
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 20191

Lecture 6:
Hardware and Software



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 20192

Administrative
Assignment 1 was due yesterday.

Assignment 2 is out, due Wed May 1. 

Project proposal due Wed April 24.

Project-only office hours leading up to the deadline.



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 20193

Administrative

Friday’s section on PyTorch and Tensorflow will be at 
Thornton 102, 12:30-1:50 



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 20194

Administrative

Honor code: Copying code from other people / sources such 
as Github is considered as an honor code violation.

We are running plagiarism detection software on homeworks.



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 20195

Where we are now...

x

W

hinge 
loss

R

+ L
s (scores)

Computational graphs

*



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 20196

Where we are now...

Linear score function:

2-layer Neural Network
      

x hW1 sW2

3072 100 10

Neural Networks



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 20197

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Where we are now...

Convolutional Neural Networks



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 20198

Where we are now...

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Learning network parameters through optimization

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 20199

Today

- Deep learning hardware
- CPU, GPU, TPU

- Deep learning software
- PyTorch and TensorFlow
- Static and Dynamic computation graphs



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201910

Deep Learning 
Hardware

10



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201911

Inside a computer



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201912

Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Intel_Core_i7-2600_SR00B_(16339769307).jpg
https://creativecommons.org/licenses/by/2.0/deed.en


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201913

Spot the GPUs!
(graphics processing unit)

This image is in the public domain

https://commons.wikimedia.org/wiki/File:NVIDIA-GTX-1070-FoundersEdition-FL.jpg


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201914

NVIDIA AMDvs



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201915

NVIDIA AMDvs



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201916

CPU vs GPU
Cores Clock 

Speed
Memory Price Speed

CPU
(Intel Core 
i7-7700k)

4
(8 threads with 
hyperthreading)

4.2 GHz System 
RAM

$385 ~540 GFLOPs FP32

GPU
(NVIDIA
RTX 2080 Ti)

3584 1.6 GHz 11 GB 
GDDR6

$1199 ~13.4 TFLOPs FP32

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201917

Example: Matrix Multiplication

A x B
B x C

A x C

=



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201918



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201919

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not 
well-optimized, a little unfair)

66x 67x 71x 64x 76x

19



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201920

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than 
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

20



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201921

CPU vs GPU
Cores Clock 

Speed
Memory Price Speed

CPU
(Intel Core 
i7-7700k)

4
(8 threads with 
hyperthreading)

4.2 GHz System 
RAM

$385 ~540 GFLOPs FP32

GPU
(NVIDIA
RTX 2080 Ti)

3584 1.6 GHz 11 GB 
GDDR6

$1199 ~13.4 TFLOPs FP32

TPU
NVIDIA 
TITAN V

5120 CUDA,
640 Tensor

1.5 GHz 12GB 
HBM2

$2999 ~14 TFLOPs FP32
~112 TFLOP FP16

TPU
Google Cloud 
TPU

? ? 64 GB 
HBM

$4.50 
per 
hour

~180 TFLOP

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks

TPU: Specialized 
hardware for deep 
learning



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201922

CPU vs GPU
Cores Clock 

Speed
Memory Price Speed

CPU
(Intel Core 
i7-7700k)

4
(8 threads with 
hyperthreading)

4.2 GHz System 
RAM

$385 ~540 GFLOPs FP32

GPU
(NVIDIA
RTX 2080 Ti)

3584 1.6 GHz 11 GB 
GDDR6

$1199 ~13.4 TFLOPs FP32

TPU
NVIDIA 
TITAN V

5120 CUDA,
640 Tensor

1.5 GHz 12GB 
HBM2

$2999 ~14 TFLOPs FP32
~112 TFLOP FP16

TPU
Google Cloud 
TPU

? ? 64 GB 
HBM

$4.50 
per 
hour

~180 TFLOP

NOTE: TITAN V 
isn’t technically 
a “TPU” since 
that’s a Google 
term, but both 
have hardware 
specialized for 
deep learning 



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201923



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201924

Programming GPUs
● CUDA (NVIDIA only)

○ Write C-like code that runs directly on the GPU
○ Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower on NVIDIA hardware

● HIP https://github.com/ROCm-Developer-Tools/HIP 
○ New project that automatically converts CUDA code to 

something that can run on AMD GPUs
● Udacity CS 344: 

https://developer.nvidia.com/udacity-cs344-intro-parallel-programming

https://github.com/ROCm-Developer-Tools/HIP
https://developer.nvidia.com/udacity-cs344-intro-parallel-programming


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201925

CPU / GPU Communication

Model 
is here

Data is here

25



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201926

CPU / GPU Communication

Model 
is here

Data is here

If you aren’t careful, training can 
bottleneck on reading data and 
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads 

to prefetch data

26



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201927

Deep Learning 
Software

27



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201928

A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...

28

Chainer 

JAX
(Google)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201929

A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...

29

Chainer 

JAX
(Google)

We’ll focus on these



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201930

Recall: Computational Graphs

x

W

hinge 
loss

R

+ L
s (scores)

*

30



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201931

input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Recall: Computational Graphs

31



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201932

Recall: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

32

https://twitter.com/karpathy/status/597631909930242048?lang=en


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201933

The point of deep learning frameworks

(1) Quick to develop and test new ideas
(2) Automatically compute gradients
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201934

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201935

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201936

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Bad: 
- Have to compute 

our own gradients
- Can’t run on GPU

Good: 
Clean API, easy to 
write numeric code



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201937

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Looks exactly like numpy!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201938

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

PyTorch handles gradients for us!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201939

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Trivial to run on GPU - just construct 
arrays on a different device!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201940

PyTorch
(More detail)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201941

PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or 
learnable weights

Autograd: Package for building computational graphs out of 
Tensors, and automatically computing gradients



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201942

PyTorch: Versions

For this class we are using PyTorch version 1.0 
(Released December 2018)

Be careful if you are looking at older PyTorch code!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201943

PyTorch: Tensors

Running example: Train 
a two-layer ReLU 
network on random data 
with L2 loss



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201944

PyTorch: Tensors
PyTorch Tensors are just like numpy 
arrays, but they can run on GPU.

PyTorch Tensor API looks almost 
exactly like numpy!

Here we fit a two-layer net using 
PyTorch Tensors:



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201945

PyTorch: Tensors
Create random tensors 
for data and weights



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201946

PyTorch: Tensors

Forward pass: compute 
predictions and loss



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201947

PyTorch: Tensors

Backward pass: 
manually compute 
gradients



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201948

PyTorch: Tensors

Gradient descent 
step on weights



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201949

PyTorch: Tensors

To run on GPU, just use a 
different device!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201950

PyTorch: Autograd

Creating Tensors with 
requires_grad=True enables 
autograd

Operations on Tensors with 
requires_grad=True cause PyTorch 
to build a computational graph



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201951

PyTorch: Autograd

We will not want gradients 
(of loss) with respect to data

Do want gradients with 
respect to weights 



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201952

PyTorch: Autograd

Forward pass looks exactly 
the same as before, but we 
don’t need to track 
intermediate values - 
PyTorch keeps track of 
them for us in the graph



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201953

PyTorch: Autograd

Compute gradient of loss 
with respect to w1 and w2



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201954

PyTorch: Autograd

Make gradient step on weights, then zero 
them. Torch.no_grad means “don’t build 
a computational graph for this part”



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201955

PyTorch: Autograd

PyTorch methods that end in underscore 
modify the Tensor in-place; methods that 
don’t return a new Tensor



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201956

PyTorch: New Autograd Functions
Define your own autograd 
functions by writing forward 
and backward functions for 
Tensors

Use ctx object to “cache” values for 
the backward pass, just like cache 
objects from A2



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201957

PyTorch: New Autograd Functions
Define your own autograd 
functions by writing forward 
and backward functions for 
Tensors

Use ctx object to “cache” values for 
the backward pass, just like cache 
objects from A2

Define a helper function to make it 
easy to use the new function



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201958

PyTorch: New Autograd Functions

Can use our new autograd 
function in the forward pass



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201959

PyTorch: New Autograd Functions

In practice you almost never need 
to define new autograd functions! 
Only do it when you need custom 
backward. In this case we can just 
use a normal Python function



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201960

PyTorch: nn

Higher-level wrapper for 
working with neural nets

Use this! It will make your life 
easier



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201961

PyTorch: nn

Define our model as a 
sequence of layers; each 
layer is an object that 
holds learnable weights



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201962

PyTorch: nn

Forward pass: feed data to 
model, and compute loss



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201963

PyTorch: nn

torch.nn.functional has useful 
helpers like loss functions

Forward pass: feed data to 
model, and compute loss



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201964

PyTorch: nn

Backward pass: compute 
gradient with respect to all 
model weights (they have 
requires_grad=True)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201965

PyTorch: nn

Make gradient step on 
each model parameter
(with gradients disabled)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201966

PyTorch: optim

Use an optimizer for 
different update rules



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201967

PyTorch: optim

After computing gradients, use 
optimizer to update params 
and zero gradients



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201968

PyTorch: nn
Define new Modules
A PyTorch Module is a neural net 
layer; it inputs and outputs Tensors

Modules can contain weights or other 
modules

You can define your own Modules 
using autograd!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201969

PyTorch: nn
Define new Modules

Define our whole model 
as a single Module



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201970

PyTorch: nn
Define new Modules

Initializer sets up two 
children (Modules can 
contain modules)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201971

PyTorch: nn
Define new Modules

Define forward pass using 
child modules

No need to define 
backward - autograd will 
handle it



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201972

PyTorch: nn
Define new Modules

Construct and train an 
instance of our model



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201973

PyTorch: nn
Define new Modules
Very common to mix and match 
custom Module subclasses and 
Sequential containers



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201974

PyTorch: nn
Define new Modules

Define network component 
as a Module subclass



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201975

PyTorch: nn
Define new Modules

Stack multiple instances of the 
component in a sequential



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201976

PyTorch: DataLoaders

A DataLoader wraps a 
Dataset and provides 
minibatching, shuffling, 
multithreading, for you

When you need to load 
custom data, just write 
your own Dataset class



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201977

PyTorch: DataLoaders

Iterate over loader to form 
minibatches



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201978

PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision 
https://github.com/pytorch/vision 

https://github.com/pytorch/vision


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

PyTorch: Visdom

This image is licensed under CC-BY 4.0; no changes were made to the image

Visualization tool: add 
logging to your code, then 
visualize in a browser

Can’t visualize 
computational graph 
structure (yet?)

https://github.com/facebookresearch/visdom 

79

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/
https://github.com/facebookresearch/visdom


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

PyTorch: tensorboardX

This image is licensed under CC-BY 4.0; no changes were made to the image

A python wrapper around 
Tensorflow’s web-based 
visualization tool.

pip install tensorboardx

https://github.com/lanpa/tensorboardX

80

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/
https://github.com/lanpa/tensorboardX


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201981

PyTorch: Dynamic Computation Graphs



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201982

PyTorch: Dynamic Computation Graphs
x w1 w2 y

Create Tensor objects



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201983

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND 
perform computation



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201984

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND 
perform computation



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201985

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2 
(for backprop) AND perform computation



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201986

PyTorch: Dynamic Computation Graphs
x w1 w2 y

Throw away the graph, backprop path, and 
rebuild it from scratch on every iteration



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201987

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND 
perform computation



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201988

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND 
perform computation



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201989

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2 
(for backprop) AND perform computation



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201990

PyTorch: Dynamic Computation Graphs

Building the graph and 
computing the graph happen at 
the same time.

Seems inefficient, especially if we 
are building the same graph over 
and over again...



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201991

Static Computation Graphs

Alternative: Static graphs

Step 1: Build computational graph 
describing our computation 
(including finding paths for 
backprop)

Step 2: Reuse the same graph on 
every iteration



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201992

TensorFlow



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201993

TensorFlow Versions

Default static graph, 
optionally dynamic 
graph (eager mode).

Pre-2.0 (1.13 latest) 2.0 Alpha (March 2019)
Default dynamic graph, 
optionally static graph.
We use 2.0 in this class.



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201994

TensorFlow: 
Neural Net
(Pre-2.0)

(Assume imports at the 
top of each snippet)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201995

TensorFlow: 
Neural Net
(Pre-2.0)

First define 
computational graph

Then run the graph 
many times



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201996

TensorFlow: 2.0 vs. pre-2.0

Tensorflow 2.0:
“Eager” Mode by default
assert(tf.executing_eagerly())

Tensorflow 1.13



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201997

TensorFlow: 2.0 vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0:
“Eager” Mode by default



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201998

TensorFlow: 2.0 vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0:
“Eager” Mode by default



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 201999

TensorFlow: 
Neural Net

Convert input numpy 
arrays to TF tensors.
Create weights as 
tf.Variable  



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019100

TensorFlow: 
Neural Net

Use tf.GradientTape() 
context to build 
dynamic computation 
graph.



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019101

TensorFlow: 
Neural Net

All forward-pass 
operations in the 
contexts (including 
function calls) gets 
traced for computing 
gradient later.



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019102

TensorFlow: 
Neural Net

Forward pass



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019103

TensorFlow: 
Neural Net

tape.gradient() uses the 
traced computation 
graph to compute 
gradient for the weights



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019104

TensorFlow: 
Neural Net

Backward pass



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019105

TensorFlow: 
Neural Net

Train the network: Run 
the training step over 
and over, use gradient 
to update weights



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019106

TensorFlow: 
Neural Net

Train the network: Run 
the graph over and over, 
use gradient to update 
weights



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019107

TensorFlow: 
Optimizer

Can use an optimizer to 
compute gradients and 
update weights



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019108

TensorFlow: 
Loss

Use predefined 
common losses



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019109

Keras: High-Level 
Wrapper
Keras is a layer on top of 
TensorFlow, makes common 
things easy to do

(Used to be third-party, now 
merged into TensorFlow)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019110

Keras: High-Level 
Wrapper

Define model as a 
sequence of layers

Get output by 
calling the model

Apply gradient to all 
trainable variables 
(weights) in the 
model



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019111

Keras: High-Level 
Wrapper

Keras can handle the 
training loop for you!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019112

Keras (https://keras.io/) 

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras) 

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

Sonnet (https://github.com/deepmind/sonnet) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

TensorFlow: High-Level Wrappers

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/estimator
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019113

@tf.function: 
compile static 
graph

tf.function decorator 
(implicitly) compiles 
python functions to 
static graph for better 
performance



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019114

@tf.function: 
compile static 
graph

Here we compare the 
forward-pass time of 
the same model under 
dynamic graph mode 
and static graph mode 



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019115

@tf.function: 
compile static 
graph

Static graph is in general 
faster than dynamic graph, 
but the performance gain 
depends on the type of 
model / layer.



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019116

@tf.function: 
compile static 
graph

There are some caveats in 
defining control loops (for, 
if) with @tf.function.



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019117

Eager mode: (https://www.tensorflow.org/guide/eager)

tf.function: (https://www.tensorflow.org/alpha/tutorials/eager/tf_function)

TensorFlow: More on Eager Mode

https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/alpha/tutorials/eager/tf_function


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019118

tf.keras: (https://www.tensorflow.org/api_docs/python/tf/keras/applications)

TF-Slim: (https://github.com/tensorflow/models/tree/master/research/slim)

TensorFlow: Pretrained Models

https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://github.com/tensorflow/models/tree/master/research/slim


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

TensorFlow: Tensorboard
Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

119



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

TensorFlow: Distributed Version

https://www.tensorflow.org/deploy/distributed 

Split one graph 
over multiple 
machines!

120

https://www.tensorflow.org/deploy/distributed


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019121

TensorFlow: Tensor Processing Units

Google Cloud TPU 
= 180 TFLOPs of compute!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019122

TensorFlow: Tensor Processing Units

Google Cloud TPU 
= 180 TFLOPs of compute!

NVIDIA Tesla V100
= 125 TFLOPs of compute



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019123

TensorFlow: Tensor Processing Units

Google Cloud TPU 
= 180 TFLOPs of compute!

NVIDIA Tesla V100
= 125 TFLOPs of compute

NVIDIA Tesla P100 = 11 TFLOPs of compute
GTX 580 = 0.2 TFLOPs



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019124

TensorFlow: Tensor Processing Units

Google Cloud TPU Pod
= 64 Cloud TPUs
= 11.5 PFLOPs of compute!

Google Cloud TPU 
= 180 TFLOPs of compute!

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu 

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019125

TensorFlow: Tensor Processing Units

https://cloud.google.com/edge-tpu/

Edge TPU = 64 GFLOPs (16 bit)

https://cloud.google.com/edge-tpu/


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019126

Static vs Dynamic Graphs
TensorFlow (tf.function): Build graph 
once, then run many times (static) PyTorch: Each forward pass defines 

a new graph (dynamic)

Compile 
python 
code into  
static graph

Run each 
iteration

New graph each iteration



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

Static vs Dynamic: Optimization
With static graphs, 
framework can 
optimize the 
graph for you 
before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with 
fused operations

Conv+ReLU
Conv+ReLU

127



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

Static vs Dynamic: Serialization

Once graph is built, can 
serialize it and run it 
without the code that 
built the graph!

Graph building and execution 
are intertwined, so always 
need to keep code around

Static Dynamic

128



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 

129

- Recurrent networks



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

Dynamic Graph Applications

The cat ate a big rat

130

- Recurrent networks
- Recursive networks



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

131

Figure copyright Justin Johnson, 2017. Reproduced with permission.



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks
- (Your creative idea here)

132



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

PyTorch
Dynamic Graphs

133

TensorFlow
Pre-2.0: Default 

Static Graph
2.0+: Default 

Dynamic Graph

PyTorch vs TensorFlow, Static vs 
Dynamic



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019134

Static PyTorch: Caffe2 https://caffe2.ai/

● Deep learning framework developed by Facebook
● Static graphs, somewhat similar to TensorFlow
● Core written in C++
● Nice Python interface
● Can train model in Python, then serialize and deploy 

without Python
● Works on iOS / Android, etc

https://caffe2.ai/


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019135

Static PyTorch: ONNX Support

ONNX is an open-source standard for neural network models 

Goal: Make it easy to train a network in one framework, then run 
it in another framework

Supported by PyTorch, Caffe2, Microsoft CNTK, Apache MXNet

https://github.com/onnx/onnx

https://github.com/onnx/onnx


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019136

Static PyTorch: ONNX Support
You can export a PyTorch model to 
ONNX

Run the graph on a dummy input, and 
save the graph to a file

Will only work if your model doesn’t 
actually make use of dynamic graph - 
must build same graph on every 
forward pass, no loops / conditionals



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019137

Static PyTorch: ONNX Support
graph(%0 : Float(64, 1000)
      %1 : Float(100, 1000)
      %2 : Float(100)
      %3 : Float(10, 100)
      %4 : Float(10)) {
  %5 : Float(64, 100) = 
onnx::Gemm[alpha=1, beta=1, broadcast=1, 
transB=1](%0, %1, %2), scope: 
Sequential/Linear[0]
  %6 : Float(64, 100) = onnx::Relu(%5), 
scope: Sequential/ReLU[1]
  %7 : Float(64, 10) = onnx::Gemm[alpha=1, 
beta=1, broadcast=1, transB=1](%6, %3, 
%4), scope: Sequential/Linear[2]
  return (%7);
}

After exporting to ONNX, can 
run the PyTorch model in Caffe2



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019138

Static PyTorch



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

PyTorch vs TensorFlow, Static vs 
Dynamic

PyTorch
Dynamic Graphs

Static: ONNX, Caffe2

139

TensorFlow
Dynamic: Eager

Static: @tf.function



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

My Advice:
PyTorch is my personal favorite. Clean API, native dynamic graphs 
make it very easy to develop and debug. Can build model in 
PyTorch then export to Caffe2 with ONNX for production / mobile

TensorFlow is a safe bet for most projects. Syntax became a lot 
more intuitive after 2.0. Not perfect but has huge community and 
wide usage. Can use same framework for research and production. 
Probably use a high-level framework. Only choice if you want to run 
on TPUs.

140



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

Next Time: 
Training Neural Networks

141


