Lecture 6: Hardware and Software
Deep Learning Hardware, Dynamic & Static Computational Graph, PyTorch & TensorFlow
Administrative

Assignment 1 was due yesterday.

Assignment 2 is out, due Wednesday May 6.

Project proposal due Monday April 27.

Project-only office hours leading up to the deadline.
Administrative

Friday’s section will be on how to pick a project
Lecture 6: Hardware and Software

Hardware Computation Units, Dynamic & Static Computational Graph, PyTorch & TensorFLow
Where we are now...

Computational graphs

\[f = Wx \]

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]
Where we are now...

Neural Networks

Linear score function:

2-layer Neural Network

\[
\begin{align*}
 f &= W x \\
 f &= W_2 \max(0, W_1 x)
\end{align*}
\]

\[
\begin{array}{c}
 3072 \\
 W_1 \\
 h \\
 W_2 \\
 s
\end{array}
\]

3072 100 10

[Images of different categories: plane, car, bird, cat, deer, dog, frog, horse, ship, truck]
Where we are now...

Convolutional Neural Networks
Where we are now...

Learning network parameters through optimization

```python
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad  # perform parameter update
```
Today

- Deep learning hardware
 - CPU, GPU
- Deep learning software
 - PyTorch and TensorFlow
 - Static and Dynamic computation graphs
Deep Learning
Hardware
Inside a computer
Spot the CPU!
(central processing unit)
Spot the GPUs!
(graphics processing unit)
CPU vs GPU

<table>
<thead>
<tr>
<th></th>
<th>Cores</th>
<th>Clock Speed</th>
<th>Memory</th>
<th>Price</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU (Intel Core i7-7700k)</td>
<td>4 (8 threads with hyperthreading)</td>
<td>4.2 GHz</td>
<td>System RAM</td>
<td>$385</td>
<td>~540 GFLOPs FP32</td>
</tr>
<tr>
<td>GPU (NVIDIA RTX 2080 Ti)</td>
<td>3584</td>
<td>1.6 GHz</td>
<td>11 GB GDDR6</td>
<td>$1199</td>
<td>~13.4 TFLOPs FP32</td>
</tr>
</tbody>
</table>

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and “dumber”; great for parallel tasks
Example: Matrix Multiplication

\[A \times B \]

\[B \times C \]

\[A \times C \]
CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not well-optimized, a little unfair)
CPU vs GPU in practice

cuDNN much faster than “unoptimized” CUDA

Data from https://github.com/jcjohnson/cnn-benchmarks

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 6 - 17

April 23, 2020
GigaFLOPs per Dollar

- CPU
- GPU
- TPU

Deep Learning Explosion

TITAN V Tensor Cores

GeForce 8800 GTX

GeForce GTX 580 (AlexNet)

GTX 1080 Ti
NVIDIA vs AMD
NVIDIA vs AMD
CPU vs GPU

<table>
<thead>
<tr>
<th></th>
<th>Cores</th>
<th>Clock Speed</th>
<th>Memor y</th>
<th>Price</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU (Intel Core i7-7700k)</td>
<td>4 (8 threads with hyperthreading)</td>
<td>4.2 GHz</td>
<td>System RAM</td>
<td>$385</td>
<td>~540 GFLOPs FP32</td>
</tr>
<tr>
<td>GPU NVIDIA RTX 2080 Ti</td>
<td>3584</td>
<td>1.6 GHz</td>
<td>11 GB GDDR 6</td>
<td>$1099</td>
<td>~13 TFLOPs FP32 ~114 TFLOPs FP16</td>
</tr>
<tr>
<td>GPU (Data Center) NVIDIA V100</td>
<td>5120 CUDA, 640 Tensor</td>
<td>1.5 GHz</td>
<td>16/32 GB HBM2</td>
<td>$2.5/hr (GCP)</td>
<td>~8 TFLOPs FP64 ~16 TFLOPs FP32 ~125 TFLOPs FP16</td>
</tr>
<tr>
<td>TPU Google Cloud TPUv3</td>
<td>2 Matrix Units (MXUs) per core, 4 cores</td>
<td>?</td>
<td>128 GB HBM</td>
<td>$8/hr (GCP)</td>
<td>~420 TFLOPs (non-standard FP)</td>
</tr>
</tbody>
</table>

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and “dumber”; great for parallel tasks

TPU: Specialized hardware for deep learning
Programming GPUs

- **CUDA (NVIDIA only)**
 - Write C-like code that runs directly on the GPU
 - Optimized APIs: cuBLAS, cuFFT, cuDNN, etc
- **OpenCL**
 - Similar to CUDA, but runs on anything
 - Usually slower on NVIDIA hardware
- **HIP** https://github.com/ROCm-Developer-Tools/HIP
 - New project that automatically converts CUDA code to something that can run on AMD GPUs
- **Stanford CS 149**: http://cs149.stanford.edu/fall19/
CPU / GPU Communication

Model is here

Data is here
CPU / GPU Communication

If you aren’t careful, training can bottleneck on reading data and transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads to prefetch data
Deep Learning Software
A zoo of frameworks!

Caffe (UC Berkeley) → **Caffe2** (Facebook) mostly features absorbed by PyTorch

Torch (NYU / Facebook) → **PyTorch** (Facebook)

Theano (U Montreal) → **TensorFlow** (Google)

PaddlePaddle (Baidu)

Chainer (Preferred Networks)
The company has officially migrated its research infrastructure to PyTorch

MXNet (Amazon)

CNTK (Microsoft)

JAX (Google)

And others...
A zoo of frameworks!

- Caffe (UC Berkeley)
- Torch (NYU / Facebook)
- Theano (U Montreal)
- Caffe2 (Facebook)
- PyTorch (Facebook)
- TensorFlow (Google)
- PaddlePaddle (Baidu)
- MXNet (Amazon)
- Chainer (Preferred Networks)
- CNTK (Microsoft)
- JAX (Google)

We’ll focus on these

Developed by U Washington, CMU, MIT, Hong Kong U, etc but main framework of choice at AWS

The company has officially migrated its research infrastructure to PyTorch

And others...
Recall: Computational Graphs

\[f = Wx \]

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]
Recall: Computational Graphs

input image

weights

loss

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
Recall: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.
The point of deep learning frameworks

(1) Quick to develop and test new ideas
(2) Automatically compute gradients
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, OpenCL, etc)
Computational Graphs

Numpy

```python
import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x * y
b = a + z
c = np.sum(b)
```
Computational Graphs

Numpy

```python
import numpy as np
np.random.seed(0)

N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z

grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grada = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```
Computational Graphs

Numpy

```python
import numpy as np
np.random.seed(0)

N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)

grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```

Good:
- Clean API, easy to write numeric code

Bad:
- Have to compute our own gradients
- Can’t run on GPU
Computational Graphs

Numpy

```python
import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x * y
b = a + z
c = np.sum(b)
```

```
grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```

PyTorch

```python
import torch
N, D = 3, 4
x = torch.randn(N, D)
y = torch.randn(N, D)
z = torch.randn(N, D)
a = x * y
b = a + z
c = torch.sum(b)
```

Looks exactly like numpy!
Computational Graphs

Numpy

```python
import numpy as np
np.random.seed(0)

N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)

grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```

PyTorch

```python
import torch

N, D = 3, 4
x = torch.randn(N, D, requires_grad=True)
y = torch.randn(N, D)
z = torch.randn(N, D)

a = x * y
b = a + z
c = torch.sum(b)

c.backward()
print(x.grad)
```

PyTorch handles gradients for us!
Computational Graphs

Numpy

```python
import numpy as np
np.random.seed(0)

N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)

grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```

PyTorch

```python
import torch
device = 'cuda:0'
N, D = 3, 4
x = torch.randn(N, D, requires_grad=True,
                device=device)
y = torch.randn(N, D, device=device)
z = torch.randn(N, D, device=device)

a = x * y
b = a + z
c = torch.sum(b)

c.backward()
print(x.grad)
```

Trivial to run on GPU - just construct arrays on a different device!
PyTorch
(More details)
PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Autograd: Package for building computational graphs out of Tensors, and automatically computing gradients

Module: A neural network layer; may store state or learnable weights
PyTorch: Versions

For this class we are using PyTorch version 1.4
(Released January 2020)

Major API change in release 1.0

Be careful if you are looking at older PyTorch code (<1.0)!
PyTorch: Tensors

Running example: Train a two-layer ReLU network on random data with L2 loss.
PyTorch: Tensors

Create random tensors for data and weights

```
import torch

device = torch.device('cpu')

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)

learning_rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)

    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2
```
PyTorch: Tensors

Forward pass: compute predictions and loss

```python
import torch

device = torch.device('cpu')

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)

learning_rate = 1e-6

for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()

    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)

    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2
```
PyTorch: Tensors

import torch

device = torch.device('cpu')

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)

learning_rate = 1e-6
for t in range(500):
 h = x.mm(w1)
 h_relu = h.clamp(min=0)
 y_pred = h_relu.mm(w2)
 loss = (y_pred - y).pow(2).sum()
 grad_y_pred = 2.0 * (y_pred - y)
 grad_w2 = h_relu.t().mm(grad_y_pred)
 grad_h_relu = grad_y_pred.mm(w2.t())
 grad_h = grad_h_relu.clone()
 grad_h[h < 0] = 0
 grad_w1 = x.t().mm(grad_h)

 w1 -= learning_rate * grad_w1
 w2 -= learning_rate * grad_w2

Backward pass: manually compute gradients
PyTorch: Tensors

```python
import torch

device = torch.device('cpu')

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)

learning_rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()

    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)

    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2
```

Gradient descent step on weights
PyTorch: Tensors

To run on GPU, just use a different device!

```
import torch

device = torch.device('cuda:0')

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)

learning_rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()

    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)

    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2
```
Creating Tensors with `requires_grad=True` enables autograd.

Operations on Tensors with `requires_grad=True` cause PyTorch to build a computational graph.
PyTorch: Autograd

We will not want gradients (of loss) with respect to data

Do want gradients with respect to weights
PyTorch: Autograd

Forward pass looks exactly the same as before, but we don’t need to track intermediate values - PyTorch keeps track of them for us in the graph.

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()

with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_
```
PyTorch: Autograd

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()

with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_
```

Compute gradient of loss with respect to w1 and w2
PyTorch: Autograd

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
y_pred = x.mm(w1).clamp(min=0).mm(w2)
loss = (y_pred - y).pow(2).sum()

loss.backward()

with torch.no_grad():
w1 -= learning_rate * w1.grad
w2 -= learning_rate * w2.grad
w1.grad.zero_()
w2.grad.zero_
```

Make gradient step on weights, then zero them. Torch.no_grad means “don’t build a computational graph for this part”
PyTorch methods that end in underscore modify the Tensor in-place; methods that don’t return a new Tensor
PyTorch: New Autograd Functions

Define your own autograd functions by writing forward and backward functions for Tensors

Use ctx object to “cache” values for the backward pass, just like cache objects from A2

```python
class MyReLU(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return x.clamp(min=0)

    @staticmethod
    def backward(ctx, grad_y):
        x, = ctx.saved_tensors
        grad_input = grad_y.clone()
        grad_input[x < 0] = 0
        return grad_input
```
PyTorch: New Autograd Functions

Define your own autograd functions by writing forward and backward functions for Tensors

Use ctx object to “cache” values for the backward pass, just like cache objects from A2

Define a helper function to make it easy to use the new function

```python
class MyReLU(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return x.clamp(min=0)

    @staticmethod
    def backward(ctx, grad_y):
        x, = ctx.saved_tensors
        grad_input = grad_y.clone()
        grad_input[x < 0] = 0
        return grad_input

def my_relu(x):
    return MyReLU.apply(x)
```
PyTorch: New Autograd Functions

Can use our new autograd function in the forward pass

```python
class MyReLU(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return x.clamp(min=0)

    @staticmethod
    def backward(ctx, grad_y):
        x, = ctx.saved_tensors
        grad_input = grad_y.clone()
        grad_input[x < 0] = 0
        return grad_input

def my_relu(x):
    return MyReLU.apply(x)

N, D_in, H, D_out = 64, 1000, 100, 10

x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = my_relu(x.mm(w1)).mm(w2)
    loss = (y_pred - y).pow(2).sum().backward()

    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        w1.grad.zero_()
        w2.grad.zero_()
```

Fei-Fei Li, Ranjay Krishna, Danfei Xu
Lecture 6 - 55
April 23, 2020
PyTorch: New Autograd Functions

In practice you almost never need to define new autograd functions! Only do it when you need custom backward. In this case we can just use a normal Python function

```python
def my_relu(x):
    return x.clamp(min=0)
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = my_relu(x.mm(w1)).mm(w2)
    loss = (y_pred - y).pow(2).sum()

    loss.backward()

    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        w1.grad.zero_()
        w2.grad.zero_()
```
PyTorch: nn

Higher-level wrapper for working with neural nets

Use this! It will make your life easier

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-2
for t in range(500):
y_pred = model(x)
loss = torch.nn.functional.mse_loss(y_pred, y)

loss.backward()

with torch.no_grad():
    for param in model.parameters():
        param -= learning_rate * param.grad
model.zero_grad()
```
PyTorch: nn

Define our model as a sequence of layers; each layer is an object that holds learnable weights.

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(  
    torch.nn.Linear(D_in, H),  
    torch.nn.ReLU(),  
    torch.nn.Linear(H, D_out))

learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()

    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad
    model.zero_grad()
```
PyTorch: nn

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(     
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)

    loss.backward()

    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

    model.zero_grad()
```

Forward pass: feed data to model, and compute loss
PyTorch: nn

```
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()

    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

    model.zero_grad()
```

Forward pass: feed data to model, and compute loss

torch.nn.functional has useful helpers like loss functions
PyTorch: nn

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()

    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

model.zero_grad()
```

Backward pass: compute gradient with respect to all model weights (they have requires_grad=True)
PyTorch: nn

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()

    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

model.zero_grad()
```

Make gradient step on each model parameter (with gradients disabled)
Use an optimizer for different update rules

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: optim

After computing gradients, use optimizer to update params and zero gradients

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: nn

Define new Modules

A PyTorch **Module** is a neural net layer; it inputs and outputs Tensors

Modules can contain weights or other modules

You can define your own Modules using autograd!

```python
import torch

class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)

    def forward(self, x):
        h_relu = self.linear1(x).clamp(min=0)
        y_pred = self.linear2(h_relu)
        return y_pred

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = TwoLayerNet(D_in, H, D_out)

optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
```

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 6 - 65

April 23, 2020
PyTorch: **nn**

Define new Modules

Define our whole model as a single Module

```python
import torch

class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)

    def forward(self, x):
        h_relu = self.linear1(x).clamp(min=0)
        y_pred = self.linear2(h_relu)
        return y_pred

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = TwoLayerNet(D_in, H, D_out)

optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: nn
Define new Modules

Initializer sets up two children (Modules can contain modules)
PyTorch: `nn` Modules

Define new Modules

Define forward pass using child modules

No need to define backward - autograd will handle it

```python
import torch

class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)

    def forward(self, x):
        h_relu = self.linear1(x).clamp(min=0)
        y_pred = self.linear2(h_relu)
        return y_pred

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
model = TwoLayerNet(D_in, H, D_out)

optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):  
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)

    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: nn
Define new Modules

```python
import torch

class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)

    def forward(self, x):
        h_relu = self.linear1(x).clamp(min=0)
        y_pred = self.linear2(h_relu)
        return y_pred

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = TwoLayerNet(D_in, H, D_out)

optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```

Construct and train an instance of our model
PyTorch: nn
Define new Modules

Very common to mix and match custom Module subclasses and Sequential containers

```python
import torch

class ParallelBlock(torch.nn.Module):
    def __init__(self, D_in, D_out):
        super(ParallelBlock, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, D_out)
        self.linear2 = torch.nn.Linear(D_in, D_out)
    def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    ParallelBlock(D_in, H),
    ParallelBlock(H, H),
    torch.nn.Linear(H, D_out))

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: nn
Define new Modules

Define network component as a Module subclass

```python
import torch

class ParallelBlock(torch.nn.Module):
    def __init__(self, D_in, D_out):
        super(ParallelBlock, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, D_out)
        self.linear2 = torch.nn.Linear(D_in, D_out)
    def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    ParallelBlock(D_in, H),
    ParallelBlock(H, H),
    torch.nn.Linear(H, D_out))

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: nn
Define new Modules

Stack multiple instances of the component in a sequential

```python
import torch

class ParallelBlock(torch.nn.Module):
    def __init__(self, D_in, D_out):
        super(ParallelBlock, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, D_out)
        self.linear2 = torch.nn.Linear(D_in, D_out)
    
    def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    ParallelBlock(D_in, H),
    ParallelBlock(H, H),
    torch.nn.Linear(H, D_out))

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision

https://github.com/pytorch/vision

```python
import torch
import torchvision

alexnet = torchvision.models.alexnet(pretrained=True)
vgg16 = torchvision.models.vgg16(pretrained=True)
resnet101 = torchvision.models.resnet101(pretrained=True)
```
PyTorch: torch.utils.tensorboard

A python wrapper around Tensorflow’s web-based visualization tool.
PyTorch: Computational Graphs

input image

loss

Figure reproduced with permission from a Twitter post by Andrej Karpathy.
PyTorch: **Dynamic Computation Graphs**

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```
PyTorch: **Dynamic** Computation Graphs

Create Tensor objects

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```
PyTorch: **Dynamic** Computation Graphs

```
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```

Build graph data structure AND perform computation
PyTorch: **Dynamic** Computation Graphs

```
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```

Build graph data structure AND perform computation
PyTorch: **Dynamic** Computation Graphs

Search for path between loss and w1, w2 (for backprop) AND perform computation
PyTorch: **Dynamic** Computation Graphs

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```

Throw away the graph, backprop path, and rebuild it from scratch on every iteration
PyTorch: **Dynamic** Computation Graphs

```
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```

Build graph data structure AND perform computation
PyTorch: Dynamic Computation Graphs

```
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```

Build graph data structure AND perform computation.
PyTorch: **Dynamic** Computation Graphs

import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
 y_pred = x.mm(w1).clamp(min=0).mm(w2)
 loss = (y_pred - y).pow(2).sum()

loss.backward()

Search for path between loss and w1, w2 (for backprop) AND perform computation
PyTorch: **Dynamic** Computation Graphs

Building the graph and **computing** the graph happen at the same time.

Seems inefficient, especially if we are building the same graph over and over again...

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```
Static Computation Graphs

Alternative: **Static** graphs

Step 1: Build computational graph describing our computation (including finding paths for backprop)

Step 2: Reuse the same graph on every iteration

```python
graph = build_graph()
for x_batch, y_batch in loader:
    run_graph(graph, x=x_batch, y=y_batch)
```
TensorFlow
TensorFlow Versions

Pre-2.0 (1.14 latest)
Default static graph, optionally dynamic graph (eager mode).

2.1 (March 2020)
Default dynamic graph, optionally static graph.
We use 2.1 in this class.
TensorFlow: Neural Net (Pre-2.0)

```python
import numpy as np
import tensorflow as tf

N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

with tf.Session() as sess:
    values = {x: np.random.randn(N, D),
              w1: np.random.randn(D, H),
              w2: np.random.randn(H, D),
              y: np.random.randn(N, D),}
    out = sess.run([loss, grad_w1, grad_w2],
                    feed_dict=values)
    loss_val, grad_w1_val, grad_w2_val = out
```

(Assume imports at the top of each snippet)
TensorFlow: Neural Net (Pre-2.0)

First **define** computational graph

Then **run** the graph many times

```python
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

with tf.Session() as sess:
    values = {x: np.random.randn(N, D),
              w1: np.random.randn(D, H),
              w2: np.random.randn(H, D),
              y: np.random.randn(N, D),}
    out = sess.run([loss, grad_w1, grad_w2],
                   feed_dict=values)
    loss_val, grad_w1_val, grad_w2_val = out
```
TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 2.0+:
“Eager” Mode by default

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights
with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2])
```

```python
h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tf.gradients(loss, [w1, w2])
```

Tensorflow 1.13

```python
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))
h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tf.gradients(loss, [w1, w2])
```

```python
values = {
x: np.random.randn(N, D),
w1: np.random.randn(D, H),
w2: np.random.randn(H, D),
y: np.random.randn(N, D),
}
out = sess.run([loss, grad_w1, grad_w2], feed_dict=values)
loss_val, grad_w1_val, grad_w2_val = out
```
TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 2.0+:
“Eager” Mode by default

Tensorflow 1.13

```
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
  h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

with tf.Session() as sess:
  values = {
x: np.random.randn(N, D),
w1: np.random.randn(D, H),
w2: np.random.randn(H, D),
y: np.random.randn(N, D),
}
  out = sess.run([loss, grad_w1, grad_w2],
                 feed_dict=values)
  loss_val, grad_w1_val, grad_w2_val = out
```
TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 2.0+: "Eager" Mode by default

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 6 - 93

April 23, 2020
TensorFlow: Neural Net

Convert input numpy arrays to TF tensors. Create weights as tf.Variable.

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2]).
```
TensorFlow: Neural Net

Use `tf.GradientTape()` context to build **dynamic** computation graph.

```
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2]).
```
All forward-pass operations in the contexts (including function calls) get traced for computing gradient later.

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2]).
```
TensorFlow: Neural Net

Forward pass

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2]).
```
TensorFlow: Neural Net

tape.gradient() uses the traced computation graph to compute gradient for the weights

```python
N, D, H = 64, 1000, 100

x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
  h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2])
```
TensorFlow: Neural Net

```python
N, D, H = 64, 1000, 100

x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2])
```

Backward pass
Train the network: Run the training step over and over, use gradient to update weights

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

learning_rate = 1e-6
for t in range(50):
    with tf.GradientTape() as tape:
        h = tf.maximum(tf.matmul(x, w1), 0)
        y_pred = tf.matmul(h, w2)
        diff = y_pred - y
        loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
        gradients = tape.gradient(loss, [w1, w2])
w1.assign(w1 - learning_rate * gradients[0])
w2.assign(w2 - learning_rate * gradients[1])
```
TensorFlow: Neural Net

Train the network: Run the training step over and over, use gradient to update weights

\[
x = \text{tf.convert_to_tensor}(\text{np.random.randn}(N, D), \text{np.float32})
\]
\[
y = \text{tf.convert_to_tensor}(\text{np.random.randn}(N, D), \text{np.float32})
\]
\[
w1 = \text{tf.Variable}(\text{tf.random.uniform}((D, H))) \quad \# \text{weights}
\]
\[
w2 = \text{tf.Variable}(\text{tf.random.uniform}((H, D))) \quad \# \text{weights}
\]

```
learning_rate = 1e-6
for t in range(50):
    with tf.GradientTape() as tape:
        h = tf.maximum(tf.matmul(x, w1), 0)
        y_pred = tf.matmul(h, w2)
        diff = y_pred - y
        loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
        gradients = tape.gradient(loss, [w1, w2])
        w1.assign(w1 - learning_rate * gradients[0])
        w2.assign(w2 - learning_rate * gradients[1])
```
TensorFlow:
Optimizer

Can use an **optimizer** to compute gradients and update weights

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

optimizer = tf.optimizers.SGD(1e-6)

learning_rate = 1e-6
for t in range(50):
    with tf.GradientTape() as tape:
        h = tf.matmul(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2])
optimizer.apply_gradients(zip(gradients, [w1, w2]))
```
TensorFlow: Loss

Use predefined common losses

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

optimizer = tf.optimizers.SGD(1e-6)

for t in range(50):
    with tf.GradientTape() as tape:
        h = tf.maximum(tf.matmul(x, w1), 0)
        y_pred = tf.matmul(h, w2)
        diff = y_pred - y

        loss = tf.losses.MeanSquaredError()(y_pred, y)

    gradients = tape.gradient(loss, [w1, w2])
    optimizer.apply_gradients(zip(gradients, [w1, w2]))
```
Keras: High-Level Wrapper

Keras is a layer on top of TensorFlow, makes common things easy to do

(Used to be third-party, now merged into TensorFlow)

```
N, D, H = 64, 1000, 100

x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(H, input_shape=(D,),
                                 activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(D))
optimizer = tf.optimizers.SGD(1e-1)

losses = []
for t in range(50):
    with tf.GradientTape() as tape:
        y_pred = model(x)
        loss = tf.losses.MeanSquaredError()(y_pred, y)
        gradients = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(gradients, model.trainable_variables))
```
Keras: High-Level Wrapper

Define model as a sequence of layers

Get output by calling the model

Apply gradient to all trainable variables (weights) in the model

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(H, input_shape=(D,),
                                activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(D))
optimizer = tf.optimizers.SGD(learning_rate=1e-1)
losses = []
for t in range(50):
    with tf.GradientTape() as tape:
        y_pred = model(x)
        loss = tf.losses.MeanSquaredError()(y_pred, y)
    gradients = tape.gradient(
        loss, model.trainable_variables)
    optimizer.apply_gradients(
        zip(gradients, model.trainable_variables))
```
Keras: High-Level Wrapper

Keras can handle the training loop for you!

```python
N, D, H = 64, 1000, 100

x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(H, input_shape=(D,),
                                 activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(D))
optimizer = tf.optimizers.SGD(1e-1)
model.compile(loss=tf.keras.losses.MeanSquaredError(),
              optimizer=optimizer)
history = model.fit(x, y, epochs=50, batch_size=N)
```
TensorFlow: High-Level Wrappers

Keras (https://keras.io/)
tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)
tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)
Sonnet (https://github.com/deepmind/sonnet)
TFLearn (http://tflearn.org/)
TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)
@tf.function:
compile static graph

tf.function decorator (implicitly) compiles python functions to static graph for better performance

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(H, input_shape=(D,),
                                 activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(D))
optimizer = tf.optimizers.SGD(learning_rate=1e-1)

@tf.function
def model_func(x, y):
    y_pred = model(x)
    loss = tf.losses.MeanSquaredError()(y_pred, y)
    return y_pred, loss

for t in range(50):
    with tf.GradientTape() as tape:
        y_pred, loss = model_func(x, y)
        gradients = tape.gradient(
                               loss, model.trainable_variables)
    optimizer.apply_gradients(
                          zip(gradients, model.trainable_variables))
```
@tf.function: compile static graph

Here we compare the forward-pass time of the same model under dynamic graph mode and static graph mode.

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(H, input_shape=(D,), activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(D))
optimizer = tf.optimizers.SGD(1e-1)

@tf.function
def model_static(x, y):
y_pred = model(x)
loss = tf.losses.MeanSquaredError()(y_pred, y)
return y_pred, loss

def model_dynamic(x, y):
y_pred = model(x)
loss = tf.losses.MeanSquaredError()(y_pred, y)

print("dynamic graph: ", timeit.timeit(lambda: model_dynamic(x, y), number=10))
print("static graph: ", timeit.timeit(lambda: model_static(x, y), number=10))

dynamic graph: 0.02520249200000535
static graph: 0.03932226699998864
```
@tf.function:
compile static graph

Static graph is in theory faster than dynamic graph, but the performance gain depends on the type of model / layer / computation graph.
@tf.function: compile static graph

Static graph is in theory faster than dynamic graph, but the performance gain depends on the type of model / layer / computation graph.

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(H, input_shape=(D,), activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(D))
optimizer = tf.optimizers.SGD(1e-1)

@tf.function
def model_static(x, y):
    y_pred = model(x)
    loss = tf.losses.MeanSquaredError()(y_pred, y)
    return y_pred, loss

def model_dynamic(x, y):
    y_pred = model(x)
    loss = tf.losses.MeanSquaredError()(y_pred, y)
    print("dynamic graph:", timeit.timeit(lambda: model_dynamic(x, y), number=1000))
    print("static graph:", timeit.timeit(lambda: model_static(x, y), number=1000))

dynamic graph: 2.36484115400000325
static graph: 1.1723986679999143
```
Static vs Dynamic: Optimization

With static graphs, framework can **optimize** the graph for you before it runs!
Static PyTorch: ONNX Support

You can export a PyTorch model to ONNX

Run the graph on a dummy input, and save the graph to a file

Will only work if your model doesn’t actually make use of dynamic graph - must build same graph on every forward pass, no loops / conditionals

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

dummy_input = torch.randn(N, D_in)
torch.onnx.export(model, dummy_input,
                  'model.proto',
                  verbose=True)
```
Static PyTorch: ONNX Support

After exporting to ONNX, can run the PyTorch model in Caffe2
Static PyTorch: ONNX Support

ONNX is an open-source standard for neural network models

Goal: Make it easy to train a network in one framework, then run it in another framework

Supported by PyTorch, Caffe2, Microsoft CNTK, Apache MXNet

https://github.com/onnx/onnx
Static PyTorch: TorchScript

```python
class MyCell(torch.nn.Module):
    def __init__(self):
        super(MyCell, self).__init__()
        self.linear = torch.nn.Linear(4, 4)

    def forward(self, x, h):
        new_h = torch.tanh(self.linear(x) + h)
        return new_h, new_h

my_cell = MyCell()
x, h = torch.rand(3, 4), torch.rand(3, 4)
traced_cell = torch.jit.trace(my_cell, (x, h))
print(traced_cell(x, h))
```

Build static graph with `torch.jit.trace`

```
graph(%self.1 :
  __torch__.torch.nn.modules.module.___torch_mangle_4.Module,
  %input : Float(3, 4),
  %h : Float(3, 4)):
  %19 :
  __torch__.torch.nn.modules.module.___torch_mangle_3.Module =
  prim::GetAttr[name="linear"](%self.1)
  %21 : Tensor =
  prim::CallMethod[name="forward"](%19, %input)
  %12 : int = prim::Constant[value=1]() # <ipython-input-40-26946221023e>:7:0
  %13 : Float(3, 4) = aten::add(%21, %h, %12) # <ipython-input-40-26946221023e>:7:0
  %14 : Float(3, 4) = aten::tanh(%13) # <ipython-input-40-26946221023e>:7:0
  %15 : (Float(3, 4), Float(3, 4)) =
  prim::TupleConstruct(%14, %14)
  return (%15)
```
PyTorch vs TensorFlow, Static vs Dynamic

PyTorch
- Dynamic Graphs
- Static: ONNX, Caffe2, TorchScript

TensorFlow
- Dynamic: Eager
- Static: @tf.function
Static vs Dynamic: Serialization

Static

Once graph is built, can **serialize** it and run it without the code that built the graph!

Dynamic

Graph building and execution are intertwined, so always need to keep code around.
Dynamic Graph Applications

- Recurrent networks

Figure copyright IEEE, 2015. Reproduced for educational purposes.
Dynamic Graph Applications

- Recurrent networks
- Recursive networks

The cat ate a big rat
Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular networks

Andreas et al, “Neural Module Networks”, CVPR 2016

Figure copyright Justin Johnson, 2017. Reproduced with permission.
Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular networks
- Neural programs

Reed et al., “Neural Programmer-Interpreters”, ICLR 2016
Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks
- Neural programs
- (Your creative idea here)
Model Parallel vs. Data Parallel

Model parallel: split computation graph into parts & distribute to GPUs/ nodes

Data parallel: split minibatch into chunks & distribute to GPUs/ nodes

Model Parallel

Data Parallel
PyTorch: Data Parallel

nn.DataParallel
Pro: Easy to use (just wrap the model and run training script as normal)
Con: Single process & single node. Can be bottlenecked by CPU with large number of GPUs (8+).

nn.DistributedDataParallel
Pro: Multi-nodes & multi-process training
Con: Need to hand-designate device and manually launch training script for each process / nodes.

 TensorFlow: Data Parallel

\[
\text{strategy} = \text{tf.distribute.MirroredStrategy()}
\]

```python
with strategy.scope():
    model = tf.keras.Sequential([
        tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),
        tf.keras.layers.MaxPooling2D(),
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(64, activation='relu'),
        tf.keras.layers.Dense(10)
    ])

model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              optimizer=tf.keras.optimizers.Adam(),
              metrics=['accuracy'])
```

https://www.tensorflow.org/tutorials/distribute/keras
PyTorch vs. TensorFlow: Academia

PyTorch vs. TensorFlow: Academia

<table>
<thead>
<tr>
<th>CONFERENCE</th>
<th>PT 2018</th>
<th>PT 2019</th>
<th>PT GROWTH</th>
<th>TF 2018</th>
<th>TF 2019</th>
<th>TF GROWTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPR</td>
<td>82</td>
<td>280</td>
<td>240%</td>
<td>116</td>
<td>125</td>
<td>7.7%</td>
</tr>
<tr>
<td>NAACL</td>
<td>12</td>
<td>66</td>
<td>450%</td>
<td>34</td>
<td>21</td>
<td>-38.2%</td>
</tr>
<tr>
<td>ACL</td>
<td>26</td>
<td>103</td>
<td>296%</td>
<td>34</td>
<td>33</td>
<td>-2.9%</td>
</tr>
<tr>
<td>ICLR</td>
<td>24</td>
<td>70</td>
<td>192%</td>
<td>54</td>
<td>53</td>
<td>-1.9%</td>
</tr>
<tr>
<td>ICML</td>
<td>23</td>
<td>69</td>
<td>200%</td>
<td>40</td>
<td>53</td>
<td>32.5%</td>
</tr>
</tbody>
</table>

PyTorch vs. TensorFlow: Industry

- No official survey / study on the comparison.

- A quick search on a job posting website turns up 2389 search results for TensorFlow and 1366 for PyTorch.

- The trend is unclear. Industry is also known to be slower on adopting new frameworks.

- TensorFlow mostly dominates mobile deployment / embedded systems.
My Advice:

PyTorch is my personal favorite. Clean API, native dynamic graphs make it very easy to develop and debug. Can build model using the default API then compile static graph using JIT.

TensorFlow is a safe bet for most projects. Syntax became a lot more intuitive after 2.0. Not perfect but has huge community and wide usage. Can use same framework for research and production. Probably use a high-level framework.
Next Time:
Training Neural Networks