CS231n: Convolutional Neural Network for Visual Recognition

Lecture 1: Introduction
Welcome to CS231n
Welcome to CS231n

Course Instructors:
Fei-Fei Li, Andrej Karpathy, Jin Johnson, Yuke Zhu, Brett Kupel, Ben Poole

Teaching Assistants:

Instructors:

Teaching Assistants:

Course Instructors:

Teaching Assistants:

Instructors:

Teaching Assistants:
Computer Vision

- Object detection
- Object classification
- Scene understanding
- Semantic scene segmentation
- 3D reconstruction
- Object tracking
- Human pose estimation
- Activity recognition
- VQA
- ….
Today’s agenda

• A brief history of computer vision

• CS231n overview
Evolution’s Big Bang:
Cambrian Explosion, 530-540 million years, B.C.
Camera Obscura

Gemma Frisius, 1545

Leonardo da Vinci, 16th Century AD

Encyclopedia, 18th Century
Where did we come from?

The known story – Neuroscience inspired AI
Hubel and Wiesel, 1959

Figure 4.8 Response of a single cortical cell to bars presented at various orientations.
High-Level Patterns

Low-Level Details

Cortical Column (Biological)

Neural Networks (Digital)
Learning representations by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA
† Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

F. Rosenblatt, 1957

Rumelhart, Hinton & Williams, 1986
“The mere formulation of a problem is often far more essential than its solution, which [...] requires creative imagination and marks real advances in science.”

- Albert Einstein, 1921
Where did we come from?

The not-so-known story – the search for computer vision’s “North Star”
1960s: Interpretation of synthetic world

Larry Roerts
1963, 1st thesis of Computer Vision
The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".
Input image

Edge image

2 ½-D sketch

3-D model

Stages of Visual Representation, David Marr, 1970s

Input Image

Perceived intensities

Primal Sketch

Zero crossings, blobs, edges, bars, ends, virtual lines, groups, curves boundaries

2 ½-D Sketch

Local surface orientation and discontinuities in depth and in surface orientation

3-D Model Representation

3-D models hierarchically organized in terms of surface and volumetric primitives
Edges, segmentation, and perception
Normalized Cut (Shi & Malik, 1997)
3D reconstruction

S. Agarwal et al. ICCV, 2009
• Generalized Cylinder
  Brooks & Binford, 1979

• Pictorial Structure
  Fischler and Elschlager, 1973
Single Object Recognition

D. Lowe. ICCV, 1999
Spatial Pyramid Matching, Lazebnik, Schmid & Ponce, 2006
Histogram of Gradients (HoG)  
Dalal & Triggs, 2005

Deformable Part Model  
Felzenswalb, McAllester, Ramanan, 2009
Face Detection, Viola & Jones, 2001
CVPR topic distribution: 2000
In the mean time...
Perceiving Real-World Scenes

Irving Biederman

Rapid Serial Visual Perception (RSVP)

Potter, etc. 1970s
Speed of processing in the human visual system

Simon Thorpe, Denis Fize & Catherine Marlot

Neural correlates of object & scene recognition


Epstein & Kanwisher, Nature, 1998
A Computer Vision/AI "holy grail" – Object Recognition

Caltech 101 images

Visual Object Classes Challenge 2009 (VOC2009)

Fei-Fei et al. 2004

Everingham et al. 2006-2012
There are **MANY** objects; organized **HIERARCHICALLY**

(in the case of cups) to perhaps 15 or more (in the case of lamps) readily discernible exemplars. Let us assume (liberally) that the mean number of types is 10. This would yield an estimate of 30,000 readily discriminable objects (3,000 categories × 10 types/category).

A second source for the estimate derives from considering plausible rates for learning new objects. Thirty thousand objects would require learning an average of 4.5 objects per day, every day for 18 years, the modal age of the subjects in the experiments described below.

- Biederman: Recognition by Component, 1987
- Eleanor Rosch: Principles of Categorization, 1978
George A. Miller

Psychology, Cognitive Science
Princeton University

G. A. Miller, Communications of the ACM, 1995
22,000 categories : 15,000,000 images
The Image Classification Challenge:
1,000 object classes
1,431,167 images

Output:
Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output:
Scale
T-shirt
Giant panda
Drumstick
Mud turtle

Russakovsky et al. IJCV 2015
Classification Task

- IMAGENET
- Classification Error
- 2010: 0.28 (Shallow models)
- 2011: 0.26
- 2012: 0.16
- 2013: 0.12
- 2014: 0.07
- 2015: 0.036
- 2016: 0.03
- 2017: 0.023
- Human

Deng et al. CVPR, 2009; Russakovsky et al. IJCV, 2012;
1998
LeCun et al.

# of transistors: $10^6$
# of pixels used in training: $10^7$

2012
Krizhevsky et al.

# of transistors: $10^9$
# of pixels used in training: $10^{14}$
Large Scale Visual Recognition Challenge

Year 2010
NEC-UIUC
- Dense descriptor grid: HOG, LBP
- Coding: local coordinate, super-vector
- Pooling, SPM
- Linear SVM

Year 2012
SuperVision

Year 2014
GoogLeNet
- Pooling
- Convolution
- Softmax
- Other

VGG
- Image
- conv-64
- conv-64
- maxpool
- fc-4096
- fc-4096
- fc-1000
- softmax

Year 2015
MSRA

[Lin CVPR 2011]
[Krizhevsky NIPS 2012]
[Szegedy arxiv 2014]
[Simonyan arxiv 2014]

[He ICCV 2015]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Lion image by Swissfrog is licensed under CC BY 3.0

CS231n: Lecture 1 - 43
24-Mar-21
Image Captioning: Richer Descriptions

Prior Work

Our Recent Work

A man riding a horse drawn carriage down a street


A man is riding a carriage on a street. Two people are sitting on top of the horses. The carriage is made of wood. The carriage is black. The carriage has a white stripe down the side. The building in the background is a tan color.
Results:
spatial, comparative, asymmetrical, verb, prepositional

Krishna*, Lu*, Bernstein, Fei-Fei, ECCV 2016
CVPR topic distribution: 2000 vs. 2013
The Deep Learning Revolution
AI’s Explosive Growth & Impact

Number of attendance At AI conferences
Source: The Gradient

Startups Developing AI Systems
Source: Crunchbase, VentureSource, Sand Hill Econometrics

Enterprise Application AI Revenue
Source: Statista
Many Applications of computer vision

Slide source: World Capital Partners, 2017
How to take care of seniors while keeping them safe?

- Early Symptom Detection of COVID-19
- Manage Chronic Conditions
- Monitor Patients with Mild Symptoms
- Versatile
- Scalable
  - Mobility
  - Infection
  - Sleep
  - Diet
  - Low-cost
  - Burden-free
Today’s agenda

• A brief history of computer vision

• CS231n overview