Lecture 12:
Generative Models
● A3 is out. Due May 25.
● Milestone was due May 10th
 ○ Read website page for milestone requirements.
 ○ Need to Finish data preprocessing and initial results by then.
● Midterm and A2 grades will be out this week
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised vs Unsupervised Learning

Supervised Learning

Data: \((x, y)\)
x is data, \(y\) is label

Goal: Learn a *function* to map \(x \rightarrow y\)

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

DOG, DOG, CAT

Object Detection
Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, **no labels**!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.
Supervised vs Unsupervised Learning

Unsupervised Learning

Data: \(x\)
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, density estimation, etc.

K-means clustering
Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, density estimation, etc.

Principal Component Analysis
(Dimensionality reduction)

This image from Matthias Scholz is CC0 public domain
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, density estimation, etc.
Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
- x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Unsupervised Learning

Data: x
- Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, density estimation, etc.
Generative Modeling

Given training data, generate new samples from same distribution

Training data \sim p_{\text{data}}(x)

Objectives:
1. Learn $p_{\text{model}}(x)$ that approximates $p_{\text{data}}(x)$
2. **Sampling new x from $p_{\text{model}}(x)$**
Generative Modeling

Given training data, generate new samples from same distribution

Training data \(\sim p_{\text{data}}(x) \)

Formulate as density estimation problems:
- **Explicit density estimation**: explicitly define and solve for \(p_{\text{model}}(x) \)
- **Implicit density estimation**: learn model that can sample from \(p_{\text{model}}(x) \) **without** explicitly defining it.
Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.
- Learn useful features for downstream tasks such as classification.
- Getting insights from high-dimensional data (physics, medical imaging, etc.)
- Modeling physical world for simulation and planning (robotics and reinforcement learning applications)
- Many more ...

Figures from L-R are copyright: (1) Alec Radford et al. 2016; (2) Phillip Isola et al. 2017. Reproduced with authors permission (3) BAIR Blog.
Taxonomy of Generative Models

Generative models

Explicit density

Tractable density
- Fully Visible Belief Nets
 - NADE
 - MADE
 - PixelRNN/CNN
 - NICE / RealNVP
 - Glow
 - Fjord

Implicit density

Approximate density
- Variational Autoencoder

Markov Chain
- Boltzmann Machine
- Variational

Direct
- GAN
- GSN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
Today: discuss 3 most popular types of generative models today

- Fully Visible Belief Nets
 - NADE
 - MADE
 - PixelRNN/CNN
 - NICE / RealNVP
 - Glow
 - Fjord

- Variational Autoencoder

- Boltzmann Machine
PixelRNN and PixelCNN
(A very brief overview)
Fully visible belief network (FVBN)

Explicit density model

\[p(x) = p(x_1, x_2, \ldots, x_n) \]

- Likelihood of image x
- Joint likelihood of each pixel in the image
Fully visible belief network (FVBN)

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, \ldots, x_{i-1})$$

Likelihood of image x Probability of i’th pixel value given all previous pixels

Then maximize likelihood of training data
Fully visible belief network (FVBN)

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, \ldots, x_{i-1})$$

- Likelihood of image x
- Probability of i'th pixel value given all previous pixels
- Complex distribution over pixel values => Express using a neural network!

Then maximize likelihood of training data
Recurrent Neural Network

\[p(x_i|x_1, \ldots, x_{i-1}) \]
PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)
PixelRNN \cite{van der Oord et al. 2016}

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)
PixelRNN \[\text{[van der Oord et al. 2016]}\]

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)
PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

Drawback: sequential generation is slow in both training and inference!
PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region (masked convolution)
PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region (masked convolution)

Training is faster than PixelRNN (can parallelize convolutions since context region values known from training images)

Generation is still slow:
For a 32x32 image, we need to do forward passes of the network 1024 times for a single image
Generation Samples

32x32 CIFAR-10

32x32 ImageNet

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.
PixelRNN and PixelCNN

Pros:
- Can explicitly compute likelihood $p(x)$
- Easy to optimize
- Good samples

Con:
- Sequential generation => slow

Improving PixelCNN performance
- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 (PixelCNN++)
Taxonomy of Generative Models

Generative models

- Explicit density
- Tractable density
 - Fully Visible Belief Nets
 - NADE
 - MADE
 - PixelRNN/CNN
 - NICE / RealNVP
 - Glow
 - Ffjord

- Implicit density
- Approximate density
 - Variational Autoencoder
- Markov Chain
 - Variational
 - Boltzmann Machine
 - Markov Chain
 - GSN
 - GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
Variational Autoencoders (VAE)
So far...

PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

\[p_\theta(x) = \prod_{i=1}^{n} p_\theta(x_i | x_1, \ldots, x_{i-1}) \]
So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

\[p_\theta(x) = \prod_{i=1}^{n} p_\theta(x_i|x_1, \ldots, x_{i-1}) \]

Variational Autoencoders (VAEs) define intractable density function with latent \(z \):

\[p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz \]

No dependencies among pixels, can generate all pixels at the same time!

Cannot optimize directly, derive and optimize lower bound on likelihood instead
So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

\[p_\theta(x) = \prod_{i=1}^{n} p_\theta(x_i|x_1, \ldots, x_{i-1}) \]

Variational Autoencoders (VAEs) define intractable density function with latent \(z \):

\[p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz \]

No dependencies among pixels, can generate all pixels at the same time!

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Why latent \(z \)?
Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

[Diagram showing the components of an autoencoder: Input data x, Encoder, Features z, Decoder, and output \hat{x}]
Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

\[z \text{ usually smaller than } x \]
(dimensionality reduction)

Q: Why dimensionality reduction?
Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

z usually smaller than x (dimensionality reduction)

Q: Why dimensionality reduction?

A: Want features to capture meaningful factors of variation in data
Some background first: Autoencoders

How to learn this feature representation?

Train such that features can be used to reconstruct original data

“Autoencoding” - encoding input itself

Input data \(x \) \rightarrow \text{Encoder} \rightarrow \text{Features} \rightarrow \hat{x} \rightarrow \text{Decoder} \rightarrow \text{Reconstructed data}
Some background first: Autoencoders

Train such that features can be used to reconstruct original data

\[\text{L2 Loss function:} \quad \| x - \hat{x} \|^2 \]

Doesn't use labels!

Encoder: 4-layer conv
Decoder: 4-layer upconv
Some background first: Autoencoders

After training, throw away decoder.
Some background first: Autoencoders

Transfer from large, unlabeled dataset to small, labeled dataset.

Encoder can be used to initialize a supervised model.

Loss function (Softmax, etc)

Predicted Label \hat{y}

Features z

Classifier

Input data x

Fine-tune encoder jointly with classifier

Train for final task (sometimes with small data)

bird plane
dog deer truck
Some background first: Autoencoders

Autoencoders can reconstruct data, and can learn features to initialize a supervised model.

Features capture factors of variation in training data.

But we can’t generate new images from an autoencoder because we don’t know the space of z.

How do we make autoencoder a generative model?
Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!
Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data $\{x^{(i)}\}_i^{N}$ is generated from the distribution of unobserved (latent) representation z

Sample from true conditional $p_{\theta^*}(x \mid z^{(i)})$

Sample from true prior $z^{(i)} \sim p_{\theta^*}(z)$

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from the distribution of unobserved (latent) representation z

Sample from true conditional
$$p_{\theta^*}(x \mid z^{(i)})$$

Sample from true prior
$$z^{(i)} \sim p_{\theta^*}(z)$$

Intuition (remember from autoencoders!):
x is an image, z is latent factors used to generate x: attributes, orientation, etc.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders

We want to estimate the true parameters θ^* of this generative model given training data x.

Sample from true conditional $p_{\theta^*}(x \mid z^{(i)})$

Sample from true prior $z^{(i)} \sim p_{\theta^*}(z)$

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders

We want to estimate the true parameters θ^* of this generative model given training data x.

How should we represent this model?

Sample from true conditional

$p_{\theta^*}(x \mid z^{(i)})$

Sample from true prior

$z^{(i)} \sim p_{\theta^*}(z)$

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders

We want to estimate the true parameters θ^* of this generative model given training data x.

How should we represent this model?

Choose prior $p(z)$ to be simple, e.g. Gaussian. Reasonable for latent attributes, e.g. pose, how much smile.

Sample from true conditional

$$p_{\theta^*}(x \mid z^{(i)})$$

Sample from true prior

$$z^{(i)} \sim p_{\theta^*}(z)$$

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders

We want to estimate the true parameters θ^* of this generative model given training data x.

How should we represent this model?

Choose prior $p(z)$ to be simple, e.g. Gaussian. Reasonable for latent attributes, e.g. pose, how much smile.

Conditional $p(x|z)$ is complex (generates image) => represent with neural network.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders

We want to estimate the true parameters θ^* of this generative model given training data x.

How to train the model?

Sample from true conditional $p_{\theta^*}(x \mid z^{(i)})$

Decoder network

Sample from true prior $z^{(i)} \sim p_{\theta^*}(z)$

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders

We want to estimate the true parameters θ^* of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood of training data

$$p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz$$

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders

We want to estimate the true parameters θ^* of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood of training data

$$p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz$$

Q: What is the problem with this?

Intractable!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders: Intractability

Data likelihood: \(p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz \)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders: Intractability

Data likelihood: $p_{\theta}(x) = \int p_{\theta}(z)p_{\theta}(x|z)dz$

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders: Intractability

Data likelihood: \(p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz \)

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders: Intractability

Data likelihood: \(p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz \)

Intractable to compute \(p(x|z) \) for every \(z \)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders: Intractability

Data likelihood: \(p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz \)

Intractable to compute \(p(x|z) \) for every \(z \)!

\[
\log p(x) \approx \log \frac{1}{k} \sum_{i=1}^{k} p(x|z^{(i)}) \text{, where } z^{(i)} \sim p(z)
\]

Monte Carlo estimation is too high variance

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders: Intractability

Data likelihood: $p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz$

Posterior density: $p_\theta(z|x) = p_\theta(x|z)p_\theta(z)/p_\theta(x)$

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders: Intractability

Data likelihood: \[p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz \]

Posterior density also intractable: \[p_\theta(z|x) = \frac{p_\theta(x|z)p_\theta(z)}{p_\theta(x)} \]

Solution: In addition to modeling \(p_\theta(x|z) \), learn \(q_\phi(z|x) \) that approximates the true posterior \(p_\theta(z|x) \).

Will see that the approximate posterior allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize.

Variational inference is to approximate the unknown posterior distribution from only the observed data \(x \)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders

$$\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z)$$
Variational Autoencoders

\[\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z) \]

Taking expectation wrt. \(z \)
(using encoder network) will come in handy later
Variational Autoencoders

\[
\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z)
\]

\[
= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} \mid z)p_\theta(z)}{p_\theta(z \mid x^{(i)})} \right] \quad (\text{Bayes’ Rule})
\]
Variational Autoencoders

$$\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \quad (\text{Bayes’ Rule})$$

$$= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)}) q_\phi(z | x^{(i)})} \right] \quad (\text{Multiply by constant})$$
Variational Autoencoders

\[
\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z | x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z)
\]

\[
= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \quad \text{(Bayes’ Rule)}
\]

\[
= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \frac{q_\phi(z | x^{(i)})}{q_\phi(z | x^{(i)})} \right] \quad \text{(Multiply by constant)}
\]

\[
= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z)} \right] + \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \quad \text{(Logarithms)}
\]
Variational Autoencoders

\[
\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z)
\]

\[
= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \quad (\text{Bayes’ Rule})
\]

\[
= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{q_\phi(z | x^{(i)})} \right] \quad (\text{Multiply by constant})
\]

\[
= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z)} \right] + \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \quad (\text{Logarithms})
\]

\[
= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) \| p_\theta(z)) + D_{KL}(q_\phi(z | x^{(i)}) \| p_\theta(z | x^{(i)}))
\]

The expectation wrt. z (using encoder network) let us write nice KL terms
Variational Autoencoders

$$\log p_\theta(x^{(i)}) = E_{z \sim q_\psi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right]$$

$$= E_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \right]$$

$$= E_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{q_\psi(z | x^{(i)})} \cdot \frac{q_\psi(z | x^{(i)})}{q_\psi(z | x^{(i)})} \right]$$

$$= E_z \left[\log p_\theta(x^{(i)} | z) \right] - E_z \left[\log \frac{q_\psi(z | x^{(i)})}{p_\theta(z)} \right] + E_z \left[\log \frac{q_\psi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right]$$

$$= E_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\psi(z | x^{(i)}) \| p_\theta(z)) + D_{KL}(q_\psi(z | x^{(i)}) \| p_\theta(z | x^{(i)}))$$

Decoder network gives $p_\theta(x|z)$, can compute estimate of this term through sampling (need some trick to differentiate through sampling).

This KL term (between Gaussians for encoder and z prior) has nice closed-form solution!

$p_\theta(z|x)$ intractable (saw earlier), can’t compute this KL term :(But we know KL divergence always >= 0.
Variational Autoencoders

\[
\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z)
\]

\[
= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \quad \text{(Bayes’ Rule)}
\]

\[
= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z) q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)}) q_\phi(z | x^{(i)})} \right] \quad \text{(Multiply by constant)}
\]

\[
= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z)} \right] + \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \quad \text{(Logarithms)}
\]

\[
= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) || p_\theta(z)) + D_{KL}(q_\phi(z | x^{(i)}) || p_\theta(z | x^{(i)}))
\]

Decoding network gives \(p_\theta(x|z) \), can compute estimate of this term through sampling.

This KL term (between Gaussians for encoder and \(z \) prior) has nice closed-form solution!

\(p_\theta(z|x) \) intractable (saw earlier), can’t compute this KL term :(But we know KL divergence always \(\geq 0 \).
Variational Autoencoders

\[
\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z | x^{(i)})} \left[\log p_\theta(x^{(i)} | z) \right] \quad \text{(p_\theta(x^{(i)}) Does not depend on z)}
\]

\[
= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z) p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \quad \text{(Bayes’ Rule)}
\]

\[
= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] + \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \quad \text{(Multiply by constant)}
\]

\[
= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] + \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \quad \text{(Logarithms)}
\]

\[
\mathcal{L}(x^{(i)}, \theta, \phi) \geq 0
\]

Tractable lower bound which we can take gradient of and optimize! (p_\theta(x|z) differentiable, KL term differentiable)
Variational Autoencoders

\[\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z) \]

\[= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \quad \text{(Bayes’ Rule)} \]

\[= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{q_\phi(z) q_\phi(z | x^{(i)})} \right] \quad \text{(Multiply by constant)} \]

\[= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z)} \right] + \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \quad \text{(Logarithms)} \]

\[= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) \| p_\theta(z)) + D_{KL}(q_\phi(z | x^{(i)}) \| p_\theta(z | x^{(i)})) \]

\[\mathcal{L}(x^{(i)}, \theta, \phi) \]

Decoder: reconstruct the input data

Encoder: make approximate posterior distribution close to prior

Tractable lower bound which we can take gradient of and optimize! (\(p_\theta(x|z)\) differentiable, KL term differentiable)
Variational Autoencoders

Putting it all together: maximizing the likelihood lower bound

\[
\mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) || p_\theta(z)) \\
L(x^{(i)}, \theta, \phi)
\]
Variational Autoencoders

Putting it all together: maximizing the likelihood lower bound

\[
\mathbb{E}_z \left[\log p_\theta(x^{(i)} \mid z) \right] - D_{KL}(q_\phi(z \mid x^{(i)}) \mid \mid p_\theta(z)) \quad \mathcal{L}(x^{(i)}, \theta, \phi)
\]

Let’s look at computing the KL divergence between the estimated posterior and the prior given some data.

Input Data \(X\)
Variational Autoencoders

Putting it all together: maximizing the likelihood lower bound

$$E_z \left[\log p_\theta (x^{(i)} | z) \right] - D_{KL} (q_\phi (z | x^{(i)}) || p_\theta (z))$$

Encoder network
$$q_\phi (z | x)$$

Input Data
$$\mathcal{X}$$

$$\mu_z | x$$

$$\Sigma z | x$$
Variational Autoencoders

Putting it all together: maximizing the likelihood lower bound

\[\mathbb{E}_z \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid \mid p_{\theta}(z)) \]

\[\mathcal{L}(x^{(i)}, \theta, \phi) \]

Enclosing the terms in the optimization.

\[D_{KL}(\mathcal{N}(\mu_{z \mid x}, \Sigma_{z \mid x}) \mid \mid \mathcal{N}(0, I)) \]

Have analytical solution

Make approximate posterior distribution close to prior

Encoder network

\[q_{\phi}(z \mid x) \]

Input Data

\[x \]
Variational Autoencoders

Putting it all together: maximizing the likelihood lower bound

\[\mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) \| p_\theta(z)) \]

\[\mathcal{L}(x^{(i)}, \theta, \phi) \]

Make approximate posterior distribution close to prior

Encoder network

Sample \(z^i \) from

\[z^i | x^i \sim \mathcal{N}(\mu_{z|x}, \Sigma_{z|x}) \]

Not part of the computation graph!
Variational Autoencoders

Putting it all together: maximizing the likelihood lower bound

\[
\mathbb{E}_z \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_\phi(z \mid x^{(i)}) \mid \mid p_\theta(z))
\]

\[
\mathcal{L}(x^{(i)}, \theta, \phi)
\]

Reparameterization trick to make sampling differentiable:

Sample \(\epsilon \sim \mathcal{N}(0, I) \)

\[
z = \mu_z \mid x + \epsilon \sigma_z \mid x
\]

Sample \(z \) from \(z \mid x \sim \mathcal{N}(\mu_z \mid x, \Sigma_z \mid x) \)

Encoder network

\[
q_\phi(z \mid x)
\]

Input Data

\[
x
\]
Variational Autoencoders

Putting it all together: maximizing the likelihood lower bound

\[
E_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) \parallel p_\theta(z))
\]

\[
\mathcal{L}(x^{(i)}, \theta, \phi)
\]

Reparameterization trick to make sampling differentiable:

Sample \(\epsilon \sim \mathcal{N}(0, I) \)

\[
z = \mu_z | x + \epsilon \sigma_z | x
\]

Part of computation graph

Sample \(z | x \sim \mathcal{N}(\mu_z | x, \Sigma_z | x) \)

Encoder network

\(q_\phi(z | x) \)

Input Data

\(\mathcal{X} \)
Variational Autoencoders

Putting it all together: maximizing the likelihood lower bound

$$\mathbb{E}_z \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid \mid p_{\theta}(z))$$

- **Encoder network:** $q_{\phi}(z \mid x)$
- **Sample z from:** $z \mid x \sim \mathcal{N}(\mu_z \mid x, \Sigma_z \mid x)$
- **Decoder network:** $p_{\theta}(x \mid z)$

Input Data \mathcal{X}

Decoder network $\mu_x \mid z$, $\Sigma_x \mid z$
Variational Autoencoders

Putting it all together: maximizing the likelihood lower bound

\[\mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) \| p_\theta(z)) \]

Maximize likelihood of original input being reconstructed

Decoder network
\[p_\theta(x | z) \]

Sample z from
\[z | x \sim \mathcal{N}(\mu_z | x, \Sigma_z | x) \]

Encoder network
\[q_\phi(z | x) \]

Input Data
\[\mathcal{X} \]

\[\mu_x | z \]

\[\Sigma_x | z \]
Variational Autoencoders

Putting it all together: maximizing the likelihood lower bound

For every minibatch of input data: compute this forward pass, and then backprop!
Variational Autoencoders: Generating Data!

Our assumption about data generation process

Sample from true conditional

\[p_{\theta^*}(x \mid z^{(i)}) \]

Sample from true prior

\[z^{(i)} \sim p_{\theta^*}(z) \]

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders: Generating Data!

Our assumption about data generation process:

Sample from true conditional $p_{\theta^*}(x \mid z^{(i)})$

Sample from true prior $z^{(i)} \sim p_{\theta^*}(z)$

Now given a trained VAE:
use decoder network & sample z from prior!

\hat{x}

Sample $x|z$ from $x|z \sim \mathcal{N}(\mu_{x|z}, \Sigma_{x|z})$

$\mu_{x|z}$

$\Sigma_{x|z}$

Sample z from $z \sim \mathcal{N}(0, I)$

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders: Generating Data!

Use decoder network. Now sample z from prior!

Sample $x|z$ from $x|z \sim \mathcal{N}(\mu_{x|z}, \Sigma_{x|z})$

$\mu_{x|z}$

$\Sigma_{x|z}$

Decoder network $p_\theta(x|z)$

Sample z from $z \sim \mathcal{N}(0, I)$

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders: Generating Data!

Use decoder network. Now sample z from prior!

$$\hat{x}$$

Sample $x|z$ from $x|z \sim \mathcal{N}(\mu_{x|z}, \Sigma_{x|z})$

$\mu_{x|z}$ $\Sigma_{x|z}$

Decoder network $p_\theta(x|z)$

Sample z from $z \sim \mathcal{N}(0, I)$

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Data manifold for 2-d z

Vary z_1

Vary z_2
Variational Autoencoders: Generating Data!

Diagonal prior on z
\Rightarrow independent latent variables

Different dimensions of z encode interpretable factors of variation

Degree of smile
Vary z_1

Vary z_2
Head pose

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Diagonal prior on z
=> independent latent variables

Different dimensions of z encode interpretable factors of variation

Also good feature representation that can be computed using $q_\phi(z|x)$!

Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014
Variational Autoencoders: Generating Data!

32x32 CIFAR-10

Labeled Faces in the Wild

Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.
Taxonomy of Generative Models

Generative models

Explicit density

Tractable density

- Fully Visible Belief Nets
 - NADE
 - MADE
 - PixelRNN/CNN
 - NICE / RealNVP
 - Glow
 - Fjord

Implicit density

Approximate density

Variational

- Variational Autoencoder

Markov Chain

- Boltzmann Machine

Markov Chain

- GSN

Direct

- GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
Generative Adversarial Networks (GANs)
So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$p_\theta(x) = \prod_{i=1}^{n} p_\theta(x_i|x_1, \ldots, x_{i-1})$$

VAEs define intractable density function with latent z:

$$p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz$$

Cannot optimize directly, derive and optimize lower bound on likelihood instead
So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

\[p_\theta(x) = \prod_{i=1}^{n} p_\theta(x_i | x_1, \ldots, x_{i-1}) \]

VAEs define intractable density function with latent \(z \):

\[p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz \]

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?
So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$p_\theta(x) = \prod_{i=1}^{n} p_\theta(x_i | x_1, ..., x_{i-1})$$

VAEs define intractable density function with latent z:

$$p_\theta(x) = \int p_\theta(z)p_\theta(x | z)dz$$

Cannot optimize directly, derive and optimize lower bound on likelihood instead.

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: not modeling any explicit density function!
Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise. Learn transformation to training distribution.
Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise. Learn transformation to training distribution.

Output: Sample from training distribution

Input: Random noise
Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise. Learn transformation to training distribution.

But we don't know which sample z maps to which training image -> can’t learn by reconstructing training images

Output: Sample from training distribution

Input: Random noise

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014
Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise. Learn transformation to training distribution.

But we don’t know which sample \(z \) maps to which training image -> can’t learn by reconstructing training images.

Output: Sample from training distribution

Objective: generated images should look “real”

Input: Random noise
Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise. Learn transformation to training distribution.

But we don’t know which sample z maps to which training image -> can’t learn by reconstructing training images

Solution: Use a discriminator network to tell whether the generate image is within data distribution (“real”) or not

Output: Sample from training distribution

Input: Random noise

Discriminator Network

Real? Fake?

gradient
Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014
Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Train jointly in **minimax game**

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Train jointly in **minimax game**

Minimax objective function:

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

Discriminator outputs likelihood in (0,1) of real image

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014
Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Train jointly in **minimax game**

Minimax objective function:

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

Discriminator outputs likelihood in (0,1) of real image

Discriminator output for real data \(x\)

Discriminator output for generated fake data \(G(z)\)
Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

- Discriminator outputs likelihood in (0,1) of real image
- Discriminator output for real data x
- Discriminator output for generated fake data $G(z)$

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014
Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Train jointly in **minimax game**

Minimax objective function:

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

- Discriminator \((\theta_d)\) wants to **maximize objective** such that \(D(x)\) is close to 1 (real) and \(D(G(z))\) is close to 0 (fake)
- Generator \((\theta_g)\) wants to **minimize objective** such that \(D(G(z))\) is close to 1 (discriminator is fooled into thinking generated \(G(z)\) is real)

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014
Training GANs: Two-player game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. **Gradient ascent** on discriminator
 $$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. **Gradient descent** on generator
 $$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014
Training GANs: Two-player game

Minimax objective function:

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

Alternate between:

1. **Gradient ascent** on discriminator

\[
\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

2. **Gradient descent** on generator

\[
\min_{\theta_g} \mathbb{E}_{z \sim p(z)} log(1 - D_{\theta_d}(G_{\theta_g}(z)))
\]

In practice, optimizing this generator objective does not work well!

When sample is likely fake, want to learn from it to improve generator (move to the right on X axis).
Training GANs: Two-player game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. **Gradient ascent** on discriminator

 $$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. **Gradient descent** on generator

 $$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

In practice, optimizing this generator objective does not work well!

Gradient signal dominated by region where sample is already good

When sample is likely fake, want to learn from it to improve generator (move to the right on X axis).

But gradient in this region is relatively flat!
Training GANs: Two-player game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. **Gradient ascent** on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. **Instead**: Gradient **ascent** on generator, different objective

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log (D_{\theta_d}(G_{\theta_g}(z)))$$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.
Training GANs: Two-player game

Putting it together: GAN training algorithm

for number of training iterations do
 for k steps do
 • Sample minibatch of m noise samples \(\{z^{(1)}, \ldots, z^{(m)}\} \) from noise prior \(p_g(z) \).
 • Sample minibatch of \(m \) examples \(\{x^{(1)}, \ldots, x^{(m)}\} \) from data generating distribution \(p_{data}(x) \).
 • Update the discriminator by ascending its stochastic gradient:
 \[
 \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]
 \]
 end for
 • Sample minibatch of \(m \) noise samples \(\{z^{(1)}, \ldots, z^{(m)}\} \) from noise prior \(p_g(z) \).
 • Update the generator by ascending its stochastic gradient (improved objective):
 \[
 \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))
 \]
end for
Training GANs: Two-player game

Putting it together: GAN training algorithm

\[
\text{for number of training iterations do} \\
\quad \text{for } k \text{ steps do} \\
\quad \quad \cdot \text{Sample minibatch of } m \text{ noise samples } \{z^{(1)}, \ldots, z^{(m)}\} \text{ from noise prior } p_g(z). \\
\quad \quad \cdot \text{Sample minibatch of } m \text{ examples } \{x^{(1)}, \ldots, x^{(m)}\} \text{ from data generating distribution } p_{data}(x). \\
\quad \quad \cdot \text{Update the discriminator by ascending its stochastic gradient:} \\
\quad \quad \quad \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right] \\
\quad \text{end for} \\
\quad \cdot \text{Sample minibatch of } m \text{ noise samples } \{z^{(1)}, \ldots, z^{(m)}\} \text{ from noise prior } p_g(z). \\
\quad \cdot \text{Update the generator by ascending its stochastic gradient (improved objective):} \\
\quad \quad \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log(D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \\
\text{end for}
\]

Some find $k=1$ more stable, others use $k > 1$, no best rule.

Followup work (e.g. Wasserstein GAN, BEGAN) alleviates this problem, better stability!

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Diagram:

- **Generator Network**
 - Random noise: z
 - Output: Fake Images (from generator)

- **Discriminator Network**
 - Inputs: Real Images (from training set) and Fake Images (from generator)
 - Output: Real or Fake

After training, use generator network to generate new images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014
Generative Adversarial Nets

Generated samples

Nearest neighbor from training set

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.
Generative Adversarial Nets

Generated samples (CIFAR-10)

Nearest neighbor from training set

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.
Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs
- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

Generative Adversarial Nets: Convolutional Architectures

Samples from the model look much much better!

Radford et al, ICLR 2016
Generative Adversarial Nets: Convolutional Architectures

Interpolating between random points in latent space

Radford et al, ICLR 2016
Generative Adversarial Nets: Interpretable Vector Math

Smiling woman
Neutral woman
Neutral man

Samples from the model

Radford et al, ICLR 2016
Generative Adversarial Nets: Interpretable Vector Math

Samples from the model

Average Z vectors, do arithmetic

Smiling woman Neutral woman Neutral man

Radford et al, ICLR 2016
Generative Adversarial Nets: Interpretable Vector Math

Samples from the model

Smiling woman
Neutral woman
Neutral man

Average Z vectors, do arithmetic

Radford et al, ICLR 2016

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 12 - 121
May 11, 2021
Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman Woman with glasses

Radford et al, ICLR 2016
2017: Explosion of GANs

“The GAN Zoo”

- GAN - Generative Adversarial Networks
- 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
- acGAN - Face Aging With Conditional Generative Adversarial Networks
- AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs
- AdaGAN - AdaGAN: Boosting Generative Models
- AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- AffGAN - Amortised MAP Inference for Image Super-resolution
- AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
- ALI - Adversarially Learned Inference
- AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization
- AncGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
- ArtGAN - ArtGAN: Artwork Synthesis with Conditional GANs
- b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks
- Bayesian GAN - Deep and Hierarchical Implicit Models
- BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks
- BiGAN - Adversarial Feature Learning
- BS-GAN - Boundary-Seeking Generative Adversarial Networks
- CGAN - Conditional Generative Adversarial Nets
- CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks
- CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
- CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
- CoGAN - Coupled Generative Adversarial Networks
- Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
- C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training
- CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
- CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
- CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
- DTN - Unsupervised Cross-Domain Image Generation
- DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
- Discogan - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
- DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
- DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
- EBGAN - Energy-based Generative Adversarial Network
- f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
- FF-GAN - Towards Large-Pose Face Frontalization in the Wild
- GAWIN - Learning What and Where to Draw
- GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
- Geometric GAN - Geometric GAN
- GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
- GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
- Ian - Neural Photo Editing with Introspective Adversarial Networks
- IGAN - Generative Visual Manipulation on the Natural Image Manifold
- icGAN - Invertible Conditional GANs for image editing
- ID-CGAN - Image De-ranking Using a Conditional Generative Adversarial Network
- Improved GAN - Improved Techniques for Training GANs
- InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
- LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis
- LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

See also: https://github.com/soumith/ganhacks for tips and tricks for trainings GANs

https://github.com/hindupuravinash/the-gan-zoo
2017: Explosion of GANs

Better training and generation

Progressive GAN, Karras 2018.
2017: Explosion of GANs

Source -> Target domain transfer

Many GAN applications

Text -> Image Synthesis

2019: BigGAN

Brock et al., 2019
Scene graphs to GANs

Specifying exactly what kind of image you want to generate.

The explicit structure in scene graphs provides better image generation for complex scenes.

Johnson et al. Image Generation from Scene Graphs, CVPR 2019

HYPE: Human eYe Perceptual Evaluations
hypestanford.edu

Zhou, Gordon, Krishna et al. HYPE: Human eYe Perceptual Evaluations, NeurIPS 2019

Summary: GANs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications
Summary

Autoregressive models:
PixelRNN, PixelCNN

Variational Autoencoders

Kingma and Welling, “Auto-encoding variational bayes”, ICLR 2013

Generative Adversarial Networks (GANs)

Useful Resources on Generative Models

CS 236: Deep Generative Models (Stanford)

CS 294-158 Deep Unsupervised Learning (Berkeley)
Next: Self-Supervised Learning