Lecture 13: Self-Supervised Learning

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 1

Administrative

- Good job on finishing the midterm :)
- Assignment 3 due 5/30
- Final Report Due <u>6/8</u> (no late days)
- Poster session 6/14
- Please check <u>Ed posts</u> regarding final project report and poster session logistics

Lecture 13 -2

Last Week: Lots of Computer Vision Tasks

Classification

Semantic Segmentation

Object Detection

Instance Segmentation

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Last Week: Visualizing and Understanding

Test image L2 Nearest neighbors in feature space

4096-dim vector

Recall: Nearest neighbors in <u>pixel</u> space

Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012. Figures reproduced with permission.

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 4

Last Week: Visualizing and Understanding

schooner

African elephant, Loxodonta africana

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 5

Last Week: Visualizing and Understanding

Content Image

This image is licensed under CC-BY 3.0

Style Image

Starry Night by Van Gogh is in the public domain

Style Transfer!

This image copyright Justin Johnson, 2015. Reproduced with permission.

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Learned Representations

4096-dim vector

Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012. Figures reproduced with permission.

Recall: Nearest neighbors

in pixel space

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 7

Self-supervised Learning

- Both aim to learn from data without manual label annotation.
- Self-supervised learning methods solve "pretext" tasks that produce **good features** for downstream tasks.
 - Learn with supervised learning objectives, e.g., classification, regression.
 - Labels of these pretext tasks are generated *automatically*

Lecture 13 - 8

May 18, 2023

Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

1. Solving the pretext tasks allow the model to learn good features.

2. We can automatically generate labels for the pretext tasks.

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 9

Generative vs. Self-supervised Learning

Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a dollar bill present. Image source: <u>Epstein, 2016</u>

Learning to generate pixel-level details is often unnecessary; learn high-level semantic features with pretext tasks instead

Source: Anand, 2020

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

How to evaluate a self-supervised learning method?

We usually don't care about the performance of the self-supervised learning task, e.g., we don't care if the model learns to predict image rotation perfectly.

Evaluate the learned feature encoders on downstream target tasks

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 11

How to evaluate a self-supervised learning method?

1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations

Fei-Fei Li, Yunzhu Li, Ruohan Gao

How to evaluate a self-supervised learning method?

1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations 2. Attach a shallow network on the feature extractor; train the shallow network on the target task with small amount of labeled data

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Broader picture

computer vision

Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence and Manuelli et al., 2018)

language modeling

GPT-4 Technical Report

OpenAI*

Abstract

We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformerbased model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.

speech synthesis

Wavenet (van den Oord et al., 2016)

- - -

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO

Lecture 13 - 15

May 18, 2023

- Sequence contrastive learning: CPC

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
- **Contrastive representation learning**
- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO

Lecture 13 - 16

May 18, 2023

- Sequence contrastive learning: CPC

Pretext task: predict rotations

 90° rotation

 270° rotation

 180° rotation

 0° rotation

Lecture 13 - 17

 270° rotation

May 18, 2023

Hypothesis: a model could recognize the correct rotation of an object only if it has the "visual commonsense" of what the object should look like unperturbed.

(Image source: Gidaris et al. 2018)

Pretext task: predict rotations

Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

May 18, 2023

(Image source: Gidaris et al. 2018)

Lecture 13 - 18

Pretext task: predict rotations

Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

May 18, 2023

(Image source: Gidaris et al. 2018)

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Evaluation on semi-supervised learning

Self-supervised learning on **CIFAR10** (entire training set).

Freeze conv1 + conv2 Learn **conv3 + linear** layers with subset of labeled CIFAR10 data (classification).

(Image source: Gidaris et al. 2018)

May 18, 2023

Lecture 13 - 20

Transfer learned features to supervised learning

	Classification (%mAP)		Detection (%mAP)	Segmentation (%mIoU)
Trained layers	fc6-8	all	all	all
ImageNet labels	78.9	79.9	56.8	48.0
Random		53.3	43.4	19.8
Random rescaled Krähenbühl et al. (2015)	39.2	56.6	45.6	32.6
Egomotion (Agrawal et al., 2015)	31.0	54.2	43.9	
Context Encoders (Pathak et al., 2016b)	34.6	56.5	44.5	29.7
Tracking (Wang & Gupta, 2015)	55.6	63.1	47.4	
Context (Doersch et al., 2015)	55.1	65.3	51.1	
Colorization (Zhang et al., 2016a)	61.5	65.6	46.9	35.6
BIGAN (Donahue et al., 2016)	52.3	60.1	46.9	34.9
Jigsaw Puzzles (Noroozi & Favaro, 2016)	-	67.6	53.2	37.6
NAT (Bojanowski & Joulin, 2017)	56.7	65.3	49.4	
Split-Brain (Zhang et al., 2016b)	63.0	67.1	46.7	36.0
ColorProxy (Larsson et al., 2017)		65.9		38.4
Counting (Noroozi et al., 2017)	-	67.7	51.4	36.6
(Ours) RotNet	70.87	72.97	54.4	39.1

Pretrained with full ImageNet supervision

No pretraining

Self-supervised learning on **ImageNet** (entire training set) with AlexNet.

Finetune on labeled data from **Pascal VOC 2007**.

Self-supervised learning with rotation prediction

source: Gidaris et al. 2018

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Visualize learned visual attentions

(a) Attention maps of supervised model

(b) Attention maps of our self-supervised model

(Image source: Gidaris et al. 2018)

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Pretext task: predict relative patch locations

(Image source: Doersch et al., 2015)

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Pretext task: solving "jigsaw puzzles"

(Image source: Noroozi & Favaro, 2016)

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results of the other methods are taken from Pathak *et al.* [30].

Method	Pretraining time	Supervision	Classification	Detection	Segmentation
Krizhevsky <i>et al.</i> [25]	$3 \mathrm{~days}$	1000 class labels	78.2%	56.8%	48.0%
Wang and Gupta[39]	1 week	motion	58.4%	44.0%	-
Doersch et al. [10]	4 weeks	$\operatorname{context}$	55.3%	46.6%	-
Pathak et al. [30]	14 hours	context	56.5%	44.5%	29.7%
Ours	$2.5 \mathrm{~days}$	$\operatorname{context}$	$\mathbf{67.6\%}$	$\mathbf{53.2\%}$	37.6%

"Ours" is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro, 2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)

May 18, 2023

Lecture 13 - 25

Pretext task: predict missing pixels (inpainting)

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

Source: Pathak et al., 2016

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Learning to inpaint by reconstruction

Learning to reconstruct the missing pixels

Source: Pathak et al., 2016

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Inpainting evaluation

Input (context) reconstruction

Source: Pathak et al., 2016

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Learning to inpaint by reconstruction

Loss = reconstruction + adversarial learning

$$egin{aligned} L(x) &= L_{recon}(x) + L_{adv}(x) \ L_{recon}(x) &= ||M*(x-F_{ heta}((1-M)*x))||_2^2 \ L_{adv} &= \max_D \mathbb{E}[\log(D(x))] + \log(1-D(F(((1-M)*x)))] \end{aligned}$$

Lecture 13 - 29

Adversarial loss between "real" images and inpainted images

Source: Pathak et al., 2016

May 18, 2023

Inpainting evaluation

Input (context)

reconstruction

adversarial

recon + adv

Source: Pathak et al., 2016

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Transfer learned features to supervised learning

Pretraining Method	Supervision	Pretraining time	Classification	Detection	Segmentation
ImageNet [26]	1000 class labels	3 days	78.2%	56.8%	48.0%
Random Gaussian	initialization	< 1 minute	53.3%	43.4%	19.8%
Autoencoder	-	14 hours	53.8%	41.9%	25.2%
Agrawal <i>et al</i> . [1]	egomotion	10 hours	52.9%	41.8%	-
Wang <i>et al</i> . [39]	motion	1 week	58.7%	47.4%	-
Doersch et al. [7]	relative context	4 weeks	55.3%	46.6%	-
Ours	context	14 hours	56.5%	44.5%	30.0%

Self-supervised learning on ImageNet training set, transfer to classification (Pascal VOC 2007), detection (Pascal VOC 2007), and semantic segmentation (Pascal VOC 2012)

Source: Pathak et al., 2016

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Pretext task: image coloring

Grayscale image: \emph{L} channel $\mathbf{X} \in \ \mathbb{R}^{H imes W imes 1}$

Color information: ab channels $\widehat{\mathbf{Y}} \in \mathbb{R}^{H imes W imes 2}$

Lecture 13 - 32

Source: Richard Zhang / Phillip Isola

May 18, 2023

Pretext task: image coloring

Grayscale image: L channel $\mathbf{X} \in \mathbb{R}^{H imes W imes 1}$

Concatenate (*L*,*ab*) channels $(\mathbf{X}, \widehat{\mathbf{Y}})$

Source: Richard Zhang / Phillip Isola

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 33

ab

Learning features from colorization: Split-brain Autoencoder

Idea: cross-channel predictions

Split-Brain Autoencoder

Source: Richard Zhang / Phillip Isola

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Learning features from colorization: Split-brain Autoencoder

Source: Richard Zhang / Phillip Isola

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Learning features from colorization: Split-brain Autoencoder

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 36
Transfer learned features to supervised learning

Source: Zhang et al., 2017

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Pretext task: image coloring

Source: Richard Zhang / Phillip Isola

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Pretext task: image coloring

Source: Richard Zhang / Phillip Isola

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Pretext task: video coloring

Idea: model the *temporal coherence* of colors in videos

reference frame

how should I color these frames?

t = 0

Lecture 13 - 40

Source: Vondrick et al., 2018

May 18, 2023

Pretext task: video coloring

Idea: model the *temporal coherence* of colors in videos

t = 0

Hypothesis: learning to color video frames should allow model to learn to track regions or objects without labels!

Source: Vondrick et al., 2018

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Reference Frame

Input Frame

Learning objective:

Establish mappings between reference and target frames in a learned feature space.

Use the mapping as "pointers" to copy the correct color (LAB).

Reference Colors

Target Colors

Source: Vondrick et al., 2018

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 43

attention map on the reference frame

$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$

Source: Vondrick et al., 2018

May 18, 2023

attention map on the reference frame

predicted color = weighted sum of the reference color

$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$

$$y_j = \sum_i A_{ij} c_i$$

Source: Vondrick et al., 2018

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

attention map on the reference frame $A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_i\right)}$

$$y_j = \sum_i A_{ij} c_i$$

loss between predicted color and ground truth color

$$\min_{\theta} \sum_{j} \mathcal{L}\left(y_{j}, c_{j}\right)$$

Source: Vondrick et al., 2018

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Colorizing videos (qualitative)

reference frame

target frames (gray)

predicted color

Source: Google Al blog post

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Colorizing videos (qualitative)

reference frame

predicted color

Source: Google AI blog post

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Tracking emerges from colorization Propagate segmentation masks using learned attention

Source: Google Al blog post

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Tracking emerges from colorization Propagate pose keypoints using learned attention

Source: Google Al blog post

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).

Lecture 13 - 50

May 18, 2023

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).
- Problems: 1) coming up with individual pretext tasks is tedious, and 2) the learned representations may not be general.

Lecture 13 - 51

May 18, 2023

Pretext tasks from image transformations

image completion

rotation prediction

"jigsaw puzzle"

colorization

May 18, 2023

Learned representations may be tied to a specific pretext task! Can we come up with a more general pretext task?

Fei-Fei Li, Yunzhu Li, Ruohan Gao

A more general pretext task?

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 53

A more general pretext task?

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 54

Contrastive Representation Learning

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 55

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO

Lecture 13 - 56

May 18, 2023

- Sequence contrastive learning: CPC

Contrastive Representation Learning

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 57

Contrastive Representation Learning

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 58

What we want:

$$\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f(x^-))$$

x: reference sample; x⁺ positive sample; x⁻ negative sample

Given a chosen score function, we aim to learn an **encoder** function *f* that yields high score for positive pairs (x, x^+) and low scores for negative pairs (x, x^-) .

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 59

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 60

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
$$\underset{x \quad x^+}{\overset{x \quad x^+}} \qquad \overbrace{x}^{N-1} \exp(s(f(x), f(x_j^-))) = \sum_{x \quad x^-} \sum_$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 61

May 18, 2023

. . .

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
score for the positive pair
This score for the N-1 negative pairs

Lecture 13 - 62

May 18, 2023

This seems familiar ...

Loss function given 1 positive sample and N - 1 negative samples:

Lecture 13 - 63

May 18, 2023

This seems familiar ...

Cross entropy loss for a N-way softmax classifier! I.e., learn to find the positive sample from the N samples

A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:
$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A *lower bound* on the mutual information between f(x) and $f(x^+)$ $MI[f(x), f(x^+)] - \log(N) \ge -L$

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

SimCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function:

$$s(u,v)=rac{u^Tv}{||u||||v||}$$

Use a projection network $g(\cdot)$ to project features to a space where contrastive learning is applied

Generate positive samples through data augmentation:

 random cropping, random color distortion, and random blur.

Source: Chen et al., 2020

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

SimCLR: generating positive samples from data augmentation

(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering Source: Chen et al., 2020

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Algorithm 1 SimCLR's main learning algorithm. SimCLR **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation augmentation functions $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for define $\ell(i,j)$ as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 67

May 18, 2023

Source: Chen et al., 2020

*We use a slightly different Algorithm 1 SimCLR's main learning algorithm. formulation in the assignment. SimCLR **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . You should follow the for sampled minibatch $\{x_k\}_{k=1}^N$ do assignment instructions. for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation augmentation functions $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, \dots, 2N\}$ and $j \in \{1, \dots, 2N\}$ do InfoNCE loss: $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for Use all non-positive define $\ell(i, j)$ as $\left| \ell(i, j) = -\log \frac{\exp(s_{i, j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i, k}/\tau)} \right|$ samples in the $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ batch as x^{-} update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$ Source: Chen et al., 2020

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 68

*We use a slightly different Algorithm 1 SimCLR's main learning algorithm. formulation in the assignment. SimCLR **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . You should follow the for sampled minibatch $\{x_k\}_{k=1}^N$ do assignment instructions. for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation augmentation functions $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, \ldots, 2N\}$ and $j \in \{1, \ldots, 2N\}$ do InfoNCE loss: $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for Use all non-positive Iterate through and define $\ell(i, j)$ as $\ell(i, j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ samples in the use each of the 2N • $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ batch as x⁻ sample as reference, update networks f and q to minimize \mathcal{L} compute average loss end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$ Source: Chen et al., 2020

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 69

SimCLR: mini-batch training

May 18, 2023

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 71

Training linear classifier on SimCLR features

Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Freeze feature encoder, train a linear classifier on top with labeled data.

Lecture 13 - 72

Source: Chen et al., 2020

May 18, 2023
Semi-supervised learning on SimCLR features

Method	Architecture	Label 1 1% To	fraction 10% p 5
Supervised baseline	ResNet-50	48.4	80.4
Methods using other labe	l-propagation:		
Pseudo-label	ResNet-50	51.6	82.4
VAT+Entropy Min.	ResNet-50	47.0	83.4
UDA (w. RandAug)	ResNet-50	-	88.5
FixMatch (w. RandAug)	ResNet-50	-	89.1
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2
Methods using representa	tion learning only:		
InstDisc	ResNet-50	39.2	77.4
BigBiGAN	RevNet-50 $(4 \times)$	55.2	78.8
PIRL	ResNet-50	57.2	83.8
CPC v2	ResNet-161(*)	77.9	91.2
SimCLR (ours)	ResNet-50	75.5	87.8
SimCLR (ours)	ResNet-50 (2 \times)	83.0	91.2
SimCLR (ours)	ResNet-50 ($4\times$)	85.8	92.6

Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Finetune the encoder with 1% / 10% of labeled data on ImageNet.

Lecture 13 - 73

Table 7. ImageNet accuracy of models trained with few labels.

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Source: Chen et al., 2020

SimCLR design choices: projection head

Linear / non-linear projection heads improve representation learning.

A possible explanation:

- contrastive learning objective may discard useful information for downstream tasks
- representation space *z* is trained to be invariant to data transformation.
- by leveraging the projection head g(·), more information can be preserved in the h representation space

Source: Chen et al., 2020

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 74

SimCLR design choices: large batch size

Large training batch size is crucial for SimCLR!

Large batch size causes large memory footprint during backpropagation: requires distributed training on TPUs (ImageNet experiments)

Lecture 13 - 75

Figure 9. Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch.¹⁰

Source: Chen et al., 2020

May 18, 2023

Momentum Contrastive Learning (MoCo)

Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.

Source: He et al., 2020

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Momentum Contrastive Learning (MoCo)

Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.
- The key encoder is slowly progressing through the momentum update rules: $\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$

Source: He et al., 2020

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 78

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He Facebook AI Research (FAIR)

Lecture 13 - 79

A hybrid of ideas from SimCLR and MoCo:

- From SimCLR: non-linear projection head and strong data augmentation.
- From MoCo: momentum-updated queues that allow training on a large number of negative samples (no TPU required!).

Source: Chen et al., 2020

May 18, 2023

MoCo vs. SimCLR vs. MoCo V2

	unsup. pre-train			ImageNet	VO	C detec	tion	
case	MLP	aug+	cos	epochs	acc.	AP ₅₀	AP	AP ₇₅
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	\checkmark			200	66.2	82.0	56.4	62.6
(b)		\checkmark		200	63.4	82.2	56.8	63.2
(c)	\checkmark	\checkmark		200	67.3	82.5	57.2	63.9
(d)	\checkmark	\checkmark	\checkmark	200	67.5	82.4	57.0	63.6
(e)	\checkmark	\checkmark	\checkmark	800	71.1	82.5	57.4	64.0

Table 1. **Ablation of MoCo baselines**, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials). "**MLP**": with an MLP head; "**aug+**": with extra blur augmentation; "**cos**": cosine learning rate schedule.

Key takeaways:

 Non-linear projection head and strong data augmentation are crucial for contrastive learning.

Source: Chen et al., 2020

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

MoCo vs. SimCLR vs. MoCo V2

	unsup. pre-train					ImageNet
case	MLP	aug+	cos	epochs	batch	acc.
MoCo v1 [6]				200	256	60.6
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	256	61.9
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	8192	66.6
MoCo v2	\checkmark	\checkmark	\checkmark	200	256	67.5
results of longer unsupervised training follow:						
SimCLR [2]	\checkmark	\checkmark	\checkmark	1000	4096	69.3
MoCo v2	\checkmark	\checkmark	\checkmark	800	256	71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy (**ResNet-50, 1-crop 224** \times **224**), trained on features from unsupervised pre-training. "aug+" in SimCLR includes blur and stronger color distortion. SimCLR ablations are from Fig. 9 in [2] (we thank the authors for providing the numerical results).

Key takeaways:

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).

Source: Chen et al., 2020

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

MoCo vs. SimCLR vs. MoCo V2

mechanism	batch	memory / GPU	time / 200-ep.
MoCo	256	5.0G	53 hrs
end-to-end	256	7.4G	65 hrs
end-to-end	4096	93.0G [†]	n/a

Table 3. Memory and time cost in 8 V100 16G GPUs, implemented in PyTorch. † : based on our estimation.

Key takeaways:

Lecture 13 - 82

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).
- ... all with much smaller memory footprint! ("end-to-end" means SimCLR here)

Source: Chen et al., 2020

May 18, 2023

Instance vs. Sequence Contrastive Learning

Instance-level contrastive learning: contrastive learning based on positive & negative instances. Examples: SimCLR, MoCo

c_t Predictions $g_{\rm ar}$ z_{t+1} z_{t+2} z_{t+3} $g_{\rm enc}$ x_{t-3} x_{t-2} x_{t-1} x_t x_{t+1} x_{t+2} x_{t+3} x_{t+4}

Source: van den Oord et al., 2018

Sequence-level contrastive learning:

contrastive learning based on sequential / temporal orders.

Example: Contrastive Predictive Coding (CPC)

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Contrastive: contrast between "right" and "wrong" sequences using contrastive learning.

Predictive: the model has to predict future patterns given the current context.

Coding: the model learns useful feature vectors, or "code", for downstream tasks, similar to other self-supervised methods.

Source: van den Oord et al., 2018,

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 84

1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

Source: van den Oord et al., 2018,

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar}). The original paper uses GRU-RNN here.

Source: van den Oord et al., 2018,

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar})

3. Compute InfoNCE loss between the context c_t and future code z_{t+k} using the following time-dependent score function:

function: $s_k(z_{t+k},c_t)=z_{t+k}^TW_kc_t$

, where W_k is a trainable matrix.

Source: van den Oord et al., 2018,

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Figure <u>source</u>

CPC example: modeling audio sequences

Source: van den Oord et al., 2018,

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

CPC example: modeling audio sequences

Figure 2: t-SNE visualization of audio (speech) representations for a subset of 10 speakers (out of 251). Every color represents a different speaker.

Method	ACC
Phone classification	
Random initialization	27.6
MFCC features	39.7
CPC	64.6
Supervised	74.6
Speaker classification	
Random initialization	1.87
MFCC features	17.6
CPC	97.4
Supervised	98.5

Linear classification on trained representations (LibriSpeech dataset)

Source: van den Oord et al., 2018,

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom as a sequence. I.e., use top rows as context to predict bottom rows.

Source: van den Oord et al., 2018,

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

CPC example: modeling visual context

Method	Top-1 ACC
Using AlexNet conv5	
Video [28]	29.8
Relative Position [11]	30.4
BiGan [35]	34.8
Colorization [10]	35.2
Jigsaw [29] *	38.1
Using ResNet-V2	
Motion Segmentation [36]	27.6
Exemplar [36]	31.5
Relative Position [36]	36.2
Colorization [36]	39.6
CPC	48.7

Table 3: ImageNet top-1 unsupervised classification results. *Jigsaw is not directly comparable to the other AlexNet results because of architectural differences.

- Compares favorably with other pretext taskbased self-supervised learning method.
- Doesn't do as well compared to newer instance-based contrastive learning methods on image feature learning.

Lecture 13 - 91

Source: van den Oord et al., 2018,

May 18, 2023

A general formulation for contrastive learning:

$$\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f(x^-))$$

InfoNCE loss: N-way classification among positive and negative samples $L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A *lower bound* on the mutual information between f(x) and $f(x^+)$

 $MI[f(x),f(x^+)] - \log(N) \geq -L$

Lecture 13 - 92

May 18, 2023

SimCLR: a simple framework for contrastive representation learning

- Key ideas: non-linear projection head to allow flexible representation learning
- Simple to implement, effective in learning visual representation
- Requires large training batch size to be effective; large memory footprint

<u>May 18, 2023</u>

Lecture 13 - 93

MoCo (v1, v2): contrastive learning using momentum sample encoder

- Decouples negative sample size from minibatch size; allows large batch training without TPU
- MoCo-v2 combines the key ideas from SimCLR, i.e., nonlinear projection head, strong data augmentation, with momentum contrastive learning

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

CPC: sequence-level contrastive learning

- Contrast "right" sequence with "wrong" sequence.
- InfoNCE loss with a time-dependent score function.
- Can be applied to a variety of learning problems, but not as effective in learning image representations compared to instance-level methods.

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Other examples: MoCo v3

An Empirical Study of Training Self-Supervised Vision Transformers

"This paper does not describe a novel method."

Xinlei Chen* Saining Xie* Kaiming He Facebook AI Research (FAIR)

Code: https://github.com/facebookresearch/moco-v3

A	bs	tr	a	C	t

This paper does not describe a novel method. Instead, it studies a straightforward, incremental, yet must-know baseline given the recent progress in computer vision: selfsupervised learning for Vision Transformers (ViT). While the training recipes for standard convolutional networks have been highly mature and robust, the recipes for ViT are yet to be built, especially in the self-supervised scenarios where training becomes more challenging. In this work, we go back to basics and investigate the effects of several fundamental components for training self-supervised ViT. We observe that instability is a major issue that degrades accuracy, and it can be hidden by apparently good results. We reveal that these results are indeed partial failure, and they can be improved when training is made more stable. We benchmark ViT results in MoCo v3 and several other selfsupervised frameworks, with ablations in various aspects. We discuss the currently positive evidence as well as challenges and open questions. We hope that this work will provide useful data points and experience for future research.

framework	model	params	acc. (%)
linear probing:			
iGPT [9]	iGPT-L	1362M	69.0
iGPT [9]	iGPT-XL	6801M	72.0
MoCo v3	ViT-B	86M	76.7
MoCo v3	ViT-L	304M	77.6
MoCo v3	ViT-H	632M	78.1
MoCo v3	ViT-BN-H	632M	79.1
MoCo v3	ViT-BN-L/7	304M	81.0
end-to-end fine-tuning:			2
masked patch pred. [16]	ViT-B	86M	79.9 [†]
MoCo v3	ViT-B	86M	83.2
MoCo v3	ViT-L	304M	84.1

Table 1. **State-of-the-art Self-supervised Transformers** in ImageNet classification, evaluated by linear probing (top panel) or end-to-end fine-tuning (bottom panel). Both iGPT [9] and masked patch prediction [16] belong to the masked auto-encoding paradigm. MoCo v3 is a contrastive learning method that compares two (224×224) crops. ViT-B, -L, -H are the Vision Transformers proposed in [16]. ViT-BN is modified with BatchNorm, and "/7" denotes a patch size of 7×7 . [†]: pre-trained in JFT-300M.

May 18, 2023

Chen et al., An Empirical Study of Training Self-Supervised Vision Transformers, FAIR

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Other examples: Masked Autoencoder

method	pre-train data	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈
scratch, our impl.	-	82.3	82.6	83.1	-
DINO [5]	IN1K	82.8	-	-	-
MoCo v3 [9]	IN1K	83.2	84.1	-	-
BEiT [2]	IN1K+DALLE	83.2	85.2	-	-
MAE	IN1K	83.6	85.9	86.9	87.8

He et al., Masked Autoencoders Are Scalable Vision Learners, FAIR

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Other examples: CLIP

1. Contrastive pre-training

Contrastive learning between image and natural language sentences

plane car pepper the Text aussie pup a photo of Text Encoder dog a {object}. Encoder bird I, $I_1 \cdot T_1 \quad I_1 \cdot T_2$ I1.TN 3. Use for zero-shot prediction I_2 $I_2 \cdot T_1 \quad I_2 \cdot T_2$ T₁ T_2 Image Iz Encoder Image $I_1 \cdot T_1 \quad I_1 \cdot T_2$ $I_1 \cdot T_N$ $I_1 \cdot T_3$ Encoder . I_N $I_N \cdot T_1 \quad I_N \cdot T_2 \quad I_N \cdot T_3$ $I_N \cdot T_N$ a photo of a dog.

CLIP (Contrastive Language-Image Pre-training) Radford et al., 2021

Fei-Fei Li, Yunzhu Li, Ruohan Gao

2. Create dataset classifier from label text

Lecture 13 - 98

Other examples: Dense Object Net

Contrastive learning on pixel-wise feature descriptors

Dense Object Net, Florence et al., 2018

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 99

Other examples: Dense Object Net

Dense Object Net, Florence et al., 2018

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 100

Other examples: Dense Object Net

Dense Object Net, Florence et al., 2018

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 101

Other examples: DINO

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron^{1,2}Hugo Touvron^{1,3}Ishan Misra¹Hervé Jegou¹Julien Mairal²Piotr Bojanowski¹Armand Joulin¹

¹ Facebook AI Research ² Inria^{*} ³ Sorbonne University

Figure 1: Self-attention from a Vision Transformer with 8×8 patches trained with no supervision. We look at the self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model automatically learns class-specific features leading to unsupervised object segmentations.

Lecture 13 - 102

May 18, 2023

Other examples: DINO v2

Figure 1: Visualization of the first PCA components. We compute a PCA between the patches of the images from the same column (a, b, c and d) and show their first 3 components. Each component is matched to a different color channel. Same parts are matched between related images despite changes of pose, style or even objects. Background is removed by thresholding the first PCA component.

Lecture 13 - 103

May 18, 2023

Other examples: DINO v2

(Vehicles)

(Birds / Airplanes)

(Elephants)

(Drawings / Animals)

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 104

Other examples: DINO v2

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 13 - 105

Next time: Robot Learning

May 18, 2023

Lecture 13 - 106

- Deep Reinforcement Learning
- Model Learning
- Robotic Manipulation