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Self-Supervised Learning
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Administrative

- Good job on finishing the midterm : )

- Assignment 3 due 5/30

- Final Report Due 6/8 (no late days)

- Poster session 6/14

- Please check Ed posts regarding final project report
and poster session logistics
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Last Week: Lots of Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

GRASS, CAT, DOG, DOG, CAT  DOG, DOG, CAT
\ VRN TREE, SKY VRN )
Y Y Y
No spatial extent No objects, just pixels Multiple Object Thisimaga GO0 ol domai
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Last Week: Visualizing and Understanding

Testimage L2 Nearest neighbors in feature space 4096 d|m vector
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Recall: Nearest neighbors
in pixel space
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Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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Last Week: Visualizing and Understanding

schooner
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Last Week: Visualizing and Understanding

Content Image

Style Tra

XN

nfer!

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with

permission
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https://commons.wikimedia.org/wiki/File:Tuebingen_Neckarfront.jpg
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://github.com/jcjohnson/neural-style

Learned Representations

Testimage L2 Nearest neighbors in feature space

Recall: Nearest neighbors
in pixel space
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Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.

4096-dim vector

Fei-Fei Li, Yunzhu Li, Ruohan Gao
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Self-supervised Learning

e Both aim to learn from data without manual label annotation.

e Self-supervised learning methods solve “pretext” tasks that
produce good features for downstream tasks.
o Learn with supervised learning objectives, e.g.,
classification, regression.
o Labels of these pretext tasks are generated automatically
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Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

__
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N
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image completion rotation prediction “‘ligsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.
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Generative vs. Self-supervised Learning

o )
ON 'E, DoOLLAR
In God
Li__l.\_ we fruty g

Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made
with a dollar bill present. Image source: Epstein, 2016

Learning to generate pixel-level details is often unnecessary; learn
high-level semantic features with pretext tasks instead

Source: Anand, 2020
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https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html

How to evaluate a self-supervised learning method?

We usually don’t care about the performance of the self-supervised

learning task, e.g., we don’t care if the model learns to predict image
rotation perfectly.

Evaluate the learned feature encoders on downstream target tasks
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How to evaluate a self-supervised learning method?

feature

I:> self-supervised I:> extractor
learning (e.g.,a

convnet)

lots of

unlabeled
dat
ata * 90°
H_H—/

conv fc

1. Learn good feature extractors from
self-supervised pretext tasks, e.g.,
predicting image rotations
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How to evaluate a self-supervised learning method?

feature
self-supervised extractor supervised evaluate on the
E> learning E> (e.g.,a = learning :>{ target task }

convnet)

e.g. classification, detection
lots of

unlabeled

data
.\ 4 bird
small amount of

labeled data on

conv the target task conv Imear
classifier
1. Learn good feature extractors from 2. Attach a shallow network on the
self-supervised pretext tasks, e.g., feature extractor; train the shallow
predicting image rotations network on the target task with small

amount of labeled data
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Broader picture

Today’s lecture
computer vision language modeling speech synthesis

Output 00000000000 OCOGCOGOISINOSS

GPT-4 Technical Report o e

A AATA

] C

“NAANAAAAA

OpenAI* mt® 0000000000000 000

' - Abstract Wavenet (van den Oord et
DOerSCh et aI .y 201 5 We report the development of GPT-4, a large-scale, multimodal model which can al .y 20 1 6)

accept image and text inputs and produce text outputs. While less capable than
humans in many real-world sccndnos GPT 4 cxhxbus human level performance
on various professional and acad: by ding passing a simulated
bar exam with a score around the top 10% of lcsl takers. GPT-4 is a Transformer-
based model pre-trained to prcdlc( the ncxl token in a document. The post-training

b t / 1 f t I 1 alignment process results in imp d on of f lity and
ro O rel n O rce m e n e a rn I n g adhcrcncc to desired bchavmr A core componcnt of this pl’OJCCI was developing

..... e and i hods that behave predictably across a wide
range of scales. This allowed us to accurately prcdlc\ some aspects of GPT-4’s
performance based on models trained with no more than 1/1,000th the compute of
GPT4.

GPT-4 (OpenAl 2023) e

Dense Object Net (Florence
and Manuelli et al., 2018)
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Today’s Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SiImCLR and MOCO
- Sequence contrastive learning: CPC
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Today’s Agenda

Pretext tasks from image transformations
- Rotation, inpainting, rearrangement, coloring
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Pretext task: predict rotations

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Hypothesis: a model could recognize the correct rotation of an object
only if it has the “visual commonsense” of what the object should look
like unperturbed.

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

» g(X,y=0) ﬁ‘ >
Rotate 0 degrees

Rotated image: X° Self-supervised
learning by rotating
> g(X,y=1) —»% the entire input
Rotate 90 degrees i m ag es
Rotated image: X' )
» . ‘@ > The model learns to
Image X Rotate 180 degrees predICt Wthh rOtathn

Rotated image: X

is applied (4-way

. . g i n

Rotate 270 degrees

Rotated image: X°

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

| Objectives: ‘
- |
Y ConvNet Maximize prob.
> g(X,y=0) P> model F() | F(x°) |
Rotate 0 d ‘Pd'tOd’ tati =0 H
otate 0 degrees Rotated image: 0 ‘ redic egrees rotation (y=0) ‘ Self-SUpeWISed
‘ .~ learning by rotating
ConvNet Maximi b. 1 1
sl e T model F() I T .~ the entire input
Rotate 90 degrees Predict 90 degrees rotation (y=1) ‘ | mag es.
. Rotated image: X' ‘
. g , |
|
ConvN
> elXy=2) > ‘@ e Maximizeprb - The model learns to
Image X Rotate 180 degrees ‘ Predict 180 de;,rees rotation (y=2) ‘ predICt Wthh rOtathn

Rotated image: X

| . is applied (4-way
—» g(X,y=3) —bgégﬂ ConvNet |, Maximize prob. | CIaSS|f|Cat|0n)

model F(.) F(x?) ‘

Rotate 270 degrees | Predict 270 degrees rotation (y‘3)

(Image source: Gidaris et al. 2018)

Rotated image: X~
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https://arxiv.org/abs/1803.07728

Evaluation on semi-supervised learning

100
L //_
90 / | |
sl ; / ] Self—supewlsgd learning on
CIFAR10 (entire training set).
. 701 B
= | Freeze conv1 + conv2
E; Learn conv3 + linear layers
o with subset of labeled
sk 1 CIFAR10 data (classification).
20 Ours - Semi-supervised |
— Supervised
20 ‘ ‘ : ‘ ‘ ‘ ' ‘
20 100 400 1000 5000

# Training examples

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Transfer learned features to supervised learning

Classification  Detection Segmentation
(%mAP) (%mAP) (%mlIoU)

Trained layers | fc6-8  all all all Pretrained with full
ImageNet labels | 789 799 5638 48.0 ImageNet supervision
Random 53.3 434 19.8 N traini
Random rescaled Krihenbiihl et al. (2015) | 392  56.6 45.6 326 [¢— NO pretraining
Egomotion (Agrawal et al., 2015) 310 542 439
Context Encoders (Pathak et al., 2016b) 346  56.5 44.5 29.7 ) )
Tracking (Wang & Gupta, 2015) 556 63.1 474 Self-su pewlsed Iearn|ng
Context (Doersch et al., 2015) 55.1 65.3 51.1 .
Colorization (Zhang et al., 2016a) 615 65.6 46.9 35.6 on ImageNet (entlre
BIGAN (Donahue et al., 2016) 523  60.1 46.9 34.9 training set) with AlexNet
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 53.2 37.6 g ) ]
NAT (Bojanowski & Joulin, 2017) 56.7  65.3 49.4
Split-Brain (Zhang et al., 2016b) 630 67.1 46.7 36.0 :
ColorProxy (Larsson et al., 2017) 65.9 38.4 Finetune on labeled data
Counting (Noroozi et al., 2017) - 67.7 51.4 36.6 from Pasca| VOC 2007

[ (Ours) RotNet 70.87 17297 54.4 39.1 |

Self-supervised learning with rotation prediction source: Gidaris et al. 2018
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https://arxiv.org/abs/1803.07728

Visualize learned visual attentions

Convl 27 x 27 Conv313 x 13 Conv56 X 6 Convl 27 x 27 Conv313 x 13 Conv56 x 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Pretext task: predict relative patch locations

Example:

(Image source: Doersch et al., 2015)
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https://arxiv.org/abs/1505.05192

Pretext task: solving “jigsaw puzzles”
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(Image source: Noroozi & Favaro, 2016)
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https://arxiv.org/abs/1603.09246

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results
of the other methods are taken from Pathak et al. [30].

Method Pretraining time Supervision Classification Detection Segmentation
Krizhevskyet al. [25] 3 days 1000 class labels 78.2% 56.8% 48.0%
Wang and Gupta[39] 1 week motion 58.4% 44.0%

Doersch et al. [10] 4 weeks context 55.3% 46.6% -
Pathak et al. [30] 14 hours context 56.5% 44.5% 29.7%
Ours 2.5 days context 67.6% 53.2% 37.6%

“Ours” is feature learned from solving image Jigsaw puzzles (Noroozi &
Favaro, 2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)
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https://arxiv.org/abs/1603.09246

Pretext task: predict missing pixels (inpainting)

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)
Source: Pathak et al., 2016

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 13 - 26 May 18, 2023


https://arxiv.org/pdf/1604.07379.pdf

Learning to inpaint by reconstruction
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Learning to reconstruct the missing pixels
Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Inpainting evaluation

Input (context) reconstruction

Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Learning to inpaint by reconstruction

Loss = reconstruction + adversarial learning

L(CE) — Lrecon (m) + Ladv (CE)
Lyceon () = ||M % (z — Fy((1 — M) % z))||5
Lqdy = maxp Ellog(D(z))] + log(1 — D(F((1 — M) * z)))]

Adversarial loss between “real” images and inpainted images

Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Inpainting evaluation

Input (context) reconstruction adversarial recon + adv

Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Transfer learned features to supervised learning

Pretraining Method Supervision Pretraining time Classification Detection Segmentation
ImageNet [26] 1000 class labels 3 days 78.2% 56.8% 48.0%
Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 25.2%
Agrawal et al. [1] egomotion 10 hours 52.9% 41.8% -
Wang et al. [39] motion 1 week 58.7% 47.4% -
Doersch et al. [7] relative context 4 weeks 55.3% 46.6% -

Ours context 14 hours 56.5% 44.5% 30.0%

Self-supervised learning on ImageNet training set, transfer to
classification (Pascal VOC 2007), detection (Pascal VOC 2007), and

semantic segmentation (Pascal VOC 2012)
Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Pretext task: image coloring

Grayscale image: L channel Color information: ab channels
X € RHXWXl ?G]RHXWX2

e

Source: Richard Zhan / Phillip Isola
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Pretext task: image coloring

F
) e P
" -2y 5 - ,
Grayscale image: L channel Concatenate (L,ab) channels
X € RHXWXI (X,Y)

-

Source: Richard Zhang / Phillip Isola
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Learning features from colorization:

Split-brain Autoencoder
Idea: cross-channel predictions

><)

Split-Brain Autoencoder

Source: Richard Zhang / Phillip Isola
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Learning features from colorization:
Split-brain Autoencoder

Input Image X

Source: Richard Zhang / Phillip Isola
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Learning features from colorization:
Split-brain Autoencoder

RGB channels

RGB-HHA
image

HHA depth channels

HHA depth channels

"\ Predicted

RGB-HHA
image

RGB channels
Source: Richard Zhang / Phillip Isola
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Transfer learned features to supervised learning

@@ Places-labels ©-@ Pathak et al.
50 _|IHE ImageNet-labels @-@® Zhang et al.
@@ Kraehenbuehletal. O-O Owens et al.
V-V Gauss @-@® Donahue et al. . .
45]|00 Doemcnctal &9 Spitsran Aveicc Self-supervised learning on
ang upta . . .
> . ImageNet (entire training
a0l ] supervised
> set).
g 35 |
< N ¢+~ this paper Use concatenated features
5 from F,and F,

Labeled data is from the

20

Places (Zhou 2016).
15 : : t :
CO“\‘X 900\'\ (/0(\\\’L Qoo\q' CO(\\‘% Co(\“b( Co(\\‘c) Qoo\c)

Source: Zhang et al., 2017
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https://arxiv.org/abs/1611.09842

Pretext task: image coloring

Source: Richard Zhang / Phillip Isola
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Pretext task: image coloring

Source: Richard Zhang / Phillip Isola
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Pretext task: video coloring
Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Pretext task: video coloring
Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Hypothesis: learning to color video frames should allow model to

learn to track regions or objects without labels!
Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Reference Frame Input Frame

‘ Learning objective:
LS
e @& | Establish mappings
5 @ " between reference and
¢ target frames in a

learned feature space.

Use the mapping as
“pointers” to copy the
correct color (LAB).

Reference Colors Target Colors

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings

Reference A | Af g A peference
Frame = © ® I o Colors
)
T
Target A Predicted
Frame © A ® A fi o A:,;j Colors

attention map on the
reference frame

exp (fI f5)

A =
’ Dk €XD (fgfj)

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A Af g
Frame ® Ik
1
,‘7.%
Target g
Frame | @ A ® Afj
attention map on the predicted color = weighted
reference frame sum of the reference color

exp (f f;) _
Ay = Yi = Ajje
’ D1 €XP ( Efj) ’ ; ’

Reference
Colors

Predicted
Colors

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings

Reference A Af g A peference

Frame @ 1 @ Colors

\
e T
Target il Predicted
Frame © A o Afj ® Ay Colors
J
attention map on the predicted color = weighted loss between predicted color
reference frame sum of the reference color and ground truth color

exp (fi' f;) - . minZE( (v Cj)
Ai' — — Az C; Yj»rCj
T Yeexp (fLf5) % ; ! "5

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Gooagle Al blog post
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog post
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization
Propagate segmentation masks using learned attention

Source: Google Al blog post
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization
Propagate pose keypoints using learned attention
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Source: Google Al blog post

May 18, 2023
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Summary: pretext tasks from image
transformations

e Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the

pretext tasks.

e \We don'’t care about the performance of these pretext tasks, but rather
how useful the learned features are for downstream tasks (classification,
detection, segmentation).
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Summary: pretext tasks from image
transformations

e Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the

pretext tasks.

e \We don'’t care about the performance of these pretext tasks, but rather
how useful the learned features are for downstream tasks (classification,

detection, segmentation).

e Problems: 1) coming up with individual pretext tasks is tedious, and 2)
the learned representations may not be general.
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Pretext tasks from image transformations

"‘. T

o Y. ' N
Vi . -
[ 4

l

image completion rotation prediction “‘ligsaw puzzle” colorization

Learned representations may be tied to a specific pretext task!
Can we come up with a more general pretext task?
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A more general pretext task?

same object
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A more general pretext task?

same object
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Contrastive Representation Learning

attract

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 13 - 55 May 18, 2023



Today’s Agenda

Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SiImCLR and MOCO
- Sequence contrastive learning: CPC
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Contrastive Representation Learning

attract
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Contrastive Representation Learning
_|_

X reference

CE+ positive

X  negative
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A formulation of contrastive learning

What we want:

score(f(z), f(xT)) >> score(f(z), f(z7))

x: reference sample; x* positive sample; x~ negative sample

Given a chosen score function, we aim to learn an encoder

function f that yields high score for positive pairs (x, x*) and
low scores for negative pairs (x, x).
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(z™))

L=—-Ex log

exp(s(f(@), f(z+)) + 2,0, exp(s(f (=), f(z}))

Fei-Fei Li, Yunzhu Li, Ruohan Gao
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f (-’B*))

L=—-Ex log

exp(s(f(z), f(z*)) +

> exp(S(f(ﬂv) f( i)

Fei-Fei Li, Yunzhu Li, Ruohan Gao
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

L= 5y |og exp(s(/(@), /@)
exp(s(f(z), f(zt)) +E —, exp(s(f(), f(z}))_
score for the score for the N-1
positive pair negative pairs

This seems familiar ...
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(ﬂv*))

L=—-Ex log —
exp(s(f(z), f(x")) + 3 ;_; exp(s(f(z), f(z}))
score for the score for the N-1
positive pair negative pairs

This seems familiar ...
Cross entropy loss for a N-way softmax classifier!
|.e., learn to find the positive sample from the N samples
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(z*))
exp(s(f(z), f(z 1)) + 3, exp(s(f(z), f(z;))_

Commonly known as the InNfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x*)

MI[f(x), f(z")] —log(N) = —L

L=-Ex log

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019
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SIMCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function: 2 . Maximizeagreement
T
(4 0) = ] ) o0
ul| v
h; <— Representation —» h;

Use a projection network g(-) to project
features to a space where contrastive ) fC)
learning is applied

Generate positive samples through data VS ol
augmentation:
e random cropping, random color
distortion, and random blur.

Source: Chen et al., 2020
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SIMCLR: generating positive samples from

data augmentation

-
L

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering
Source: Chen et al., 2020
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*We use a slightly different

Algorithm 1 SimCLR’s main learning algorithm. formulation in the assignment.
S i m C L R input: batch size IV, constant 7, structure of f, g, 7. You should follow the
for sampled minibatch {; };_, do assignment instructions.

forallk e {1,..., N1} do
draw two augmentation functions t~7, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

Generate a positive pair —~

hor—1 = J (@2k—1) # representation
by sampling data zop—1 = g(hok—_1) # projection
auamentation functions # the second augmentation
J | &gy, =t ()
hoi = f(Zak) # representation
Zor = g(hax) # projection
end for
foralli € {1,...,2N}andj € {1,...,2N} do
si; =z, zi/(|zillll%]) # pairwise similarity
end for

exp(s;,5/7)
1 e exp(s;,k/T)

L= 0 [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

define £(z, j) as £(z,7)=—log 2N
k=

Source: Chen et al., 2020
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*We use a slightly different

Algorithm 1 SimCLR’s main learning algorithm. formulation in the assignment.
S i m C L R input: batch size IV, constant 7, structure of f, g, 7. You should follow the
for sampled minibatch {; };_, do assignment instructions.

forallk e {1,..., N1} do
draw two augmentation functions t~7, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

Generate a positive pair —~

_ hor—1 = J (@2k—1) # representation
by sampling data zop—1 = g(hok—_1) # projection
augmentation functions # the second augmentation
T Top = t’(a;k)
hoi = f(Zak) # representation
2ok = g(ha) # projection
end for
foralli € {1,...,2N}andj € {1,...,2N} do
si; =z, zi/(|zillll%]) # pairwise similarity InNfoNCE loss:
end for — Use all non-positive
. . . . S ex Si,j T 4/ .
geline ﬁ(w}i as (i, j) =—log saw e samples in the
update networks f and g to minimize £
end for

return encoder network f(-), and throw away g(-)

Source: Chen et al., 2020
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*We use a slightly different

Algorithm 1 SimCLR’s main learning algorithm. formulation in the assignment.
S i m C L R input: batch size IV, constant 7, structure of f, g, 7. You should follow the
for sampled minibatch {; };_, do assignment instructions.

forallk e {1,..., N1} do
draw two augmentation functions t~7, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

Generate a positive pair —~

_ hor—1 = J (@2k—1) # representation
by sampling data zop—1 = g(hok—_1) # projection
augmentation functions # the second augmentation
" Top = t’(a;k)
hor = f(@oxk) # representation
Zor = g(hax) # projection
end for
foralli € {1,...,2N}andj € {1,...,2N} do
si; =z, zi/(|zillll%]) # pairwise similarity InNfoNCE loss:
end for - iti
Iterate through and . N exp(si,;/7) «— Use all non positive
define (3, j) as [¢(i,7) log ==w
SN L) exp(8i,5/7) samples in the
use each of the 2N | N
| ‘ —> L= 55 > p1 [0(2k—1,2k) + £(2k, 2k —1)] batch as x-
sample as reierence, update networks f and g to minimize £
compute average loss end for

return encoder network f(-), and throw away g(-)

Source: Chen et al., 2020
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SimCLR: mini-batch training R

S; 3 —
S A TRIEA]
“Affinity matrix”

2NN xD
—»  encoder z € R
—
list of positive pairs I -
__»  encoder -/
Each 2k and 2k + 1
element is a positive pair 2N

*We use a slightly different formulation in the assignment.
You should follow the assignment instructions.
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SimCLR: mini-batch training R

S;5 —
S A TRIEA]
“Affinity matrix”

—»  encoder — Z C R2NxD
list of positive pairs I -
—_»  encoder —/
Each 2k and 2k + 1
element is a positive pair 2N
*We use a slightly different formulation in the assignment. . = classification label for each row

You should follow the assignment instructions.
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Training linear classifier on SIMCLR features

®Supervised % SimCLR (4x)
. 75} N |
< .- *SIimCLR (2x) Train feature encoder on
) 20 oCPCv2-L ImageNet (entire training set)
3 *SimCLR oCMC JMOCOI,(“X) using SimCLR.
S oPIRL-c2x
< AMDIM
- 65k Q eMoCo (2x) ,
& QCPCv2 PIRL-ens. Freeze feature encoder, train a
” e eBigBiGAN linear classifier on top with
2 eof 4% labeled data.
()]
©
S L eRotation
o9 e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)
Source: Chen et al., 2020
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Semi-supervised learning on SIMCLR features

Label fraction

Method Architecture 1% 10%

Top 5
Supervised baseline ResNet-50 48.4 80.4 Train feature encoder on
Methods using other label-propagation: : H
Pseudo-label ResNet-50 5.6 82.4 ImageNet (entire training set)
VAT+Entropy Min. ResNet-50 470 834 using SimCLR.
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1 .
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2 Finetune the encoder with 1% /
Methods using representation learning only: 10% of labeled data on
InstDisc ResNet-50 392 774
BigBiGAN RevNet-50 (4x) 552  78.8 ImageNet.
PIRL ResNet-50 572 838
CPC v2 ResNet-161(x) 779 912

SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4x)

Table 7. ImageNet accuracy of models trained with few labels. Source: Chen et al.. 2020
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SIMCLR design choices: projection head

70
I II II Linear / non-linear projection heads improve
Projection representation learning.
B Linear
Non-li . .
: Ngge'“eaf A possible explanation:

e contrastive learning objective may discard
useful information for downstream tasks
e representation space z is trained to be

)]
o

Top 1
U
o

N
o

30
'\«’L% ’Lc)b (9‘\ '\‘ b‘ rLQD‘%
Projection output dimensionality

— Maximize agreement . invariant to data transformation.
{ o0 o) ] e by leveraging the projection head g('),
h. ¢ Representation—>  h; more information can be preserved in the
fég éf() h representation space
7 Tx A

Source: Chen et al., 2020
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SIMCLR design choices: large batch size

Large training batch size is crucial for

SimCLR!

65.0

62.5 )
- Large batch size causes large memory
260.0 . . .
= Batch ¥l footprint during backpropagation:

575 e i | requires distributed training on TPUs

55.0 1024 (ImageNet experiments)

ol 1

w8192
50.0 [ [T ([ []]

100 200 300 400 500 600 700 800 900 1000
Training epochs

Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch. '

Source: Chen et al., 2020
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Momentum Contrastive Learning (MoCo)

contrastive loss 5 grag Key differences to SimCLR:
| similérity / e Keep a running queue of keys
| | (negative samples).
q kO kl k2 e Compute gradients and update the
encoder only through the queries.

‘ queue |

e Decouple min-batch size with the
momentum .
encoder encoder number of keys: can support a large
number of negative samples.
I

ke ke ke
query Yy Yy Yy
x xo xl x2 e o 0

Source: He et al., 2020
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Momentum Contrastive Learning (MoCo)

contrastive loss 5 grag Key differences to SimCLR:
similérity / e Keep a running queue of keys
| | (negative samples).
q kO kl k2 e Compute gradients and update the
encoder only through the queries.

‘ queue ‘

e Decouple min-batch size with the

encoder m:rﬂzgg’rm number of keys: can support a large
number of negative samples.
| | e The key encoder is slowly progressing
pduery xlgey xll{ey 3;12{63’ through the momentum update rules:

O <+ mby + (1 — m)9q

Source: He et al., 2020
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Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

C # f_qg, f_k: encoder networks for query and key
MO O # queue: dictionary as a queue of K keys (CxK)
# m: momentum
#t

: temperature

f_k.params = f_g.params # initialize _
Generate a positive pair = mg ) e s il e e
b Sam ||n data x_k = aug(x) # another randomly augmented version
y p g . \ }C(I = E_E.Eorwarg(x_g) z Euer?es:CNxC
augmentatlon funCtIonS k ; k.détgz‘lq?])f éxno)gradigié Ez keys |
_ / |_pos = bam(qview(N,1,C), k.view(,C,1)) Use the running
No gradient through } negative logita: Bk «— queue of keys as the
th k l_neg = mm(g.view(N,C), queue.view(C,K)) .
€ Key : negative samples
# logits: Nx(1+K)

logits = cat([l_pos, 1l_neg], dim=1)

# contrastive loss, Egn. (1)
labels = zeros(N) # positives are the 0-th

loss = CrossEntropyLoss (logits/t, labels) ¢ InfONCE IOSS

# SGD update: query network
loss.backward ()
update (f_g.params)

# momentum update: key network Update f_k through

f_k.params = mxf_k.params+ (1-m)+f_qg.params —

U d t th FIFO # update dictionary momentum
p a e e ) enqueue (queue, k) # enqueue the current minibatch
. | dequeue (queue) # dequeue the earliest minibatch |
negative sample queue
bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation. SOU rce: He et al 2020
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*“MoCo V2~

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

A hybrid of ideas from SImCLR and MoCo:
e From SimCLR: non-linear projection head and strong data
augmentation.
e From MoCo: momentum-updated queues that allow training
on a large number of negative samples (no TPU required!).

Source: Chen et al., 2020
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MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

unsup. pre-train ImageNet VOC detection

case MLP aug+ Cos CpOChS acc. APsy; AP APys Y Non_linear projection head and
supervised 76.5 81.3 53.5 58.8 . .
MoCo v1 200 | 606 1 8L5 3550 626 strong data augmentation are crucial

(@) 4 200 | 662 | 820 564 626 for contrastive learning.

(b) v 200 63.4 82.2 56.8 63.2

(c) v v 200 67.3 825 572 639

(d) v v v 200 675 | 824 570 63.6

(e) v v v 800 71.1 825 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(1) ImageNet linear classification, and (i1) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+”:
with extra blur augmentation; “cos”: cosine learning rate schedule.

Source: Chen et al., 2020
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MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageNet

case MLP aug+ ~cos epochs batch acc.
MoCo v1 [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 x224), trained on features from unsuper-
vised pre-training. “aug+” in SImCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

Key takeaways:

e Non-linear projection head and
strong data augmentation are crucial
for contrastive learning.

e Decoupling mini-batch size with
negative sample size allows MoCo-
V2 to outperform SimCLR with
smaller batch size (256 vs. 8192).

Source: Chen et al., 2020
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MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

e Non-linear projection head and

mechanism  batch memory/GPU time/200-ep. Strong data augmentatlon are crucial

MoCo 256 5.0G 53 hrs for contrastive learning.
end-to-end 256 7.4G 65 hrs
end-to-end 4096 93.0G n/a e Decoupling mini-batch size with
Table 3. Memory and time cost in 8 V100 16G GPUs, imple- negative sample size allows MoCo-
mented in PyTorch. ': based on our estimation. V2 to outperform SimCLR with
smaller batch size (256 vs. 8192).
e ... all with much smaller memory
footprint! (“end-to-end” means
SimCLR here)

Source: Chen et al., 2020
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Instance vs. Sequence Contrastive Learning

Predictions

W, Tl Tl T
~ e e e
2 N ~. ~
\'\ N, S N
i \ &
Yar ar ar ar \.\ ‘e \
N ‘\. \‘t

i i
/\/\/\/\/\/\/\/\

| @t-3 | Te—2 | Te—1 | T | T | T2 | T3 | Tigd |
4|'lw'\l.\w‘\wI\W\p\&\m”‘{‘WWW»—««\ i """“'VW WW“W "““WM B smopnce

Source: van den Oord et al., 2018

Instance-level contrastive learning: Sequence-level contrastive learning:
contrastive learning based on contrastive learning based on
positive & negative instances. sequential / temporal orders.

Examples: SimCLR, MoCo Example: Contrastive Predictive Coding (CPC)
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Contrastive Predictive Coding (CPC)

Predictions

Contrastive: contrast between
“right” and “wrong” sequences
+zf+3 *w using contrastive learning.

/g\/ \/g\ /g\/ \/g\/ \/ \ Predictive: the model has to

predict future patterns given the

| Tt-3 | Te2 | Te-1 | Tt \$t+1 $t+2\xt+3\$t+4\

current context.
.! E’ b . . Coding: the model learns useful
. ‘ positive feature vectors, or “code”, for

- | downstream tasks, similar to other
context : i ’
VS‘N ﬂ | . self-supervised methods.
negative
Figure source Source: van den Oord et al., 2018,
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Contrastive Predictive Coding (CPC)

1. Encode all samples in a sequence
into vectors z; = g.pnc(X¢)

Ct Predict
] (] ] | St
()—()—()—()
v '
B L R

[ [ \/ e

o\ [ooc o

2 W
4 s

context

\_

$+\x+\$+\

positive

B e N

negative

Figure source

Source: van den Oord et al., 2018,
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Contrastive Predictive Coding (CPC)

Predictions
] : _=‘ffffffffj::iiii':.':j\‘f\.\_\ 1. Encode all samples in a sequence
@ ‘ N e s into vectors z; = g.,c(X;)
2. Summarize context (e.g., half of a
Zt+1 Zt+2 Zt+3 Zt+4 . .
sequence) into a context code ¢; using
/genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ an aUto'regreSSNe mOdeI (gar)- The
original paper uses GRU-RNN here.
| Tt—3 | T2 | Ty | T | Tt+1 Tt+2 \ Tt+3 \ Tt+4

I ZFHEH

& 5 © positive
context VEL ﬂ \.

negative

Source: van den Oord et al., 2018,

Figure source
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Contrastive Predictive Coding (CPC)

Predictions

R TR T 1. Encode all samples in a sequence
@ @ N into vectors z; = gopc(X;)
M » ‘\yw *M ;W 2. Summarize context (e.g., half of a
, sequence) into a context code ¢; using
/genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ an aUto'regreSSNe mOdeI (gar)

| @3 | B2 | B | & | B | T2 | Tus | B | 3. Compute InfoNCE loss between the
context ¢, and future code z,,, using
£L b . . the following time-dependent score
ositive functiora:
4 A " silzrer, ) = 2, Wier
context . Y | .
q VS«» Q f , Where W, is a trainable matrix.

negative

Figure source Source: van den Oord et al., 2018,
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CPC example: modeling audio sequences

Predictions

M ()G ;
* 2t+1 * 2t42 + 2t+3 2t4+4
genc genc genc / genc \ / genc \ / genc \ / genc \ genc

| T3 Tt—1 Ti4+1 Ti+2 | Te43 | Ti4d |

WWWWWM“WWWWWW*%WWWW

Source: van den Oord et al., 2018,
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CPC example: modeling audio sequences

Method | ACC

Phone classification
Random initialization 27.6

MEFCC features 39.7
CPC 64.6
Supervised 74.6

Speaker classification
Random initialization 1.87

MFCC features 17.6
Figure 2: t-SNE visualization of audio (speech) (Szllflfervise d g;g

representations for a subset of 10 speakers (out

of 251). Every color represents a different ) o )
speaker. Linear classification on trained

representations (LibriSpeech dataset)

Source: van den Oord et al., 2018,
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CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom
as a sequence. l.e., use top rows as context to predict bottom rows.

Genc - OutPUt

_/‘
L

4 -

64 px 2ol e
T T R e
e 7 th4 | -
50% overlap |
256px: :
v input image |

_/’

Gar - Output

(°,-'

“t
A
o

7

=7

/ .

=/

_-~ Predictions

/'

Source: van den Oord et al., 2018,
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CPC example: modeling visual context

Method | Top-1ACC e Compares favorably with other pretext task-
g_s(ilng élse]xNet convs 208 based self-supervised learning method.
ideo s ;
Relative Position [11] 304 e Doesn'tdo as well compared to newer
BiGan [35] 34.8 instance-based contrastive learning
Colorization [10] 35.2 : :
Vigsaw [29] * 51 methods on image feature learning.
- %Supervised [ % SimCLR (4x)
Using ResNet-V2 <3| __XSimCLR (2x)
Motion Segmentation [36] 27.6 > '
Exemplar [36] 31.5 € 70F wsimCLR some dMoCo @)
Relative Position [36] 36.2 8 °PIRL-c2x AMDIM
Colorization [36] 39.6 7 65 'Jgr—%?,ﬁ\ iR eto.es
CpPC 48.7 e eBigBIGAN
% 6o} Q&’CO
Table 3: ImageNet top-1 unsupervised classifi- >
cation results. *Jigsaw is not directly compa- E 55} s eRotation
rable to the other AlexNet results because of . . . . P
25 50 100 200 400 626

architectural differences.

Number of Parameters (Millions)

Source: van den Oord et al., 2018,
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Summary: Contrastive Representation Learning

A general formulation for contrastive learning:

score(f(x), f(zT)) >> score(f(z), f(z7))

InfoNCE loss: N-way classification among positive and negative samples
exp(s(f(z), f(z ™))

L =—-Ex |log N1 —
exp(s(f(z), f(z1)) + 22,21 exp(s(f(2), f(z;))

Commonly known as the InNfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x*)

MI|[f(z), f(z")] — log(N) = —L
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Summary: Contrastive Representation Learning

Maximize agreement

SimCLR: a simple framework for contrastive 2 < . 2
representation learning g(_)T Tg(_)
e Key ideas: non-linear projection head to
allow flexible representation learning
e Simple to implement, effective in learning £0) £0)
visual representation
e Requires large training batch size to be
effective; large memory footprint p ~

h; <— Representation —> h;
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Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using contrastive loss
momentum sample encoder similarity
e Decouples negative sample size from
minibatch size; allows large batch training q ko k1 k2 ...
without TPU queue

e MoCo-v2 combines the key ideas from
SimCLR, i.e., nonlinear projection head,
strong data augmentation, with momentum

contrastive learning avery ey ey  key
0 1 2 e

momentum

encoder
encoder
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Summary: Contrastive Representation Learning

CPC: sequence-level contrastive learning

e Contrast “right” sequence with “wrong”
sequence.

e InfoNCE loss with a time-dependent score
function.

e Can be applied to a variety of learning ‘
problems, but not as effective in learning EC 7 . -
image representations compared to . a positive

instance-level methods. context 'S Q l

negative

T Ty Ti41 Tt42 Tt43 Tt44q

Jar \r% Jar
Jenc / g(‘ll(‘ \ .((‘ll(‘
Ty Ty—2

-
A
b
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Other examples: MoCo v3

An Empirical Study of Training Self-Supervised Vision Transformers

“This paper does not describe
a novel method.”

Chen et al., An Empirical Study of Training Self-Supervised Vision Transformers, FAIR

Lecture 13 - 96

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Xinlei Chen*

Saining Xie*

Kaiming He

Facebook AI Research (FAIR)

Code: https://github.com/facebookresearch/moco-v3

Abstract

This paper does not describe a novel method. Instead,
it studies a straightforward, incremental, yet must-know
baseline given the recent progress in computer vision: self-
supervised learning for Vision Transformers (ViT). While
the training recipes for standard convolutional networks
have been highly mature and robust, the recipes for ViT are
yet to be built, especially in the self-supervised scenarios
where training becomes more challenging. In this work, we
go back to basics and investigate the effects of several fun-
damental components for training self-supervised ViT. We
observe that instability is a major issue that degrades accu-
racy, and it can be hidden by apparently good results. We
reveal that these results are indeed partial failure, and they
can be improved when training is made more stable. We
benchmark ViT results in MoCo v3 and several other self-
supervised frameworks, with ablations in various aspects.
We discuss the currently positive evidence as well as chal-
lenges and open questions. We hope that this work will pro-
vide useful data points and experience for future research.

framework model params acc. (%)
linear probing:
iGPT [9] iGPT-L 1362M 69.0
iGPT [9] iGPT-XL 6801M 72.0
MoCo v3 ViT-B 86M 76.7
MoCo v3 ViT-L 304M 71.6
MoCo v3 ViT-H 632M 78.1
MoCo v3 ViT-BN-H 632M 79.1
MoCo v3 ViT-BN-L/7 304M 81.0
end-to-end fine-tuning:
masked patch pred. [16] ViT-B 86M 79.9
MoCo v3 ViT-B 86M 83.2
MoCo v3 ViT-L 304M 84.1
Table 1.  State-of-the-art Self-supervised Transformers in

ImageNet classification, evaluated by linear probing (top panel)
or end-to-end fine-tuning (bottom panel). Both iGPT [9] and
masked patch prediction [16] belong to the masked auto-encoding
paradigm. MoCo v3 is a contrastive learning method that com-
pares two (224x224) crops. ViT-B, -L, -H are the Vision Trans-
formers proposed in [16]. ViT-BN is modified with BatchNorm,
and “/7” denotes a patch size of 7x7. T: pre-trained in JFT-300M.
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Other examples: Masked Autoencoder

v

method pre-train data ViT-B  ViT-L ViT-H ViT-Hy4g
scratch, our impl. - 82.3 82.6 83.1 -
DINO [5] INIK 82.8 - - -
MoCo v3 [9] INIK 83.2 84.1 - -
BEIT [2] INIK+DALLE  83.2 85.2 - -
MAE INIK 83.6 85.9 86.9 87.8

He et al., Masked Autoencoders Are Scalable Vision Learners, FAIR
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Other examples: CLIP

Contrastive learning between image and natural language sentences

1. Contrastive pre-training 2. Create dataset classifier from label text

Encode! Text
Encoder
T, T, T3 Ty
— I I, I, 7, I;T; I,Ty
— L LT Iyl Iy - Iy 3. Use for zero-shot prediction
T, T, T3 Tn
Image
Encoder. T I3 I3T, I3T, I3Ts Iz-Ty
< Image
) . . . . . . e i 0 b I,T, LT, I el
— Iy Iyt InTy IyTs - InTy {

a photo of
adog.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021
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Other examples: Dense Object Net

Contrastive learning on pixel-wise feature descriptors

Dense Object Net, Florence et al., 2018
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Other examples Dense Object Net

Dense Object Net, Florence et al., 2018
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Other examples: Dense Object Net

Dense Object Net, Florence et al., 2018

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 13 - 101 May 18, 2023



Other examples: DINO

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron’?>  Hugo Touvron!®  Ishan Misra! = Hervé Jegou!
Julien Mairal>  Piotr Bojanowski! ~ Armand Joulin®

! Facebook Al Research 2 Inria* 3 Sorbonne University

Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.
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Other examples: DINO v2

(©

Figure 1: Visualization of the first PCA components. We compute a PCA between the patches of the
images from the same column (a, b, ¢ and d) and show their first 3 components. Each component is matched
to a different color channel. Same parts are matched between related images despite changes of pose, style
or even objects. Background is removed by thresholding the first PCA component.
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Other examples: DINO v2

(Elephants) (Drawings / Animals)
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Other examples: DINO v2
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Next time: Robot Learning

 Deep Reinforcement Learning
 Model Learning
* Robotic Manipulation
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