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Lecture 6:
Hardware and Software
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Administrative
Assignment 1 was due yesterday.

Assignment 2 is out, due Wed May 1. 

Project proposal due Wed April 24.

Project-only office hours leading up to the deadline.
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Administrative

Friday’s section on PyTorch and Tensorflow will be at 
Thornton 102, 12:30-1:50 
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Administrative

Honor code: Copying code from other people / sources such 
as Github is considered as an honor code violation.

We are running plagiarism detection software on homeworks.
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Where we are now...
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Where we are now...

Linear score function:

2-layer Neural Network
      

x hW1 sW2

3072 100 10

Neural Networks
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Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Where we are now...

Convolutional Neural Networks



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 20198

Where we are now...

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Learning network parameters through optimization

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
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Today

- Deep learning hardware
- CPU, GPU, TPU

- Deep learning software
- PyTorch and TensorFlow
- Static and Dynamic computation graphs
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Deep Learning 
Hardware

10
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Inside a computer
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Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Intel_Core_i7-2600_SR00B_(16339769307).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Spot the GPUs!
(graphics processing unit)

This image is in the public domain

https://commons.wikimedia.org/wiki/File:NVIDIA-GTX-1070-FoundersEdition-FL.jpg
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NVIDIA AMDvs
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NVIDIA AMDvs
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CPU vs GPU
Cores Clock 

Speed
Memory Price Speed

CPU
(Intel Core 
i7-7700k)

4
(8 threads with 
hyperthreading)

4.2 GHz System 
RAM

$385 ~540 GFLOPs FP32

GPU
(NVIDIA
RTX 2080 Ti)

3584 1.6 GHz 11 GB 
GDDR6

$1199 ~13.4 TFLOPs FP32

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks
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Example: Matrix Multiplication

A x B
B x C

A x C

=
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CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not 
well-optimized, a little unfair)

66x 67x 71x 64x 76x

19
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CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than 
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

20
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CPU vs GPU
Cores Clock 

Speed
Memory Price Speed

CPU
(Intel Core 
i7-7700k)

4
(8 threads with 
hyperthreading)

4.2 GHz System 
RAM

$385 ~540 GFLOPs FP32

GPU
(NVIDIA
RTX 2080 Ti)

3584 1.6 GHz 11 GB 
GDDR6

$1199 ~13.4 TFLOPs FP32

TPU
NVIDIA 
TITAN V

5120 CUDA,
640 Tensor

1.5 GHz 12GB 
HBM2

$2999 ~14 TFLOPs FP32
~112 TFLOP FP16

TPU
Google Cloud 
TPU

? ? 64 GB 
HBM

$4.50 
per 
hour

~180 TFLOP

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks

TPU: Specialized 
hardware for deep 
learning
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CPU vs GPU
Cores Clock 

Speed
Memory Price Speed

CPU
(Intel Core 
i7-7700k)

4
(8 threads with 
hyperthreading)

4.2 GHz System 
RAM

$385 ~540 GFLOPs FP32

GPU
(NVIDIA
RTX 2080 Ti)

3584 1.6 GHz 11 GB 
GDDR6

$1199 ~13.4 TFLOPs FP32

TPU
NVIDIA 
TITAN V

5120 CUDA,
640 Tensor

1.5 GHz 12GB 
HBM2

$2999 ~14 TFLOPs FP32
~112 TFLOP FP16

TPU
Google Cloud 
TPU

? ? 64 GB 
HBM

$4.50 
per 
hour

~180 TFLOP

NOTE: TITAN V 
isn’t technically 
a “TPU” since 
that’s a Google 
term, but both 
have hardware 
specialized for 
deep learning 
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Programming GPUs
● CUDA (NVIDIA only)

○ Write C-like code that runs directly on the GPU
○ Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower on NVIDIA hardware

● HIP https://github.com/ROCm-Developer-Tools/HIP 
○ New project that automatically converts CUDA code to 

something that can run on AMD GPUs
● Udacity CS 344: 

https://developer.nvidia.com/udacity-cs344-intro-parallel-programming

https://github.com/ROCm-Developer-Tools/HIP
https://developer.nvidia.com/udacity-cs344-intro-parallel-programming
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CPU / GPU Communication

Model 
is here

Data is here

25
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CPU / GPU Communication

Model 
is here

Data is here

If you aren’t careful, training can 
bottleneck on reading data and 
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads 

to prefetch data

26
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Deep Learning 
Software

27
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A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...

28

Chainer 

JAX
(Google)
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A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...

29

Chainer 

JAX
(Google)

We’ll focus on these
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Recall: Computational Graphs

x

W

hinge 
loss

R

+ L
s (scores)

*

30



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201931

input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Recall: Computational Graphs

31
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Recall: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

32

https://twitter.com/karpathy/status/597631909930242048?lang=en
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The point of deep learning frameworks

(1) Quick to develop and test new ideas
(2) Automatically compute gradients
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Bad: 
- Have to compute 

our own gradients
- Can’t run on GPU

Good: 
Clean API, easy to 
write numeric code
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Looks exactly like numpy!
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

PyTorch handles gradients for us!
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Trivial to run on GPU - just construct 
arrays on a different device!
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PyTorch
(More detail)
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PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or 
learnable weights

Autograd: Package for building computational graphs out of 
Tensors, and automatically computing gradients



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201942

PyTorch: Versions

For this class we are using PyTorch version 1.0 
(Released December 2018)

Be careful if you are looking at older PyTorch code!
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PyTorch: Tensors

Running example: Train 
a two-layer ReLU 
network on random data 
with L2 loss
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PyTorch: Tensors
PyTorch Tensors are just like numpy 
arrays, but they can run on GPU.

PyTorch Tensor API looks almost 
exactly like numpy!

Here we fit a two-layer net using 
PyTorch Tensors:
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PyTorch: Tensors
Create random tensors 
for data and weights
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PyTorch: Tensors

Forward pass: compute 
predictions and loss
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PyTorch: Tensors

Backward pass: 
manually compute 
gradients
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PyTorch: Tensors

Gradient descent 
step on weights
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PyTorch: Tensors

To run on GPU, just use a 
different device!
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PyTorch: Autograd

Creating Tensors with 
requires_grad=True enables 
autograd

Operations on Tensors with 
requires_grad=True cause PyTorch 
to build a computational graph
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PyTorch: Autograd

We will not want gradients 
(of loss) with respect to data

Do want gradients with 
respect to weights 
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PyTorch: Autograd

Forward pass looks exactly 
the same as before, but we 
don’t need to track 
intermediate values - 
PyTorch keeps track of 
them for us in the graph
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PyTorch: Autograd

Compute gradient of loss 
with respect to w1 and w2
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PyTorch: Autograd

Make gradient step on weights, then zero 
them. Torch.no_grad means “don’t build 
a computational graph for this part”
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PyTorch: Autograd

PyTorch methods that end in underscore 
modify the Tensor in-place; methods that 
don’t return a new Tensor
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PyTorch: New Autograd Functions
Define your own autograd 
functions by writing forward 
and backward functions for 
Tensors

Use ctx object to “cache” values for 
the backward pass, just like cache 
objects from A2
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PyTorch: New Autograd Functions
Define your own autograd 
functions by writing forward 
and backward functions for 
Tensors

Use ctx object to “cache” values for 
the backward pass, just like cache 
objects from A2

Define a helper function to make it 
easy to use the new function
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PyTorch: New Autograd Functions

Can use our new autograd 
function in the forward pass
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PyTorch: New Autograd Functions

In practice you almost never need 
to define new autograd functions! 
Only do it when you need custom 
backward. In this case we can just 
use a normal Python function



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201960

PyTorch: nn

Higher-level wrapper for 
working with neural nets

Use this! It will make your life 
easier
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PyTorch: nn

Define our model as a 
sequence of layers; each 
layer is an object that 
holds learnable weights
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PyTorch: nn

Forward pass: feed data to 
model, and compute loss
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PyTorch: nn

torch.nn.functional has useful 
helpers like loss functions

Forward pass: feed data to 
model, and compute loss
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PyTorch: nn

Backward pass: compute 
gradient with respect to all 
model weights (they have 
requires_grad=True)
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PyTorch: nn

Make gradient step on 
each model parameter
(with gradients disabled)
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PyTorch: optim

Use an optimizer for 
different update rules
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PyTorch: optim

After computing gradients, use 
optimizer to update params 
and zero gradients
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PyTorch: nn
Define new Modules
A PyTorch Module is a neural net 
layer; it inputs and outputs Tensors

Modules can contain weights or other 
modules

You can define your own Modules 
using autograd!
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PyTorch: nn
Define new Modules

Define our whole model 
as a single Module
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PyTorch: nn
Define new Modules

Initializer sets up two 
children (Modules can 
contain modules)
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PyTorch: nn
Define new Modules

Define forward pass using 
child modules

No need to define 
backward - autograd will 
handle it
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PyTorch: nn
Define new Modules

Construct and train an 
instance of our model



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201973

PyTorch: nn
Define new Modules
Very common to mix and match 
custom Module subclasses and 
Sequential containers
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PyTorch: nn
Define new Modules

Define network component 
as a Module subclass
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PyTorch: nn
Define new Modules

Stack multiple instances of the 
component in a sequential
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PyTorch: DataLoaders

A DataLoader wraps a 
Dataset and provides 
minibatching, shuffling, 
multithreading, for you

When you need to load 
custom data, just write 
your own Dataset class
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PyTorch: DataLoaders

Iterate over loader to form 
minibatches
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PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision 
https://github.com/pytorch/vision 

https://github.com/pytorch/vision
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PyTorch: Visdom

This image is licensed under CC-BY 4.0; no changes were made to the image

Visualization tool: add 
logging to your code, then 
visualize in a browser

Can’t visualize 
computational graph 
structure (yet?)

https://github.com/facebookresearch/visdom 

79

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/
https://github.com/facebookresearch/visdom
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PyTorch: tensorboardX

This image is licensed under CC-BY 4.0; no changes were made to the image

A python wrapper around 
Tensorflow’s web-based 
visualization tool.

pip install tensorboardx

https://github.com/lanpa/tensorboardX

80

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/
https://github.com/lanpa/tensorboardX
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PyTorch: Dynamic Computation Graphs
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

Create Tensor objects
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2 
(for backprop) AND perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

Throw away the graph, backprop path, and 
rebuild it from scratch on every iteration



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201987

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2 
(for backprop) AND perform computation
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PyTorch: Dynamic Computation Graphs

Building the graph and 
computing the graph happen at 
the same time.

Seems inefficient, especially if we 
are building the same graph over 
and over again...
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Static Computation Graphs

Alternative: Static graphs

Step 1: Build computational graph 
describing our computation 
(including finding paths for 
backprop)

Step 2: Reuse the same graph on 
every iteration
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TensorFlow
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TensorFlow Versions

Default static graph, 
optionally dynamic 
graph (eager mode).

Pre-2.0 (1.13 latest) 2.0 Alpha (March 2019)
Default dynamic graph, 
optionally static graph.
We use 2.0 in this class.
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TensorFlow: 
Neural Net
(Pre-2.0)

(Assume imports at the 
top of each snippet)
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TensorFlow: 
Neural Net
(Pre-2.0)

First define 
computational graph

Then run the graph 
many times
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TensorFlow: 2.0 vs. pre-2.0

Tensorflow 2.0:
“Eager” Mode by default
assert(tf.executing_eagerly())

Tensorflow 1.13
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TensorFlow: 2.0 vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0:
“Eager” Mode by default
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TensorFlow: 2.0 vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0:
“Eager” Mode by default
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TensorFlow: 
Neural Net

Convert input numpy 
arrays to TF tensors.
Create weights as 
tf.Variable  
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TensorFlow: 
Neural Net

Use tf.GradientTape() 
context to build 
dynamic computation 
graph.
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TensorFlow: 
Neural Net

All forward-pass 
operations in the 
contexts (including 
function calls) gets 
traced for computing 
gradient later.
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TensorFlow: 
Neural Net

Forward pass
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TensorFlow: 
Neural Net

tape.gradient() uses the 
traced computation 
graph to compute 
gradient for the weights
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TensorFlow: 
Neural Net

Backward pass
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TensorFlow: 
Neural Net

Train the network: Run 
the training step over 
and over, use gradient 
to update weights
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TensorFlow: 
Neural Net

Train the network: Run 
the graph over and over, 
use gradient to update 
weights
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TensorFlow: 
Optimizer

Can use an optimizer to 
compute gradients and 
update weights
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TensorFlow: 
Loss

Use predefined 
common losses
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Keras: High-Level 
Wrapper
Keras is a layer on top of 
TensorFlow, makes common 
things easy to do

(Used to be third-party, now 
merged into TensorFlow)
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Keras: High-Level 
Wrapper

Define model as a 
sequence of layers

Get output by 
calling the model

Apply gradient to all 
trainable variables 
(weights) in the 
model
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Keras: High-Level 
Wrapper

Keras can handle the 
training loop for you!
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Keras (https://keras.io/) 

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras) 

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

Sonnet (https://github.com/deepmind/sonnet) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

TensorFlow: High-Level Wrappers

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/estimator
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
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@tf.function: 
compile static 
graph

tf.function decorator 
(implicitly) compiles 
python functions to 
static graph for better 
performance
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@tf.function: 
compile static 
graph

Here we compare the 
forward-pass time of 
the same model under 
dynamic graph mode 
and static graph mode 
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@tf.function: 
compile static 
graph

Static graph is in general 
faster than dynamic graph, 
but the performance gain 
depends on the type of 
model / layer.
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@tf.function: 
compile static 
graph

There are some caveats in 
defining control loops (for, 
if) with @tf.function.
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Eager mode: (https://www.tensorflow.org/guide/eager)

tf.function: (https://www.tensorflow.org/alpha/tutorials/eager/tf_function)

TensorFlow: More on Eager Mode

https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/alpha/tutorials/eager/tf_function
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tf.keras: (https://www.tensorflow.org/api_docs/python/tf/keras/applications)

TF-Slim: (https://github.com/tensorflow/models/tree/master/research/slim)

TensorFlow: Pretrained Models

https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://github.com/tensorflow/models/tree/master/research/slim
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TensorFlow: Tensorboard
Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

119
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TensorFlow: Distributed Version

https://www.tensorflow.org/deploy/distributed 

Split one graph 
over multiple 
machines!

120

https://www.tensorflow.org/deploy/distributed


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019121

TensorFlow: Tensor Processing Units

Google Cloud TPU 
= 180 TFLOPs of compute!
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TensorFlow: Tensor Processing Units

Google Cloud TPU 
= 180 TFLOPs of compute!

NVIDIA Tesla V100
= 125 TFLOPs of compute
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TensorFlow: Tensor Processing Units

Google Cloud TPU 
= 180 TFLOPs of compute!

NVIDIA Tesla V100
= 125 TFLOPs of compute

NVIDIA Tesla P100 = 11 TFLOPs of compute
GTX 580 = 0.2 TFLOPs
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TensorFlow: Tensor Processing Units

Google Cloud TPU Pod
= 64 Cloud TPUs
= 11.5 PFLOPs of compute!

Google Cloud TPU 
= 180 TFLOPs of compute!

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu 

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu
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TensorFlow: Tensor Processing Units

https://cloud.google.com/edge-tpu/

Edge TPU = 64 GFLOPs (16 bit)

https://cloud.google.com/edge-tpu/
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Static vs Dynamic Graphs
TensorFlow (tf.function): Build graph 
once, then run many times (static) PyTorch: Each forward pass defines 

a new graph (dynamic)

Compile 
python 
code into  
static graph

Run each 
iteration

New graph each iteration
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Static vs Dynamic: Optimization
With static graphs, 
framework can 
optimize the 
graph for you 
before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with 
fused operations

Conv+ReLU
Conv+ReLU

127
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Static vs Dynamic: Serialization

Once graph is built, can 
serialize it and run it 
without the code that 
built the graph!

Graph building and execution 
are intertwined, so always 
need to keep code around

Static Dynamic

128
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Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 

129

- Recurrent networks
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Dynamic Graph Applications

The cat ate a big rat

130

- Recurrent networks
- Recursive networks
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Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

131

Figure copyright Justin Johnson, 2017. Reproduced with permission.
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Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks
- (Your creative idea here)

132
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PyTorch
Dynamic Graphs

133

TensorFlow
Pre-2.0: Default 

Static Graph
2.0+: Default 

Dynamic Graph

PyTorch vs TensorFlow, Static vs 
Dynamic
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Static PyTorch: Caffe2 https://caffe2.ai/

● Deep learning framework developed by Facebook
● Static graphs, somewhat similar to TensorFlow
● Core written in C++
● Nice Python interface
● Can train model in Python, then serialize and deploy 

without Python
● Works on iOS / Android, etc

https://caffe2.ai/
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Static PyTorch: ONNX Support

ONNX is an open-source standard for neural network models 

Goal: Make it easy to train a network in one framework, then run 
it in another framework

Supported by PyTorch, Caffe2, Microsoft CNTK, Apache MXNet

https://github.com/onnx/onnx

https://github.com/onnx/onnx


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019136

Static PyTorch: ONNX Support
You can export a PyTorch model to 
ONNX

Run the graph on a dummy input, and 
save the graph to a file

Will only work if your model doesn’t 
actually make use of dynamic graph - 
must build same graph on every 
forward pass, no loops / conditionals
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Static PyTorch: ONNX Support
graph(%0 : Float(64, 1000)
      %1 : Float(100, 1000)
      %2 : Float(100)
      %3 : Float(10, 100)
      %4 : Float(10)) {
  %5 : Float(64, 100) = 
onnx::Gemm[alpha=1, beta=1, broadcast=1, 
transB=1](%0, %1, %2), scope: 
Sequential/Linear[0]
  %6 : Float(64, 100) = onnx::Relu(%5), 
scope: Sequential/ReLU[1]
  %7 : Float(64, 10) = onnx::Gemm[alpha=1, 
beta=1, broadcast=1, transB=1](%6, %3, 
%4), scope: Sequential/Linear[2]
  return (%7);
}

After exporting to ONNX, can 
run the PyTorch model in Caffe2
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Static PyTorch
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PyTorch vs TensorFlow, Static vs 
Dynamic

PyTorch
Dynamic Graphs

Static: ONNX, Caffe2

139

TensorFlow
Dynamic: Eager

Static: @tf.function
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My Advice:
PyTorch is my personal favorite. Clean API, native dynamic graphs 
make it very easy to develop and debug. Can build model in 
PyTorch then export to Caffe2 with ONNX for production / mobile

TensorFlow is a safe bet for most projects. Syntax became a lot 
more intuitive after 2.0. Not perfect but has huge community and 
wide usage. Can use same framework for research and production. 
Probably use a high-level framework. Only choice if you want to run 
on TPUs.
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Next Time: 
Training Neural Networks

141


