)dz  Testing: Use fixed
stats to normalize

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -73 April 25, 2017




Regularization: Data Augmentation

Load image
and label

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -74 April 25, 2017


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Regularization: Data Augmentation

Load image
and label

Transform image

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 75 April 25, 2017



Data Augmentation
Horizontal Flips

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 76 April 25, 2017



Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 77 April 25, 2017




Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -78 April 25, 2017




Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 79 April 25, 2017



Data Augmentation  pore complex:

Color Jitter 1. Apply PCA to all [R, G, B]

Simple: Randomize pixels in training set
contrast and brightness

~ 2. Sample a “color offset”
| along principal component
directions

: 3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 80 April 25, 2017



Data Augmentation
Get creative for your problem!

Random mix/combinations of :

- translation

- rotation

- stretching

- shearing,

- lens distortions, ... (go crazy)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 81 April 25, 2017



Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 82 April 25, 2017



Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 83 April 25, 2017




Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -84 April 25, 2017




Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 85 April 25, 2017



Transfer Learning

“You need a lot of a data if you want to
trainfluse CNNs”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 86 April 25, 2017



Transfer Learning

“You need a lot of &If you want to
train E@ Ns”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 87 April 25, 2017



Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

T ra n Sfe r Lea rn | n g W|th C N N S Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops
2014

1. Train on Imagenet

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 88 April 25, 2017




Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

T ra n Sfe r Lea rn | n g W|th C N N S Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops

2014
1. Train on Imagenet 2. Small Dataset (C classes)
FC-1000 \
FC-4096 FC-4096 \ Reinitialize
FC-4096 FC-4096 . .
this and train
MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool > Freeze these
Conv-256 Conv-256
Conv-256 Conv-256
MaxPool MaxPool
Conv-128 Conv-128
Conv-128 Conv-128
MaxPool MaxPool
Conv-64 Conv-64
Conv-64 Conv-64 )

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 89 April 25, 2017




Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs e e o s S s

2014
1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset

N

\Reinitialize <— Train these

i and e
MaxPool MaxPool MaxPool
Conv-512 Conv-512 Conv-512 W|th b|gger
Conv-512 Conv-512 Conv-512 dataset train
MaxPool MaxPool MaxPool more Ia’yerS
Conv-512 Conv-512 Conv-512
Conv-512 Conv-512 Conv-512
MaxPool MaxPool > Freeze these MaxPool
Conv-256 Conv-256 Conv-256 > Freeze these
Conv-256 Conv-256 Conv-256
MaxPool MaxPool MaxPool
Conv-128 Conv-128 Conv-128 Lower learning rate
Conv-128 Conv-128 Conv-128 when finetuning;
MaxPool MaxPool MaxPool 1/10 of original LR
Conv-64 Conv-64 Conv-64 iS good Starting
Conv-64 Conv-64 ) Conv-64 j p Oi nt

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 90 April 25, 2017




FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

More specific

More generic

/

very similar very different
dataset dataset

very little data | ? ?

quite a lot of ? ?

data

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 7 - 91

April 25, 2017



FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

More specific

More generic

/

very similar very different
dataset dataset
very little data | Use Linear ?
Classifier on
top layer
quite a lot of Finetune a ?
data few layers

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 7 - 92

April 25, 2017



very similar very different
dataset dataset
Comvsi2
S— 3 very little data | Use Linear You're in
oo More specific Classifier on trouble... Try
— top layer linear classifier
o from different
T More generic stages
== -
Conv-128 quite a lot of Finetune a Finetune a
oo data few layers larger number
Conv-64 of layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 93 April 25, 2017



Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection
(Fast R-CNN) [cog oss +smooth L 1oss | Image Captioning: CNN + RNN

Proposal

wi = Bounding box
classifier | softmax regureslsogrs "Straw"

1

A o ; Rol pooling

External proposal —@ i ! v,
T

“hat” END

algorithm
e.g. selective search

ConvNet
(applied to entire

START “straw” “hat”

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015

Girshick, “Fast R-CNN”, ICCV 2015 > r )
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 94 April 25, 2017




Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection .
(Fast R-CNN) CNN pretrained | ..o Gaptioning: CNN + RNN

( + smooth L1 loss |

" on ImageNet
Bounding box
regressors

Proposal | Line
classifier | softmax

“straw” “hat” END

External proposal
algorithm
e.g. selective search

ConvNet
(applied to entire

START “straw” “hat”

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015

Girshick, “Fast R-CNN”, ICCV 2015 > r )
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 95 April 25, 2017




Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection .
(Fast R-CNN) — CNN pretrained e captioning: CNN + RNN
2 on ImageNet

Bounding box
near
regressors

Proposal | Linea
classifier | softmax

“straw” “hat” END

External proposal
algorithm
e.g. selective search

Ir i

ConvNet
(applied to entire

XX

START “straw” “hat”

Word vectors pretrained

Girshick, “Fast R-CNN”, ICCV 2015 W I t h Wo rd 2ve C Qenerating Image Descriptions”, CVPR 2015 .
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 96 April 25, 2017




Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images”?

1. Find a very large dataset that has
similar data, train a big ConvNet there
2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of
pretrained models so you don’t need to train your own

Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 97 April 25, 2017



https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/tensorflow/models
https://github.com/pytorch/vision

Summary

- Optimization

- Momentum, RMSProp, Adam, etc
- Regularization

- Dropout, etc
- Transfer learning

- Use this for your projects!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 98 April 25, 2017



Next time: Deep Learning Software!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 99 April 25, 2017



