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Lecture 2:
Image Classification pipeline



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 4, 2019

Administrative: Piazza

For questions about midterm, poster session, projects, etc, use Piazza!

SCPD students: Use your @stanford.edu address to register for Piazza; contact 
scpd-customerservice@stanford.edu for help.
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Administrative: Assignment 1
Out yesterday, due 4/17 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
- Two-layer neural network
- Image features
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Administrative: Friday Discussion Sections

(Some) Fridays 12:30pm - 1:20pm in Gates B03

Hands-on tutorials, with more practical detail than main lecture

We may not have discussion sections every Friday, check syllabus:
http://cs231n.stanford.edu/syllabus.html

This Friday: Python / numpy / Google Cloud setup
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http://cs231n.stanford.edu/syllabus.html
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Administrative: Course Project
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Project proposal due 4/24
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Administrative: Python + Numpy
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http://cs231n.github.io/python-numpy-tutorial/ 

http://cs231n.github.io/python-numpy-tutorial/
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Administrative: Google Cloud

7

We will be using Google Cloud in this class

We will be distributing coupons coupons to all enrolled students

See our tutorial here for walking through Google Cloud setup: 
https://github.com/cs231n/gcloud

https://github.com/cs231n/gcloud
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Image Classification: A core task in Computer Vision
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cat

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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This image by Nikita is 
licensed under CC-BY 2.0

The Problem: Semantic Gap
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What the computer sees

An image is just a big grid of 
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Challenges: Viewpoint variation
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All pixels change when 
the camera moves!

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain

https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 4, 2019

Challenges: Illumination
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This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Challenges: Deformation
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This image by Umberto Salvagnin 
is licensed under CC-BY 2.0

This image by Tom Thai is 
licensed under CC-BY 2.0 

This image by sare bear is 
licensed under CC-BY 2.0

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0

https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
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Challenges: Occlusion
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This image is CC0 1.0 public domain This image by jonsson is licensed 
under CC-BY 2.0This image is CC0 1.0 public domain

https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Challenges: Intraclass variation
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This image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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An image classifier
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Unlike e.g. sorting a list of numbers,
 
no obvious way to hard-code the algorithm for 
recognizing a cat, or other classes.
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Attempts have been made
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John Canny, “A Computational Approach to Edge Detection”, IEEE TPAMI 1986

Find edges Find corners

?
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Machine Learning: Data-Driven Approach
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1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set
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First classifier: Nearest Neighbor
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Memorize all 
data and labels

Predict the label 
of the most similar 
training image
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Example Dataset: CIFAR10
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 Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes
50,000 training images
10,000 testing images
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Example Dataset: CIFAR10
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 Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes
50,000 training images
10,000 testing images Test images and nearest neighbors
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Distance Metric to compare images
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L1 distance:

add



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 4, 201923

Nearest Neighbor classifier



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 4, 201924

Nearest Neighbor classifier

Memorize training data
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Nearest Neighbor classifier

For each test image:
  Find closest train image
  Predict label of nearest image
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Nearest Neighbor classifier

Q: With N examples, 
how fast are training 
and prediction?
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Nearest Neighbor classifier

Q: With N examples, 
how fast are training 
and prediction?

A: Train O(1),
     predict O(N)
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Nearest Neighbor classifier

Q: With N examples, 
how fast are training 
and prediction?

A: Train O(1),
     predict O(N)

This is bad: we want 
classifiers that are fast 
at prediction; slow for 
training is ok
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Nearest Neighbor classifier

Many methods exist for 
fast / approximate nearest 
neighbor (beyond the 
scope of 231N!)

A good implementation:
https://github.com/facebookresearch/faiss

Johnson et al, “Billion-scale similarity search with 
GPUs”, arXiv 2017

https://github.com/facebookresearch/faiss
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What does this look like?
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K-Nearest Neighbors
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Instead of copying label from nearest neighbor, 
take majority vote from K closest points

K = 1 K = 3 K = 5
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What does this look like?



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 4, 201933

What does this look like?
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K-Nearest Neighbors: Distance Metric
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L1 (Manhattan) distance L2 (Euclidean) distance
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K-Nearest Neighbors: Distance Metric
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L1 (Manhattan) distance L2 (Euclidean) distance

K = 1 K = 1
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K-Nearest Neighbors: Demo Time
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http://vision.stanford.edu/teaching/cs231n-demos/knn/ 

http://vision.stanford.edu/teaching/cs231n-demos/knn/
https://docs.google.com/file/d/134yscRV35NjzsMUJvkvMbCzxRAK9v3Jo/preview
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Hyperparameters

37

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about 
the algorithm that we set rather than learn
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Hyperparameters

38

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about 
the algorithm that we set rather than learn

Very problem-dependent. 
Must try them all out and see what works best.
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Setting Hyperparameters

39

Idea #1: Choose hyperparameters 
that work best on the data

Your Dataset
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Setting Hyperparameters

40

Idea #1: Choose hyperparameters 
that work best on the data

BAD: K = 1 always works 
perfectly on training data

Your Dataset
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Setting Hyperparameters

41

Idea #1: Choose hyperparameters 
that work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

Your Dataset

train test



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 4, 2019

Setting Hyperparameters

42

Idea #1: Choose hyperparameters 
that work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test
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Setting Hyperparameters

43

Idea #1: Choose hyperparameters 
that work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test

Idea #3: Split data into train, val, and test; choose 
hyperparameters on val and evaluate on test

Better!

train testvalidation
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Setting Hyperparameters
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Your Dataset

testfold 1 fold 2 fold 3 fold 4 fold 5

Idea #4: Cross-Validation: Split data into folds, 
try each fold as validation and average the results

testfold 1 fold 2 fold 3 fold 4 fold 5

testfold 1 fold 2 fold 3 fold 4 fold 5

Useful for small datasets, but not used too frequently in deep learning
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Setting Hyperparameters
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Example of
5-fold cross-validation
for the value of k.

Each point: single
outcome. 

The line goes
through the mean, bars
indicated standard
deviation

(Seems that k ~= 7 works best
for this data)
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k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

(all 3 images have same L2 distance to the one on the left)

Original Boxed Shifted Tinted

Original image is 
CC0 public domain

https://www.pexels.com/photo/blonde-haired-woman-in-blue-shirt-y-27411/
https://creativecommons.org/publicdomain/zero/1.0/
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k-Nearest Neighbor on images never used.

- Curse of dimensionality

Dimensions = 1
Points = 4

Dimensions = 3
Points = 43

Dimensions = 2
Points = 42
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K-Nearest Neighbors: Summary
In Image classification we start with a training set of images and labels, and 
must predict labels on the test set

The K-Nearest Neighbors classifier predicts labels based on nearest training 
examples

Distance metric and K are hyperparameters

Choose hyperparameters using the validation set; 
only run on the test set once at the very end!

48
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Linear Classification
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This image is CC0 1.0 public domain

Neural Network

Linear 
classifiers

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Man in black shirt 
is playing guitar.

Construction worker in 
orange safety vest is 
working on road.

Two young girls are 
playing with lego toy.

Boy is doing backflip 
on wakeboard

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015
Figures copyright IEEE, 2015. Reproduced for educational purposes.
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Recall CIFAR10

52

50,000 training images
   each image is 32x32x3

10,000 test images.
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Parametric Approach
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Image

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

parameters
or weights

W
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Parametric Approach: Linear Classifier

54

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
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Parametric Approach: Linear Classifier

55

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
10x1 10x3072

3072x1
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Parametric Approach: Linear Classifier

56

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b
3072x1

10x1 10x3072
10x1
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image

56

231

24

2

56 231

24 2

Stretch pixels into column
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=
Cat score

Dog score

Ship score

b
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

f(x,W) = Wx

Algebraic Viewpoint
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
Input image

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

f(x,W) = Wx

Algebraic Viewpoint

-96.8Score 437.9 61.95
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Interpreting a Linear Classifier

61
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Interpreting a Linear Classifier: Visual Viewpoint

62
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Interpreting a Linear Classifier: Geometric Viewpoint

63

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8
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Hard cases for a linear classifier
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Class 1: 
First and third quadrants

Class 2: 
Second and fourth quadrants

Class 1: 
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1: 
Three modes

Class 2:
Everything else
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Linear Classifier: Three Viewpoints
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f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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So far: Defined a (linear) score function
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f(x,W) = Wx + b

 -3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

Cat image by Nikita is licensed under CC-BY 2.0
Car image is CC0 1.0 public domain
Frog image is in the public domain

Example class 
scores for 3 
images for 
some W:

How can we tell 
whether this W 
is good or bad?

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg
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Coming up:
- Loss function
- Optimization
- ConvNets!

(quantifying what it means to 
have a “good” W)
(start with random W and find a 
W that minimizes the loss)

(tweak the functional form of f)

f(x,W) = Wx + b


