Weak Supervision
Vincent Chen and Nish Khandwala
Outline

● Motivation
 ○ We want more labels!
 ○ We want to “program” our data! #Software2.0

● Weak Supervision Formulation

● Landscape of Noisy Labeling Schemes

● Snorkel Paradigm

● Demos
 ○ Writing labeling functions (LFs) over images
 ○ Cross modal
Problem 1: We need massive sets of training data!

- High cost + inflexibility of hand-labeled sets!
 - Medical Imaging: How much would it cost for a cardiologist to label thousands of MRIs?
Problem 1: We need **massive** sets of training data!

How to get more labeled training data?

- **Traditional Supervision**: Have subject matter experts (SMEs) hand-label more training data
 - Too expensive!

- **Semi-supervised Learning**: Use structural assumptions to automatically leverage unlabeled data

- **Weak Supervision**: Get lower-quality labels more efficiently and/or at a higher abstraction level

- **Transfer Learning**: Use models already trained on a different task

 - Get lower-level supervision over unlabeled data from SMEs
 - Use one or more (noisy / biased) pre-trained models to provide supervision

 - Heuristics
 - Distant supervision
 - Constraints
 - Expected distributions
 - Invariances

Image: https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/
Problem 2: We want to *program* our data with domain expertise!

- Software 2.0: biggest challenge is **shaping your training data**!
- Weak supervision as an approach to **inject domain expertise**

Figure: Varma et. al 2017 https://arxiv.org/abs/1709.02477
Problem 2: We want to *program* our data with domain expertise!

Programming by curating noisy signals!

Image: https://hazyresearch.github.io/snorkel/blog/snorkel_programming_training_data.html
Weak Supervision Formulation

However, instead of having ground-truth labeled training set, we have:

- Unlabeled data, $X_u = x_1, ..., x_N$
- One or more weak supervision sources of the form $p'_i(y | x)$, $i = 1 : M$, provided by a human domain expert such that each one has:
 - A coverage set, C_i, the set of points x over which source is defined
 - An accuracy, defined as the expected probability of the true label, y^* over its coverage set, which we assume is < 1.0

- Learn a **generative model** over coverage and accuracy

Weak Supervision Formulation

Example Weak Supervision Sources

Technical Challenge: Integrating & Modeling Diverse Sources

Use Weak Supervision to Train End Model

Data Programming

- Recent method proposed by Alex Ratner from Prof. Chris Re’s group
- Composed of three broad steps:
 - Rather than hand-labeling training data, write multiple labeling functions (LFs) on X using patterns and knowledge bases
 - Obtain noisy probabilistic labels, Ŷ --- how?
 - Train an end model on X, Ŷ using your favorite machine learning model
Data Programming

Unlabeled Data, X (N points)

Labeling functions (M functions)

Label Matrix L (N x M)

\tilde{Y}
Data Programming

Unlabeled Data, X (N points)

Labeling functions (M functions)

Label Matrix L (N x M)

Y
Data Programming

How do we obtain probabilistic labels, $\mathbf{\tilde{Y}}$, from the label matrix, \mathbf{L}?

Approach 1 - Majority Vote

Take the majority vote of the labelling functions (LFs).

Let’s say $\mathbf{L} = [[0, 1, 0, 1, 0]; [1, 1, 1, 1, 0]]$.

$\mathbf{\tilde{Y}} = [0, 1]$

But this approach makes several strong assumptions about the LFs...
How do we obtain probabilistic labels, \tilde{Y}, from the label matrix, L?

Approach 2

We train a generative model over $P(L, Y)$ where Y are the (unknown) true labels. Recall from CS109 that $P(L, Y) = P(L | Y)P(Y) \rightarrow$ we don’t need to know the true labels, Y!

\tilde{Y} can be obtained by taking a weighted sum of LFs’ outputs, where the weights for the LFs are obtained from the generative model training step.

Intuition?
Data Programming

Putting it all together...

Generative Model

\[\text{P(y}_1|\text{L}_1) \]

Discriminative Model

Observed
Unobserved
Weakly Supervised

Source: A. Ratner et. al https://hazyresearch.github.io/snorkel/blog/weak_supervision.html
Data Programming

Putting it all together...

Source: A. Ratner et. al, Snorkel: Rapid Training Data Creation with Weak Supervision
Data Programming

Framework available on GitHub: https://github.com/HazyResearch/snorkel
Demo: Writing LFs over Images

Let’s write LFs for this image?

Task: Build a chest x-ray normal-abnormal classifier

Source: Open-I NLM NIH Dataset
How about now?

Task: Build a chest x-ray classifier

Indication: Chest pain. Findings: Mediastinal contours are within normal limits. Heart size is within normal limits. No focal consolidation, pneumothorax or pleural effusion. Impression: No acute cardiopulmonary abnormality.

Can you use the accompanying medical report (text modality) to label the x-ray (image modality)?

This setting is what we call “cross-modal”!
Cross-Modal Weak Supervision

Indication: Chest pain. Findings: Mediastinal contours are within normal limits. Heart size is within normal limits. No focal consolidation, pneumothorax or pleural effusion. Impression: No acute cardiopulmonary abnormality.
Cross-Modal Weak Supervision

Indication: Chest pain. Findings: Mediastinal contours are within normal limits. Heart size is within normal limits. No focal consolidation, pneumothorax or pleural effusion. Impression: No acute cardiopulmonary abnormality.

How do we obtain Y?
Cross-Modal Weak Supervision

Indication: Chest pain. Findings: Mediastinal contours are within normal limits. Heart size is within normal limits. No focal consolidation, pneumothorax or pleural effusion. Impression: No acute cardiopulmonary abnormality.

Source: Khandwala et. al 2017, Cross Modal Data Programming for Medical Images

```python
def LF_pneumothorax(c):
    if re.search(r'pneumo.*', c.report.text):
        return "ABNORMAL"

def LF_pleural_effusion(c):
    if "pleural effusion" in c.report.text:
        return "ABNORMAL"

def LF_normal_report(c, thresh=2):
    if len(NORMAL_TERMS.intersection(c.report.words)) > thresh:
        return "NORMAL"
```
Cross-Modal Weak Supervision - Approach 1

Indication: Chest pain. Findings: Mediastinal contours are within normal limits. Heart size is within normal limits. No focal consolidation, pneumothorax or pleural effusion. Impression: No acute cardiopulmonary abnormality.
Cross-Modal Weak Supervision

The first two LFs check for abnormal disease terms (in red), and the third LF checks for normal terms (in green). Here, Majority Vote (MV) outputs an incorrect abnormal label, but the Generative Model (GM) learns to re-weight the LFs such that the report is correctly labeled as normal.
Indication: Chest pain. Findings: Mediastinal contours are within normal limits. Heart size is within normal limits. No focal consolidation, pneumothorax or pleural effusion. Impression: No acute cardiopulmonary abnormality.
Cross-Modal Weak Supervision - Approach 3

Indication: Chest pain. Findings: Mediastinal contours are within normal limits. Heart size is within normal limits. No focal consolidation, pneumothorax or pleural effusion. Impression: No acute cardiopulmonary abnormality.

Labeling Functions

def lf1(x): ...
def lf2(x): ...
def lf3(x): ...

Generative Model

λ1
λ2
λ3
Y

LSTM

Y

CNN
How good are the labels?

<table>
<thead>
<tr>
<th>Approach 1 (MV)</th>
<th>Approach 2 (GM)</th>
<th>Approach 3 (DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.90</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Test set AUC ROC scores (Open-I Chest X-ray Dataset)

Source: Khandwala et. al 2017, Cross Modal Data Programming for Medical Images
How good is the image classifier?

<table>
<thead>
<tr>
<th>Approach 1 (MV)</th>
<th>Approach 2 (GM)</th>
<th>Approach 3 (DM)</th>
<th>Fully Supervised (HL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67</td>
<td>0.72</td>
<td>0.73</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Test set AUC ROC scores (Open-I Chest X-ray Dataset)

Source: Khandwala et. al 2017, Cross Modal Data Programming for Medical Images
Cross Modal Weak Supervision - Summary

1. Users write **Labeling Functions (LFs)**, $\lambda_1, \ldots, \lambda_m$, over reports accompanying medical images.

2. We learn weak labels by training a generative model over the LFs following the **Data Programming** approach.

3. We train an **image discriminative model** using the weak labels.

Source: Khandwala et. al 2017, Cross Modal Data Programming for Medical Images