Lecture 7:

Training Neural Networks,
Part 2
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Administrative

- Assignment 1 is being graded, stay tuned

- Project proposals due tomorrow by 11:59pm on
Gradescope

- Assighment 2 is out, due Wednesday 5/2 11:59pm
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Last time: Activation Functions
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Last time: Activation Functions

tanh Maxout

tanh(x) J

ELU

{Oz(e‘” —1)
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max (0, x)

Good default choice
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Last time: Weight Initialization

Initialization too small:
Activations go to zero, gradients also zero,
No learning

10000

Initialization too big:
Activations saturate (for tanh),
Gradients zero, no learning

Initialization just right:
Nice distribution of activations at all layers,
Learning proceeds nicely
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Last time: Data Preprocessing

original data zero-centered data normalized data

10 10 10
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Last time: Data Preprocessing

Before normalization: classification loss After normalization: less sensitive to small
very sensitive to changes in weight matrix; changes in weights; easier to optimize
hard to optimize
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Last time: Babysitting Learning

Train Loss Accuracy
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Last time: Hyperparameter Search

Coarse to fine search

.
[val acc: ©.412000, Llr: 1.405206e-04, reg: 4.793564e-01, (1 / 100) |
Grld Lavout Random Lavout val_acc: 0.214000, lr: 7.231888e-06, reg: 2.321281e-04, (2 / 100)
val_acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)
val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)
—~ val_acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
— val acc: 0.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)
: . . : " " [valacc: e.441000, Lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100)
. - . val acc: 0.241000, (r: 6.7 €-05, req: 4. €+01,
. ‘ . val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100)
. val acc: 0. , r: 5.401602e-06, reg: 1.599828e+04, 0 00
.......... “‘ = +~ val_acc: ©.154000, lr: 1.618508e-86, reg: 4.925252e-61, (11 / 106)
. g S . .I q S
< O : S O
£ e o : 95
O g . O qé val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
............................................................... val_acc: U.492000, Ur: 2.27948 , T 9.991335¢-04,
. ' . e < = < val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
: E — . e [ val_acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
. o= < . . h o < val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)
. q Q_‘ . . . : q Q_< val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
......... ® @ @ D ) val acc: ©.469000, lr: 1.484369e-04, req: 4.328313e-01, (6 / 100)
. @ : : val_acc: ©.522000, Lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100)
: : : : val_acc: ©.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100
: val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
. . val_acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
. val acc: 0.475000, lr: 2.021162e-64, reg: 2.287807e-61, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-62, (12 / 100)
I I val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
| val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100) |
mportant mportant val _acc: 0.509000, Ur: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val _acc: 0.514000, lr: 6.438349e-04, reg: 3.03378le-01, (16 / 100)
Parameter Parameter val_acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100)
val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-62, (20 / 100)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-62, (21 / 100)
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Today

- More normalization
- Fancier optimization
- Regqularization

- Transfer Learning
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Last time: Batch Normalization

Input: 2 : N x D 1l
i =N Zl’m
1=1
Learnable params: N
Tl § L 05§ = ~ > wi5—pg)°
1=1
LoD 35— L
Intermediates: ' By ;= ol B
i N x D 2 0_2 N
\/ J
Output: vy : N x D Yii = Vi%i s + B
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Estimate mean and

LaSt tlme BatCh Normallzatlon variance from minibatch;

Can’t do this at test-time

Input: »: N x D

Learnable params:

V8D
,o: D
Intermediates: “ s ) B s
€L . X O'J2 +e
Output: vy : N x D Yii = Vi%i s + B
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Batch Normalization: Test Time

|nPUt: x: N xD __ (Running) average of values

Hji = seen during training

Learnable params:

v, B - D 0-2_ — (Running) average of values
J seen during training
. o : D Ti s — s
Intermediates: '’ B = bl — M
z:N x D 2

\/0]2.—%5

Output: vy : N x D Yii = Vi%i s + B
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Batch Normalization for ConvNets

Batch Normalization for

Batch Normalization for convolutional networks

fully-connected networks (Spatial Batchnorm, BatchNorm2D)
Xx: N x D X: NxCxHxW
Normalize | Normalize | 4
M,0: 1 x D MH,0: 1xCx1lxl
Y,B: 1 x D Y,BP: 1xCx1xl
y = Y(x-M) /o+p y = Y(x-H)/0o+p
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Layer Normalization

Batch Normalization for
fully-connected networks

Layer Normalization for
fully-connected networks

Same behavior at train and test!
Can be used in recurrent networks

Xx: N x D x: N x D
Normalize * Normalize *
M,0: 1 x D M,0: N x 1
Y,B: 1 x D Y,B: 1 x D

y = Y(x-M) /o+p y = Y(x-M) /o+p

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016
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Instance Normalization

convolutional networks convolutional networks
Same behavior at train / test!
X: NxXCxHxW X: NxXCxHxW
Normalize * * * Normalize * *
H,0: 1xCx1xl H,0: NxCx1x1l
Y,P: 1IxCx1lx1l Y,B: 1xCx1lx1l

y = Y(x-M) /o+p y = Y(x-M) /o+p

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 16 April 24, 2018



Comparison of Normalization Layers

Batch Norm Layer Norm Instance Norm
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Wu and He, “Group Normalization”, arXiv 2018
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Group Normalization

Batch Norm Layer Norm Instance Norm Group Norm
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Wu and He, “Group Normalization”, arXiv 2018 (Appeared 3/22/2018)
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Decorrelated Batch Normalization

Batch Normalization Decorrelated Batch Normalization

original data zero-centered data normalized data original data decorrelated data . whitened data

g % = 5 ) = B 1 -10 -10
i = B iy 20 = B 1

1
- _ Z4q5 — K5 BatchNorm normalizes the A —35 ( o )
Y = 2 data, but cannot correct for Lj — 2 X v
5 T correlations among the DBN whitens the data using the full covariance
input features matrix of the minibatch; this corrects for correlations

Huang et al, “Decorrelated Batch Normalization”, arXiv 2018 (Appeared 4/23/2018)
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Optimization

# Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # perform parameter update
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Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

—

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large
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Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large
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Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?
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Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck
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Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 25 April 24, 2018



Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

| X
L(W) = NZLi(xiath)

=1

N
1
VwL(W) = + > VwLi(i,yi, W)

=1

Fei-Fei Li & Justin Johnson & Serena Yeung
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SGD + Momentum

SGD SGD+Momentum

Vir1 = pvr + V f(z4)

Tt+1 = Tt — QU441

Ti4+1 — Tt — OéVf(CE‘t)

vX = 0
while True:

while True:
dx = compute_gradient(x)

X —= learning_rate * dx dx = compute_gradient(x)
vX = rho * vx + dx
x —= learning_rate * vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum

SGD+Momentum SGD+Momentum
Vt4+1 = PVt — OéVf(.’Bt) Vt4+1 — PUt -+ Vf(ﬂft)
Ti4+1 = Tt + Vg4l T+l = Tt — QU1
vx = 0 vx = 0
while True: while True:
dx = compute_gradient(x) dx = compute_gradient(x)
vx = rho x vx — learning_rate x dx vX = rho * vx + dx
X += VX x —= learning_rate * vx

You may see SGD+Momentum formulated different ways,
but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum Gradient Noise

Local Minima  Saddle points

e N\

Poor Conditioning
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SGD+Momentum

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Fei-Fei Li & Justin Johnson & Serena Yeung
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Nesterov Momentum

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Fei-Fei Li & Justin Johnson & Serena Yeung

Nesterov Momentum

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Vi1 = pvg — oV f(xy + pvy)

Ti+1 = Tt + Vg1

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Annoying, usually we want
update in terms of ¢, V f(x¢)

S —

Vi1 = pvy — aV fxy + puy

Tt+1 = Tt + Vg41

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Annoying, usually we want
update in terms of ¢, V f(x¢)

S —

Vi1 = pvy — aV fxy + puy

Ti+1 = Tt + Vg1

Gradient

Velocity

Change of variables T; = Ty + pv; and

rearrange: actual step

Vt+1 =— POt — OéVf(i?t)

Lt+1 = Tt — PU¢ + (1 T p)vt-l-l “Look ahead” to the point where updating using
o~ velocity would take us; compute gradient there and
— Xt a3 Ut+1 T P(Ut+1 _ Ut) mix it with velocity to get actual update direction
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Nesterov Momentum

Annoying, usually we want
update in terms of ¢, V f(x¢)

S —

Vi1 = pvy — aV fxy + puy

Ti+1 = Tt + Vg1

Change of variables T; = Ty + pv; and

rearrange:

VUt4+1 = PUt — OéVf(CEt) dx = compute_gradient(x)

~ ~ old v = v

Tt+1 = Tt — PVt T (1 + P)Ut—l—l v = rho x v — learning_rate * dx
— Ty + Vi1 ‘|‘P(Ut—|—1 - Ut) X += —-rho x old_v + (1 + rho) * v
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Nesterov Momentum

—— SGD+Momentum

wmmm==_ Nesterov
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AdaGrad

grad_squared = 0

while True:

dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

—

Q: What happens with AdaGrad?
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

—

Q: What happens with AdaGrad? Progress along “steep” directions is damped;

progress along “flat” directions is accelerated
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

—

Q2: What happens to the step size over long time?
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

—

Q2: What happens to the step size over long time?  Decays to zero
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RMSProp

grad_squared = 0
while True:

AdaG rad dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

v

grad_squared = 0
while True:
RMSPrOp dx = compute_gradient(x)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Tieleman and Hinton, 2012
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RMSProp

—— SGD+Momentum

e RMSProp
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Adam (almost)

first_moment = 0
second_moment = 0
while True:
dx = compute_gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (almost)

first_moment = 0
second_moment = 0
while True:

dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx Momentum
second_moment = betaZ * second_moment + (1 - betaz) » dx * dX
x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7)) AdaGrad / RMSPI’Op

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

| second_moment = beta2 * second_moment + (1 - beta2) * dx * dx |

first_unbias = first_moment / (1 - betal ** t) . .
second_unbias = second_moment / (1 - beta2 ** t) Bias correction

| x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + le-7)) |
AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

| second_moment = beta2 * second_moment + (1 - beta2) * dx * dx |

first_unbias = first_moment / (1 - betal ** t)

second_unbias = second_moment / (1 - beta2 ** t) Bias correction
| x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + le-7)) | AdaGrad / RMSP
ara rop
Bias correction for the fact that Adam with beta1l = 0.9,
first and second moment beta2 = 0.999, and learning_rate = 1e-3 or 5e-4

estimates start at zero is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam

SGD

SGD+Momentum

RMSProp

Adam
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

low learning rate

| _ Q: Which one of these
high learning rate

\\_ learning rates is best to use?

good learning rate
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

low learning rate

high learning rate

good learning rate

Fei-Fei Li & Justin Johnson & Serena Yeung

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

a = ekt

1/t decay:
a=ap/(1+ kt)

Lecture 7 - 50
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

4 4 Loss _
loss Learning rate decay!

low learning rate

high learning rate

good learning rate

Epoch
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

4 4 Loss _
loss Learning rate decay!

low learning rate

high learning rate

More critical with SGD+Momentum,
less common with Adam

good learning rate

Epoch
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First-Order Optimization

Loss

w1
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First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

S

Loss

w1
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Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

Loss

w1
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Second-Order Optimization

second-order Taylor expansion:

J(8) ~ J(80) + (6 — &) T VoJ (60) + 5 (60 — ) TH(6 — 6)

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0p)

Q: What is nice about this update?
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Second-Order Optimization

second-order Taylor expansion:

J(8) ~ J(80) + (6 — &) T VoJ (60) + 5 (60 — ) TH(6 — 6)

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0p)

No hyperparameters!
No learning rate!
(Though you might use one in practice)

Q: What is nice about this update?
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Second-Order Optimization

second-order Taylor expansion:

J(8) ~ J(80) + (6 — &) T VoJ (60) + 5 (60 — ) TH(6 — 6)

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0p)

Q2: Why is this bad for deep learning?
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Second-Order Optimization

second-order Taylor expansion:

J(8) ~ J(80) + (6 — &) T VoJ (60) + 5 (60 — ) TH(6 — 6)

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N”*2) elements

% 1|
0" =00—H VgJ(00)| |nverting takes O(NA3)

N = (Tens or Hundreds of) Millions

Q2: Why is this bad for deep learning?
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Second-Order Optimization

0" =0, — H 'VoJ(0p)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n"3)), approximate
inverse Hessian with rank 1 updates over time (O(n"2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 60 April 24, 2018



L-BFGS

- Usually works very well in full batch, deterministic mode
l.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting second-order methods to large-scale,
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017
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In practice:

- Adam is a good default choice in many cases
- SGD+Momentum with learning rate decay often
outperforms Adam by a bit, but requires more tuning

- If you can afford to do full batch updates then try out
L-BFGS (and don't forget to disable all sources of noise)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 62 April 24, 2018




Beyond Training Error

Train Loss Accuracy
175 - —e— train
15.0 ° val
125 0.8 1
10.0
0.7 1
75
5.0 06
25
PERL S LS Ta 2 o
0.0 05 ..mno»ou.n"’““" -
6 25'00 SObO 7SIOO 100'00 125:00 15600 175'00 20(300 0 25'00 50'00 75'00 100'00 125'00 150'00 175‘00 20000
Better optimization algorithms But we really care about error on new
help reduce training loss data - how to reduce the gap?
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Early Stopping

Train

Loss Accuracy

Stop training here

Iteration Iteration

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot that worked best on val
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Model Ensembles

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance
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Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

05 Single Model N&
04. Standard LR Schedule ,”“

/A

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

0s Single Model N& %7 Snapshot Ensemble - m jor —Cifart0 (L=100.k=24, B=300 epochs)
04 Standard LR Schedule [V \ 04 Cyclic LR Schedule : /] —— Standard Ir scheduling
g A < —— Cosine annealing with restart Ir 0.1
03 4\ g / 10 I I I I I
02 0.2 | | | | |
12}
0.1+ 0.1 § 10!
o
-0.1 -0.1 'z 102
—
=
-0.2 -0.2
-0.3 -0.3 1073 |
-0.4 0.4 === Model | Model | Model | Model | Model | Model
50 — — 50 50 = &gzt 50 1 2 3 4 5 6
40 = 40 40 e 40 104 1 | 1 1 l
30 30 30 30 0 50 100 150 200 250 300
20 20 20 20
Epochs
Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 CyCIIC Iearnlng rate SChedUIGS can
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017 make thIS Work even better|

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

True:
data batch = dataset.sample data batch()
loss = network.forward(data batch)

dx = network.backward()
X += - learning rate * dx
X test = 0.995*x test + 0.005*x

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.
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How to improve single-model performance?

Train Loss Accuracy
17.5 0.9 - —e— ftrain
15.0 +— val
125 0.8 1
10.0
0.7 1

15

5.0

0.6 1
25

00000000000““'““'"
0.0 o%ee

anm«
05 1

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000

Regularization
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Regularization: Add term to loss

L= % sz\; 2z, 0ax(0, f(zi; W) — f(zi; W)y, +1) + AR(W)

In common use:

L2 regularization  EB(W) =23, Wy, (Weight decay)
L1 regularization RW) =221 221 Wil

Elastic net (L1 + L2) R(W) =Y, 3, BW2, + [Wiyl
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Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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pass with a
obability of keeping a unit active. higher = less dropout 3 ayer network
using dropout

Regularization: Dropout Example forward
p=0.5# prol TR A

def train_step(X):
""" X contains the data

warad nace for exvamnle 3 swver neliral network
Walrd pasSs or examp { eurat networek

H1 np.maximum(©, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p # first dropout mask

H1 *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, H1) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

n o
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Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a talil R

is furry —X—— . cat
" score

has claws +/
mischievous

look

[

T
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Regularization: Dropout

How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 10%2 atoms in the universe...
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Dropout: Test time

Output Input
(label) (image)
Rand
Dropout makes our output random!  [yl= fur(zllz) oo

Want to “average out” the randomness at test-time
y=1@) = E.[f(,2)] = [ p(2)f (@, 2)dz

But this integral seems hard ...
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Dropout: Test time

Want to approximate
the integral
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: & [a] = W1T + WY
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Dropout: Test time

bemtogral VI = Bl ] = [ st

Consider a single neuron.

At test time we have: & [a] = W1T + WY

During training we have: p[,] :%(wlx i gl 4 i(wlx +0y)

1
4
1

:§(w1x + way)

1
(0z 4 Oy) + T (0z 4 way)
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: E [a] = w1z + w2y
During training we have: g, :%(wl"’ g i(w”" + 0y)
1

"1

(0z 4 Oy) + l(Ox + way)
At test time, multiply 4

1
by dropout probability =§(w1x + way)
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Dropout: Test time

def predict(X):

H1 = np.maximum(®, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(@, np.dot(W2, H1l) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time
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""" Vanilla Dropout: Not recommended implementation (see notes below) """

p = 0.5 # probability of keeping a unit active. higher = less dropout DrOpOUt Summary

def train_step(X):
""" X contains the data """

H1 = np.maximum(, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p # 7irst dropout mask

Hl1 *= Ul # drop! ]
AZ = np.maximum(D, np.dot (w2, HAI) + b2) drop N forward paSS
U2 = np.random.rand(*H2.shape) < p # second dropout mask

H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

def predict(X):

H1 ='hp:m$§1mﬁh}6,‘nﬁrdbt(W1, X) + bl) a I
H2 = np.maximum(©, np.dot(W2, H1l) + b2 sca SS(inIEB Eat tees;t ter](a

out = np.dot(W3, H2) + b3
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More common: “Inverted dropout”

E mrabshaloa i P T i a2 nit artive p g = o
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
# forward pass for example 3-layer neural network
H1 = np.maximum(®, np.dot(Wl, X) + bl)
Ul (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
H1 *= Ul # drop!
H2 = np.maximum(©, np.dot(W2, H1l) + b2)
U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!
out = np.dot(W3, H2) + b3

# backward pass: compute graaients... (not shown)

# perform parameter update... (not shown)

test time is unchanged!
def predisf(%)i - "—————____,,———””””—’—

H1 np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, H1l) + b2)
out = np.dot(W3, H2) + b3
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Regularization: A common pattern

Training: Add some kind
of randomness

Yy = fW(xaz)

Testing: Average out randomness
(sometimes approximate)

y = f(@) = E. [f(z, )] = / p(2) (2, 2)dz

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 83 April 24, 2018



Regularization: A common pattern

Training: Add some kind Example: Batch
of randomness Normalization
Y = fwr (@, 2) Training:

Normalize using
stats from random

Testing: Average out randomness AN
minibatches

(sometimes approximate)

y = f(z) = E.[f(z,2)] = /P(Z)f(mvz)dz Testing: Use fixed
stats to normalize
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Regularization: Data Augmentation

Load image
and label
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Regularization: Data Augmentation

Load image
and label

Transform image

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 86 April 24, 2018



Data Augmentation
Horizontal Flips
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness
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Data Augmentation  pore complex:

Color Jitter 1. Apply PCA to all [R, G, B]

Simple: Randomize pixels in training set
contrast and brightness

~ 2. Sample a “color offset”
| along principal component
directions

3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)
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Data Augmentation
Get creative for your problem!

Random mix/combinations of :

- translation

- rotation

- stretching

- shearing,

- lens distortions, ... (go crazy)
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016
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Transfer Learning

“You need a lot of a data if you want to
trainfluse CNNs”
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Transfer Learning

“You need a lot of &If you want to
train E@ Ns”
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Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

T ra n Sfe r Lea rn | n g W|th C N N S Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops
2014

1. Train on Imagenet

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64
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Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

T ra n Sfe r Lea rn | n g W|th C N N S Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops

2014
1. Train on Imagenet 2. Small Dataset (C classes)
FC-1000 \
FC-4096 FC-4096 \ Reinitialize
FC-4096 FC-4096 . .
this and train
MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool > Freeze these
Conv-256 Conv-256
Conv-256 Conv-256
MaxPool MaxPool
Conv-128 Conv-128
Conv-128 Conv-128
MaxPool MaxPool
Conv-64 Conv-64
Conv-64 Conv-64 )
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Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs e e o s S s

2014
1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset

N

\Reinitialize <— Train these

i and e
MaxPool MaxPool MaxPool
Conv-512 Conv-512 Conv-512 W|th b|gger
Conv-512 Conv-512 Conv-512 dataset train
MaxPool MaxPool MaxPool more Ia’yerS
Conv-512 Conv-512 Conv-512
Conv-512 Conv-512 Conv-512
MaxPool MaxPool > Freeze these MaxPool
Conv-256 Conv-256 Conv-256 > Freeze these
Conv-256 Conv-256 Conv-256
MaxPool MaxPool MaxPool
Conv-128 Conv-128 Conv-128 Lower learning rate
Conv-128 Conv-128 Conv-128 when finetuning;
MaxPool MaxPool MaxPool 1/10 of original LR
Conv-64 Conv-64 Conv-64 iS good Starting
Conv-64 Conv-64 ) Conv-64 j p Oi nt
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FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

More specific

More generic

/

very similar very different
dataset dataset

very little data | ? ?

quite a lot of ? ?

data

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 7 -

April 24, 2018



very similar very different
dataset dataset
|_Fc-4096 |

MaxPool

Conv-512

S— 3 very little data | Use Linear ?

Conv-512 More specific Classifier on

Conv-512 top |ayer

MaxPool

Conv-256

Conv-256 More generic

MaxPool

Conv-128

Conv-128 quite a lot of Finetune a ?

MaxPool

— data few layers

Conv-64
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very similar very different
dataset dataset
Comvsi2
S— 3 very little data | Use Linear You're in
oo More specific Classifier on trouble... Try
— top layer linear classifier
o from different
T More generic stages
== -
Conv-128 quite a lot of Finetune a Finetune a
oo data few layers larger number
Conv-64 of layers
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Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection
(Fast R-CNN) [cog oss +smooth L 1oss | Image Captioning: CNN + RNN

Proposal

~ = Bounding box “ ”
classifier | softmax regressors 2 straw

1

A o ; Rol pooling

External proposal —@ i ! v,
T

“hat” END

algorithm
e.g. selective search

ConvNet
(applied to entire

START “straw” “hat”

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015

Girshick, “Fast R-CNN”, ICCV 2015 > r )
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.
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Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection .
(Fast R-CNN) CNN pretrained | ..o Gaptioning: CNN + RNN

( + smooth L1 loss |

" on ImageNet
Bounding box
regressors

Proposal | Line
classifier | softmax

“straw” “hat” END

External proposal
algorithm
e.g. selective search

ConvNet
(applied to entire

START “straw” “hat”

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015

Girshick, “Fast R-CNN”, ICCV 2015 > r )
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.
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Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection .
(Fast R-CNN) — CNN pretrained e captioning: CNN + RNN
j on ImageNet

Bounding box
nea
regressors

Proposal | Line
classifier | softmax

“straw” “hat” END

External proposal
algorithm
e.g. selective search

ConvNet
(applied to entire

| Wha
O O
START “straw” “hat”

Word vectors pretrai ned
h d 2 Kar p thy and Fei-Fei, “Deep Visual-Semantic Alignments for
i _ ” t Generating | e Descriptions”, CVPR 2015
Girshick, ‘Fast R-GNN', IGCV 2015 WI Wo r VeC Figure cor?yr?;:?IEEE, 2r2)p1§.n;eproduced for educational purposes.

Figure copyright Ross Girshick, 2015. Reproduced with permission.
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Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images”?

1. Find a very large dataset that has
similar data, train a big ConvNet there
2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of
pretrained models so you don’t need to train your own

Caffe: https://qithub.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://qgithub.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision
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https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/tensorflow/models
https://github.com/pytorch/vision

Summary

- Lots of Batch Normalization variants
- Optimization

- Momentum, RMSProp, Adam, etc
- Regqularization

- Dropout, etc
- Transfer learning

- Use this for your projects!
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Next time: Deep Learning Software!
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