Lecture 2:

Image Classification with Linear Classifiers

Fei-Fei Li, Ehsan Adeli Lecture 2 - 1 April 4, 2023

Administrative: Assignment 1

Out tomorrow, Due 4/19 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
- Two-layer neural network
- Image features

Administrative: Course Project

Project proposal due 4/22 (Monday) 11:59pm

Contact us on Ed, each project team will have a TA assigned to them for future questions

your assigned TA for initial guidance (Canvas -> People -> Groups)

Use Google Form to find project partners (will be posted later today)

"Is X a valid project for 231n?" --- Ed private post / TA Office Hours

More info on the website

Administrative: Discussion Sections

This Friday 12:30pm-1:20 pm, in person at NVIDIA Auditorium, remote on Zoom (recording will be made available)

Python / Numpy, Google Colab

Presenter: Chengshu (Eric) Li (TA)

Syllabus

Deep Learning Basics	Convolutional Neural Networks	Computer Vision Applications
Data-driven approaches Linear classification & kNN Loss functions Optimization Backpropagation Multi-layer perceptrons Neural Networks	Convolutions PyTorch / TensorFlow Activation functions Batch normalization Transfer learning Data augmentation Momentum / RMSProp / Adam Architecture design	RNNs / Attention / Transformers Image captioning Object detection and segmentation Style transfer Video understanding Generative models Self-supervised learning Vision and Language 3D vision Robot learning Human-centered Al Fairness & ethics

Fei-Fei Li, Ehsan Adeli Lecture 2 - 5

Image Classification

A Core Task in Computer Vision

Today:

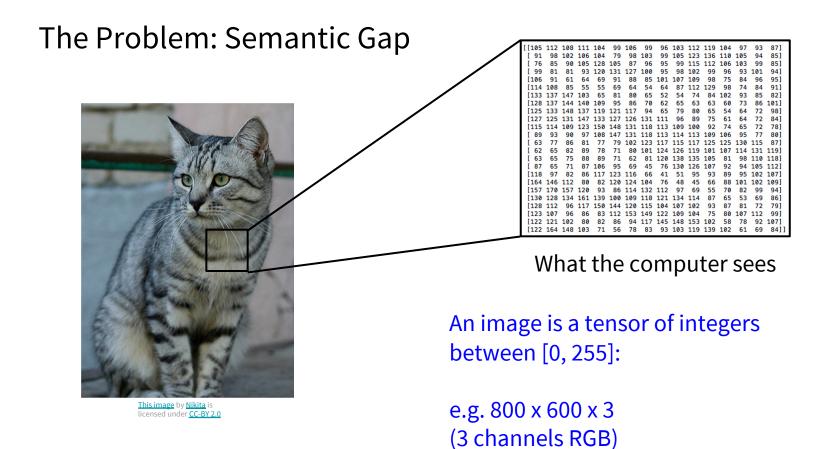
- The image classification task
- Two basic data-driven approaches to image classification
 - K-nearest neighbor and linear classifier

Image Classification: A core task in Computer Vision

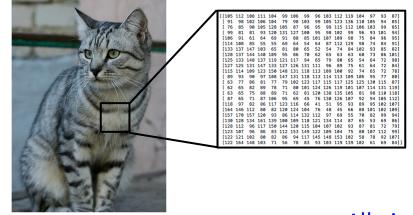
This image by Nikita is licensed under CC-BY 2.0

(assume given a set of possible labels) {dog, cat, truck, plane, ...}

→ cat



Challenges: Viewpoint variation



All pixels change when the camera moves!

This image by Nikita is licensed under CC-BY 2.0

Challenges: Illumination

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

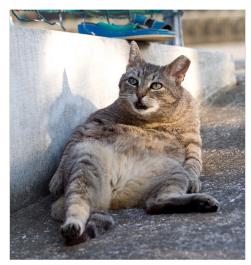
Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

<u>This image</u> by <u>ionsson</u> is licensed under <u>CC-BY 2.0</u>

Challenges: Deformation



This image by <u>Umberto Salvagnin</u> is licensed under <u>CC-BY 2.0</u>

<u>This image</u> by <u>Umberto Salvagnin</u> is licensed under <u>CC-BY 2.0</u>

This image by sare bear is licensed under CC-BY 2.0

<u>This image</u> by <u>Tom Thai</u> is licensed under <u>CC-BY 2.0</u>

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Challenges: Context

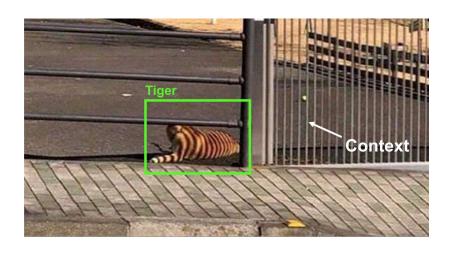


Image source: https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313_technology-artificialintelligence-computervision-activity-6912446088364875776-h-Iq?utm_source=linkedin_share&utm_medium=member_desktop_web

Modern computer vision algorithms

This image is CC0 1.0 public domain

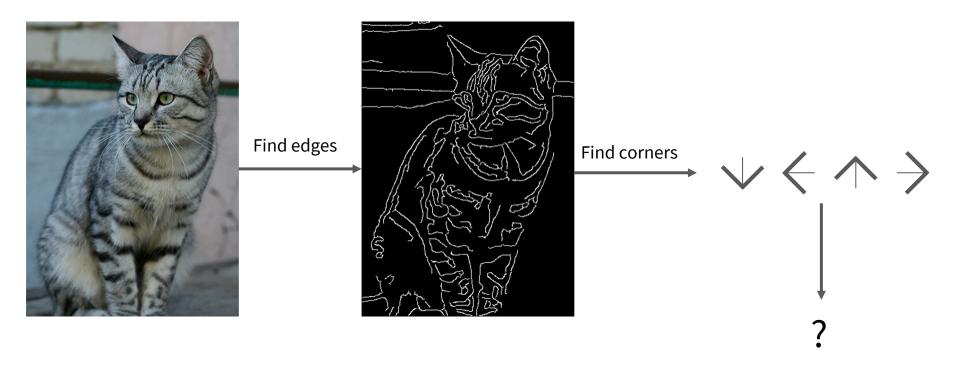
An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made



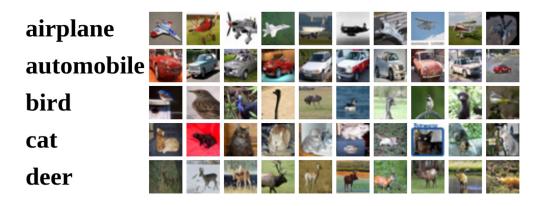
Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Example training set



Nearest Neighbor Classifier

First classifier: Nearest Neighbor

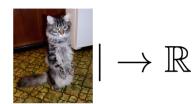
```
def train(images, labels):
                                             Memorize all data
  # Machine learning!
                                             and labels
  return model
                                             Predict the label of
def predict(model, test_images):
  # Use model to predict labels
                                            the most similar
  return test_labels
                                             training image
```

First classifier: Nearest Neighbor

Training data with labels

query data

Distance Metric



Distance Metric to compare images

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

test image					
56	32	10	18		
90	23	128	133		
24	26	178	200		
2	0	255	220		

training image

10	20	24	17
8	10	89	100
 12	16	178	170
4	32	233	112
4	32	233	-

pixel-wise absolute value differences

=	46	12	14	1	
	82	13	39	33	í
	12	10	0	30	-
	2	32	22	108	

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Nearest Neighbor classifier

```
class NearestNeighbor:
 def __init__(self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

import numpy as np

Nearest Neighbor classifier

Memorize training data

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
```

```
Nearest Neighbor classifier
```

```
For each test image:
Find closest train image
Predict label of nearest image
```

```
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

Ans: Train O(1), predict O(N)

This is bad: we want classifiers that are fast at prediction; slow for training is ok

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
   """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Nearest Neighbor classifier

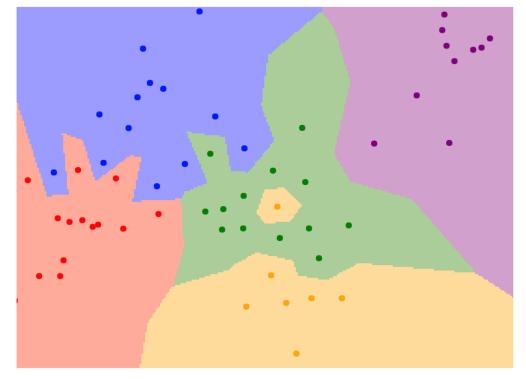
Many methods exist for fast / approximate nearest neighbor (beyond the scope of 231N!)

A good implementation:

https://github.com/facebookresearch/faiss

Johnson et al, "Billion-scale similarity search with GPUs", arXiv 2017

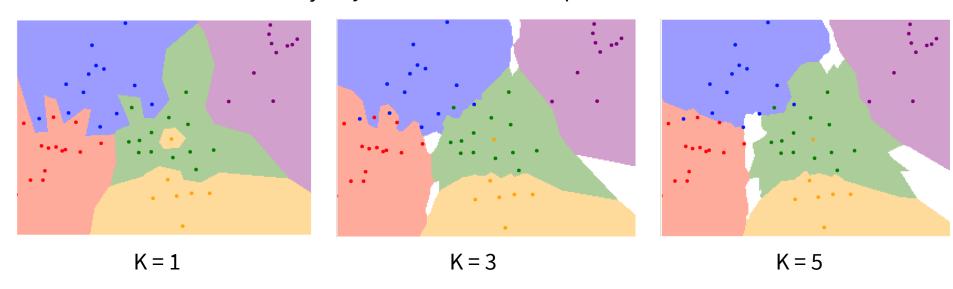
What does this look like?



1-nearest neighbor

K-Nearest Neighbors

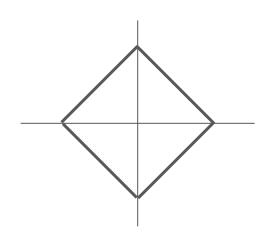
Instead of copying label from nearest neighbor, take majority vote from K closest points



K-Nearest Neighbors: Distance Metric

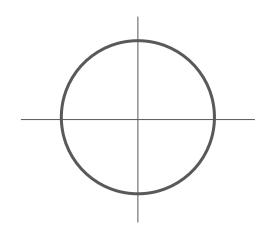
L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



L2 (Euclidean) distance

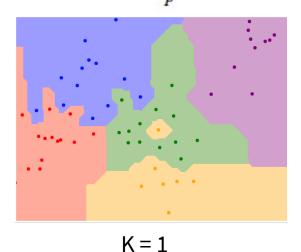
$$d_2(I_1,I_2) = \sqrt{\sum_p ig(I_1^p - I_2^pig)^2}$$



K-Nearest Neighbors: Distance Metric

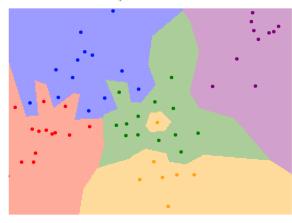
L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



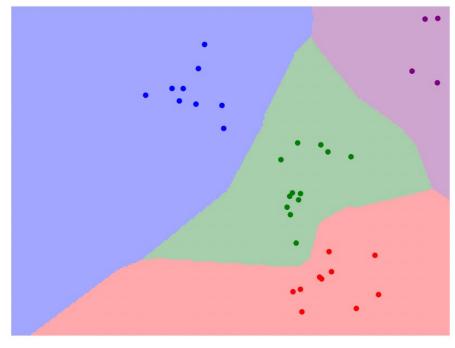
L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p ig(I_1^p - I_2^pig)^2}$$



K = 1

K-Nearest Neighbors: try it yourself!



http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters

What is the best value of k to use? What is the best distance to use?

These are hyperparameters: choices about the algorithms themselves.

Very problem/dataset-dependent.

Must try them all out and see what works best.

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the training data

train

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on test data

train

test

Idea #1: Choose hyperparameters that work best on the training data

train

BAD: K = 1 always works perfectly on training data

train

BAD: No idea how algorithm will perform on new data

train

test

Never do this!

Idea #1: Choose hyperparameters that BAD: K = 1 always works work best on the training data perfectly on training data train Idea #2: choose hyperparameters BAD: No idea how algorithm that work best on test data will perform on new data train test Idea #3: Split data into train, val; choose Better! hyperparameters on val and evaluate on test validation train test

train

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Example Dataset: CIFAR10

10 classes 50,000 training images 10,000 testing images

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

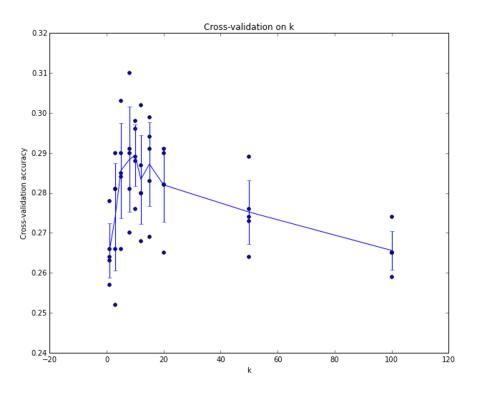
Example Dataset: CIFAR10

10 classes 50,000 training images 10,000 testing images

Test images and nearest neighbors



Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.



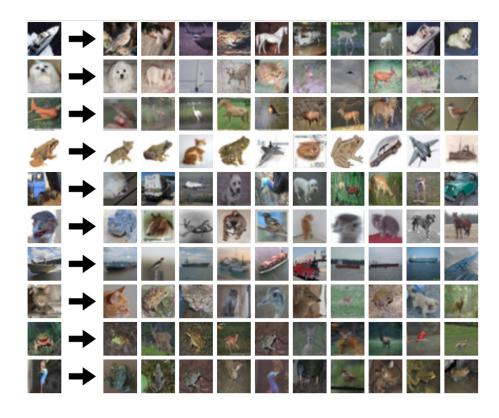
Example of 5-fold cross-validation for the value of k.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

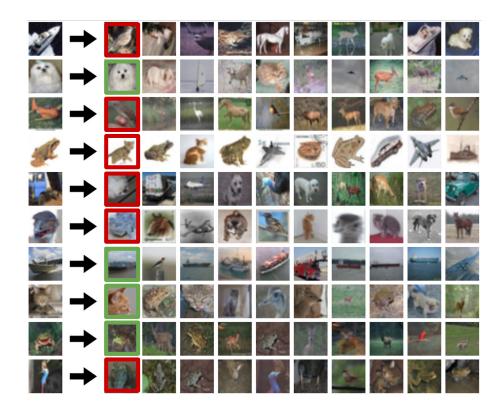
(Seems that k ~= 7 works best for this data)

What does this look like?



Fei-Fei Li, Ehsan Adeli Lecture 2 - 44 April 4, 2023

What does this look like?



Fei-Fei Li, Ehsan Adeli Lecture 2 - 45 April 4, 2023

k-Nearest Neighbor with pixel distance never used.

- Distance metrics on pixels are not informative

(All three images on the right have the same pixel distances to the one on the left)

K-Nearest Neighbors: Summary

In image classification we start with a training set of images and labels, and must predict labels on the test set

The K-Nearest Neighbors classifier predicts labels based on the K nearest training examples

Distance metric and K are hyperparameters

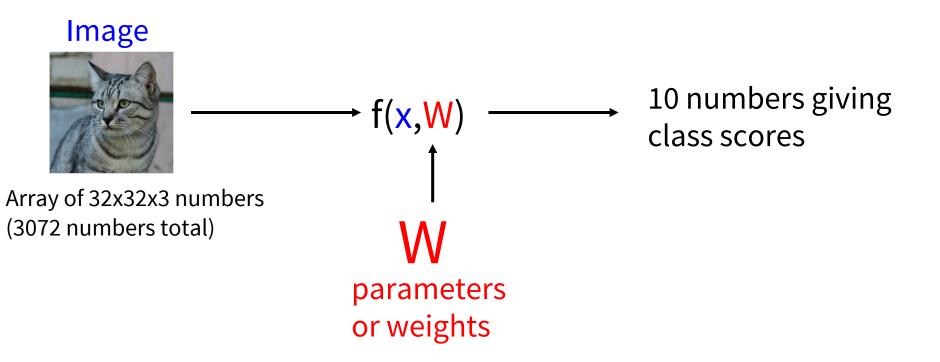
Choose hyperparameters using the validation set

Only run on the test set once at the very end!

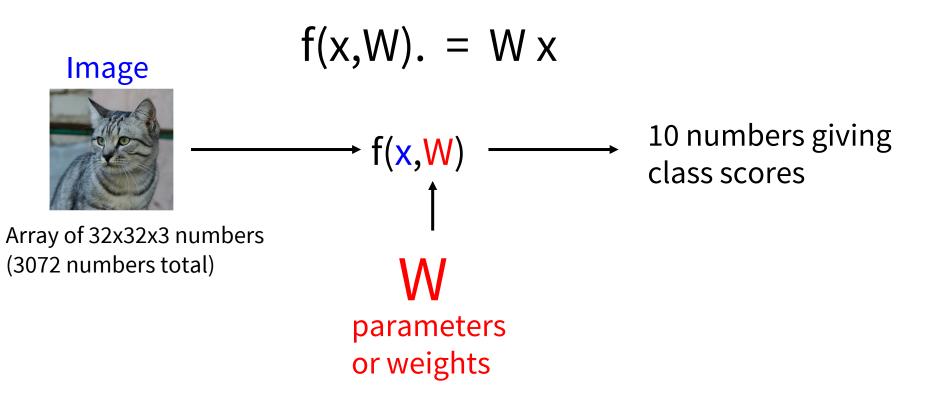
Linear Classifier

April 4, 2023 Lecture 2 - 49

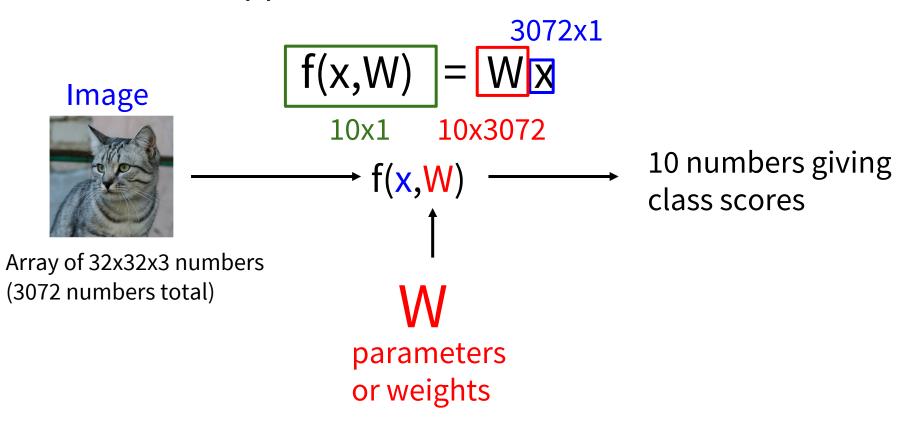
Parametric Approach



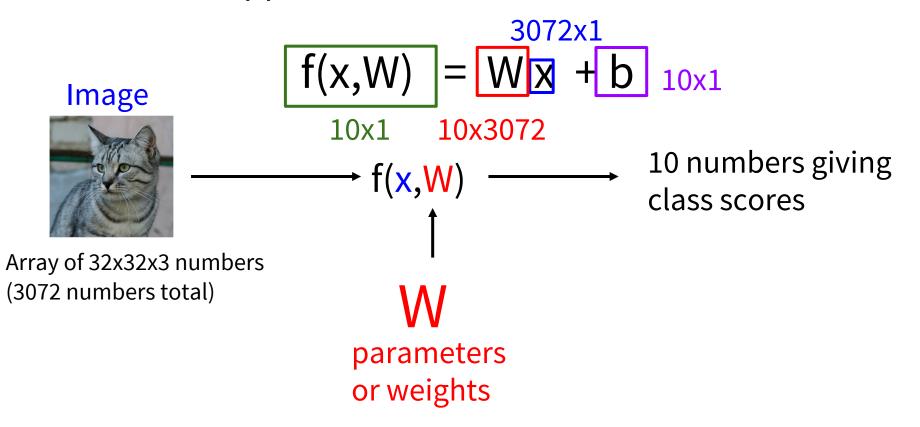
Parametric Approach: Linear Classifier



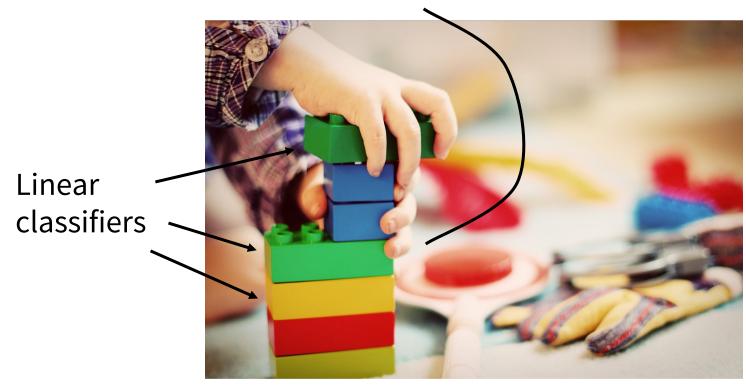
Parametric Approach: Linear Classifier



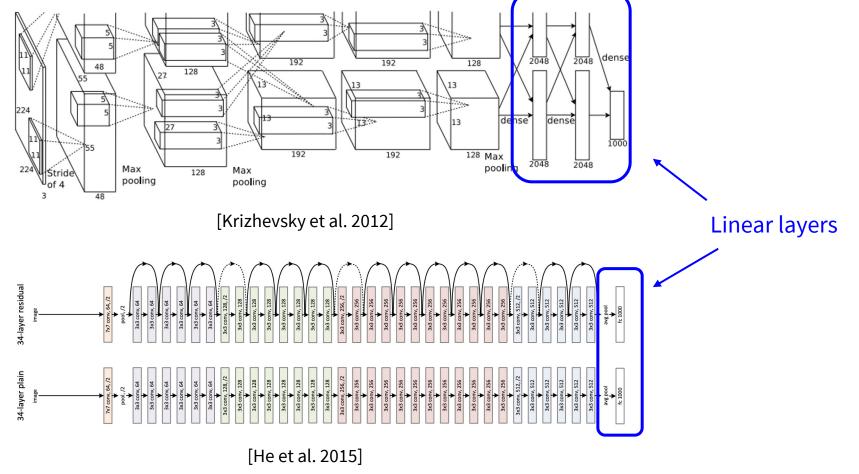
Parametric Approach: Linear Classifier



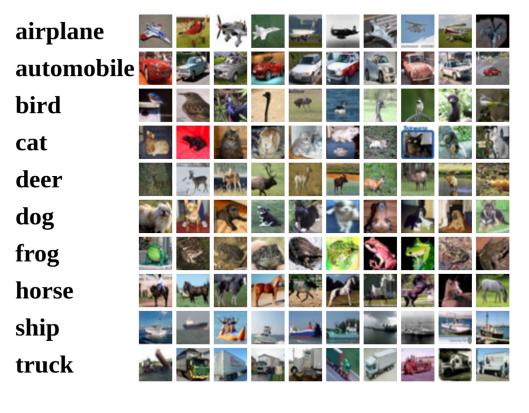
Neural Network



This image is CC0 1.0 public domain



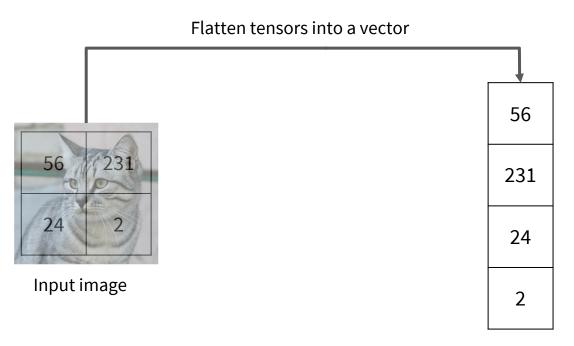
Recall CIFAR10



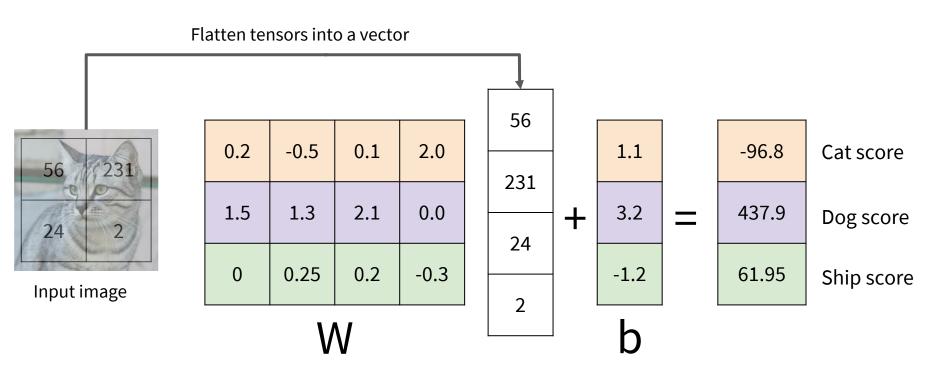
50,000 training images each image is 32x32x3

10,000 test images.

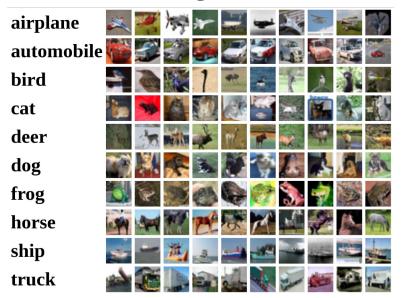
Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

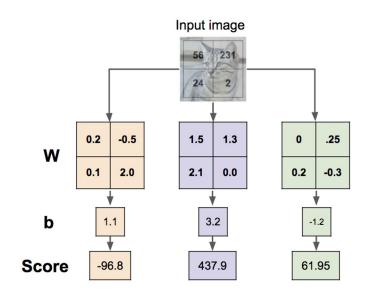


Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Algebraic Viewpoint

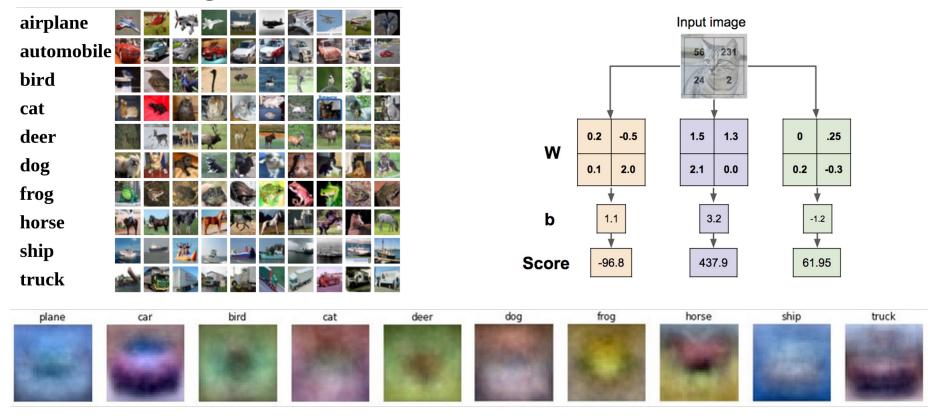


Interpreting a Linear Classifier





Interpreting a Linear Classifier: <u>Visual Viewpoint</u>



Interpreting a Linear Classifier: <u>Geometric Viewpoint</u>



$$f(x,W) = Wx + b$$

Array of 32x32x3 numbers (3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0

Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

1 <= L2 norm <= 2

Class 2:

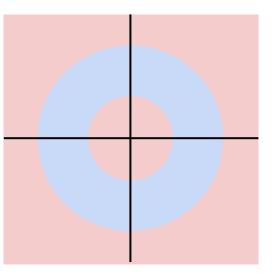
Everything else

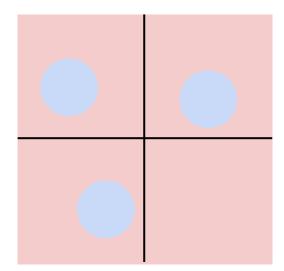
Class 1:

Three modes

Class 2:

Everything else





Linear Classifier – Choose a good W

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

- 1. Define a loss function that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CCO 1.0 public domain; Frog image is in the public domain

With some W the scores f(x,W)=Wx

	1		1	1
		161		
	4			
题				

cat 3.2

1.3 2.2

cat 3.2 car 5.1

1.3 2.2

frog -1.7

4.9 2.5

2.0 -3.1

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx

A loss function tells how good our current classifier is

	1	-		A	
			The same		
-		7	K		
			Way W		
	1			1	

2.0

2.2

-3.1

3.2 cat

car

frog

1.3 4.9 2.5

5.1

-1.7

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx

1

3.2 cat

1.3

2.2

5.1 car

4.9

2.5

-1.7 frog

2.0

-3.1

A loss function tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i ; image and y_i (integer) label

cat

car

frog

With some W the scores

2.0

f(x,W) = Wx

2.2

2.5

-3.1

$$= \frac{1}{N}$$

A loss function tells how good our current classifier is
$$\{(x_i,y_i)\}_{i=1}^N$$

Where x_i ; image and y_i (integer) label

Loss over the dataset is a average of loss over examples:

 $L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$

3.2

Suppose: 3 training examples, 3 classes.

1.3 4.9

5.1

-1.7

April 4, 2023

With some W the scores f(x, W) = Wx

	1		
1			
	4	and the same	1

Multiclass SVM loss:

Given an example (x_i,y_i) where x_i s the image and where y_i s the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

3.2 cat

1.3

2.2

5.1 4.9 2.5

frog

car

-1.72.0

-3.1

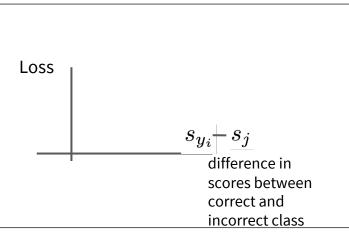
the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx

$$f(x,W)=Wx$$

Interpreting Multiclass SVM loss:



$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx

$$f(x,W)=Wx$$

2.2

2.5

cat

car

frog

3.2

5.1

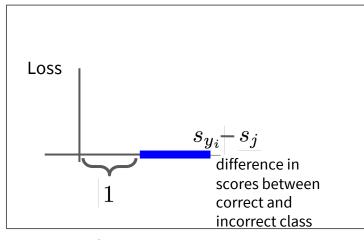
-1.7

4.9

1.3

-3.1 2.0

Interpreting Multiclass SVM loss:



$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx

$$f(x,W)=Wx$$

3.2 cat

1.3

2.2

5.1 car

4.9

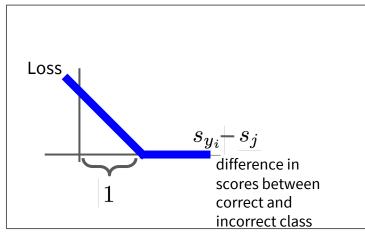
2.5

-1.7 frog

2.0

-3.1

Interpreting Multiclass SVM loss:



$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx

cat

3.2

1.3

2.2

2.5

car

frog

5.1

-1.7

4.9 2.0

-3.1

Multiclass SVM loss:

 (x_i,y_i) Given an example where x_i s the image and where y_i s the (integer) label,

and using the shorthand for the scores $s = f(x_i, W)$ vector:

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx

Multiclass SVM loss:

 (x_i,y_i) Given an example where x_i s the image and where y_i s the (integer) label,

and using the shorthand for the scores $s = f(x_i, W)$ vector:

cat

car

5.1 -1.7

frog 2.9 Losses:

3.2

1.3

2.2 2.5

4.9 -3.12.0

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$ $+\max(0, -1.7 - 3.2 + 1)$

 $= \max(0, 2.9) + \max(0, -3.9)$

= 2.9 + 0

= 2.9

With some W the scores f(x, W) = Wx

Multiclass SVM loss:

 (x_i,y_i) Given an example where x_i s the image and where y_i s the (integer) label,

and using the shorthand for the scores $s = f(x_i, W)$ vector:

3.2 cat

1.3

2.2

the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

5.1 car -1.7frog 2.9 Losses:

4.9 2.0

2.5 -3.1

 $= \max(0, 1.3 - 4.9 + 1)$ $+\max(0, 2.0 - 4.9 + 1)$ $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0

= 0

With some W the scores f(x, W) = Wx

Multiclass SVM loss:

 (x_i,y_i) Given an example where x_i s the image and where y_i s the (integer) label,

and using the shorthand for the scores $s = f(x_i, W)$ vector:

3.2 cat

1.3

2.2

the SVM loss has the form:

 $+\max(0, 2.5 - (-3.1) + 1)$

5.1 car

4.9

2.5

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $= \max(0, 2.2 - (-3.1) + 1)$

-1.7frog Losses:

2.0

-3.1

 $= \max(0, 6.3) + \max(0, 6.6)$

2.9

12.9

= 6.3 + 6.6

= 12.9

cat

car

frog

Losses:

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx

the SVM loss has the form:

vector:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Multiclass SVM loss:

where x_i s the image and

where y_i s the (integer) label,

and using the shorthand for the scores

 $s = f(x_i, W)$

Given an example

Loss over full dataset is average:

$$L = rac{1}{N} \sum_{i=1}^{N} L_i$$

 (x_i,y_i)

L = (2.9 + 0 + 12.9)/3

= 5.27

3.2 5.1

1.3

4.9

2.0

2.2

2.5

-3.1

12.9

Fei-Fei Li, Ehsan Adeli

-1.7

2.9

Lecture 2 -76

April 4, 2023

Q1: What happens to loss if car

scores decrease by 0.5 for this training example?

Multiclass SVM loss:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q2: what is the min/max possible

1.3

SVM loss L_i? 4.9

Q3: At initialization W is small so all 2.0 $s \approx 0$. What is the loss L_i, assuming N examples and C classes?

cat

car

frog

Losses:

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx

f(x,W) = WxWith some W the scores

Multiclass SVM loss:

 (x_i,y_i) Given an example where x_i s the image and where y_i s the (integer) label,

and using the shorthand for the scores $s = f(x_i, W)$ vector:

3.2

2.2

the SVM loss has the form:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

cat 5.1 car -1.7frog

Losses:

1.3 4.9

2.5

Q4: What if the sum was over all classes?

-3.12.0 12.9

(including j = y_i)

2.9

f(x,W) = WxWith some W the scores

Multiclass SVM loss:

 (x_i,y_i) Given an example where x_i s the image and where y_i s the (integer) label,

and using the shorthand for the scores $s = f(x_i, W)$ vector:

3.2

5.1

-1.7

1.3

2.2

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if we used

2.9 Losses:

cat

car

frog

2.0

4.9

-3.112.9

2.5

mean instead of sum?

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W) = Wx

 (x_i,y_i) Given an example where x_i s the image and where y_i s the (integer) label,

Multiclass SVM loss:

and using the shorthand for the scores $s = f(x_i, W)$ vector:

2.2

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$

3.2 5.1

cat

car

frog

Losses:

1.3

2.5

4.9 2.0 -3.1

2.9 12.9

-1.7

With some W the scores

$$f(x,W)=Wx$$

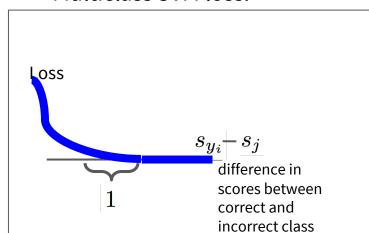
3.2 cat

1.3

5.1 car

-1.7 frog

Multiclass SVM loss:



Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Losses:

Multiclass SVM Loss: Example code

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L i vectorized(x, y, W):
  scores = W.dot(x)
                                                                 # First calculate scores
  margins = np.maximum(0, scores - scores[y] + 1) # Then calculate the margins s_i - s_{vi} + 1
                                                                 # only sum j is not y_i, so when j = y_i, set to zero.
  margins[y] = 0
                                                                 # sum across all j
  loss i = np.sum(margins)
  return loss i
```

Softmax classifier

Want to interpret raw classifier scores as probabilities

3.2 cat

car

5.1

-1.7 frog

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$oxed{s=f(x_i;W)} oxed{P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}}$$
 Softmax Function

3.2 cat

5.1 car

-1.7 frog

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

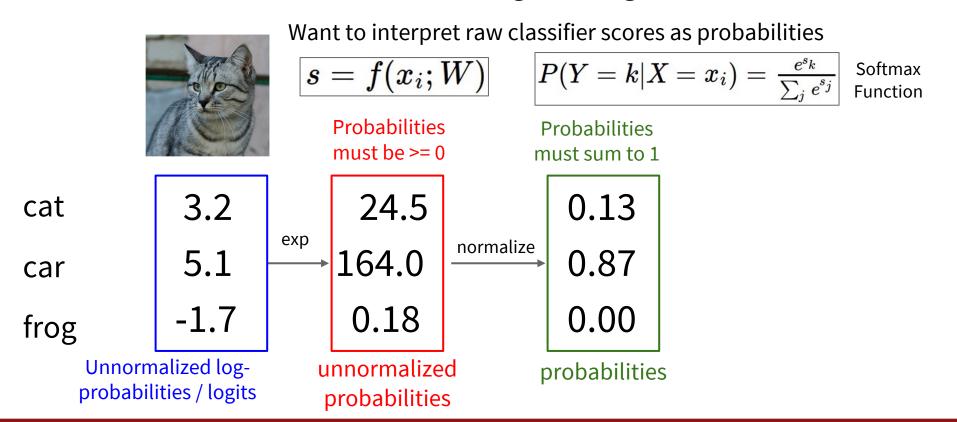
 $P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_i e^{s_j}}$ Softmax

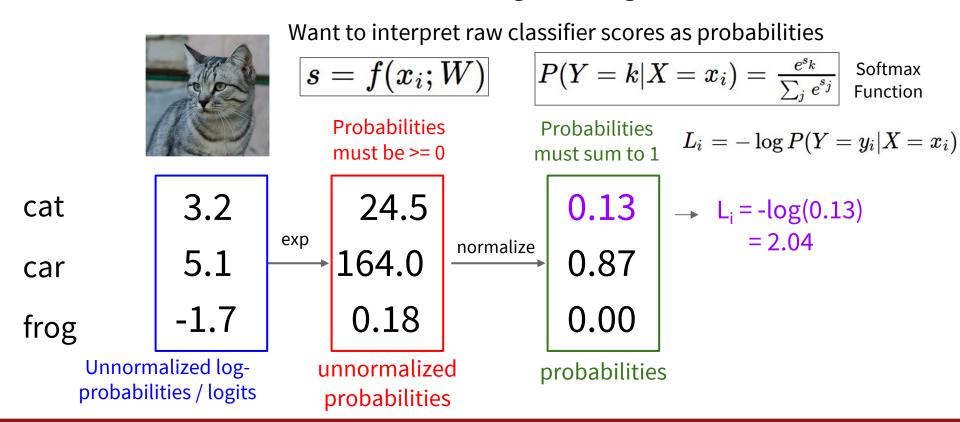
Probabilities must be >= 0

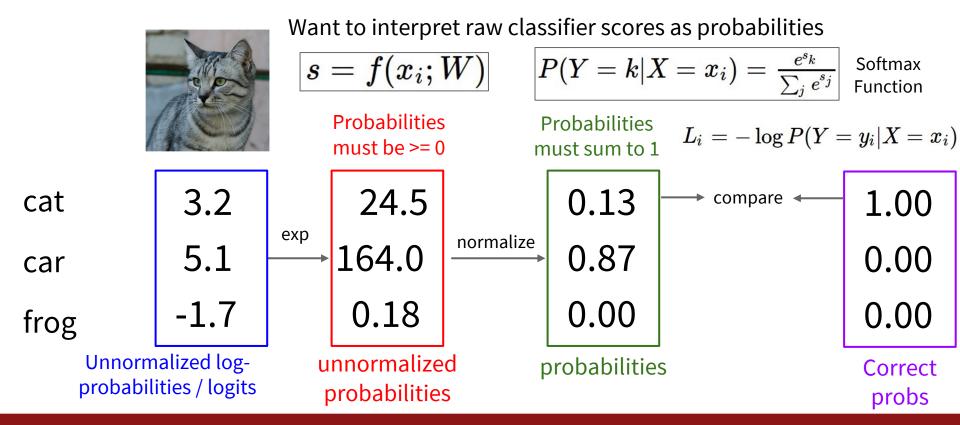
cat
$$3.2$$
 24.5 car 5.1 \xrightarrow{exp} 164.0 frog -1.7 0.18

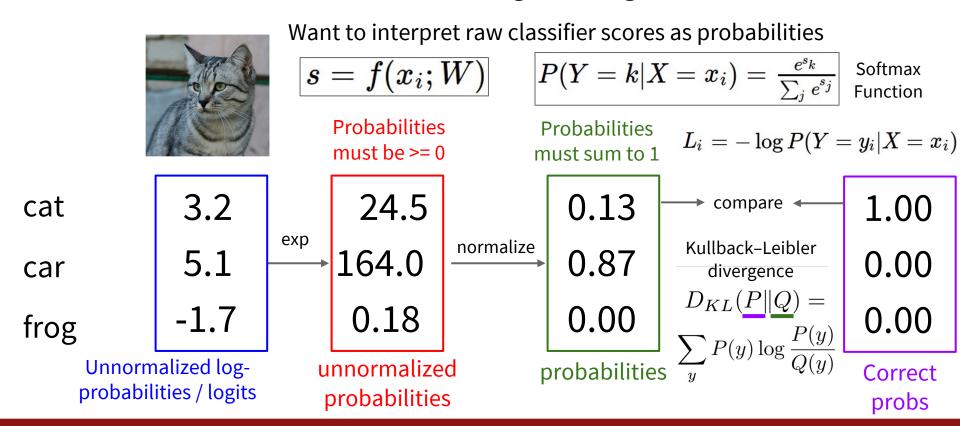
unnormalized probabilities

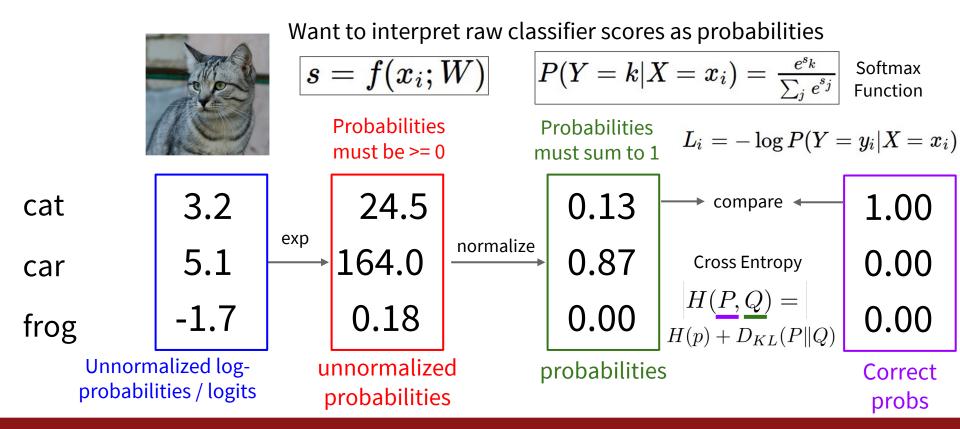
Want to interpret raw classifier scores as probabilities $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_i e^{s_j}}$ $s = f(x_i; W)$ Softmax **Function Probabilities Probabilities** must be $\geq = 0$ must sum to 1 24.5 0.13 3.2 cat exp normalize 164.0 5.1 0.87 car -1.70.00 0.18frog unnormalized probabilities probabilities











Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$oxed{s=f(x_i;W)} oxed{P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}}$$
 Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y=y_i|X=x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

frog
$$-1.7$$

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2

cat

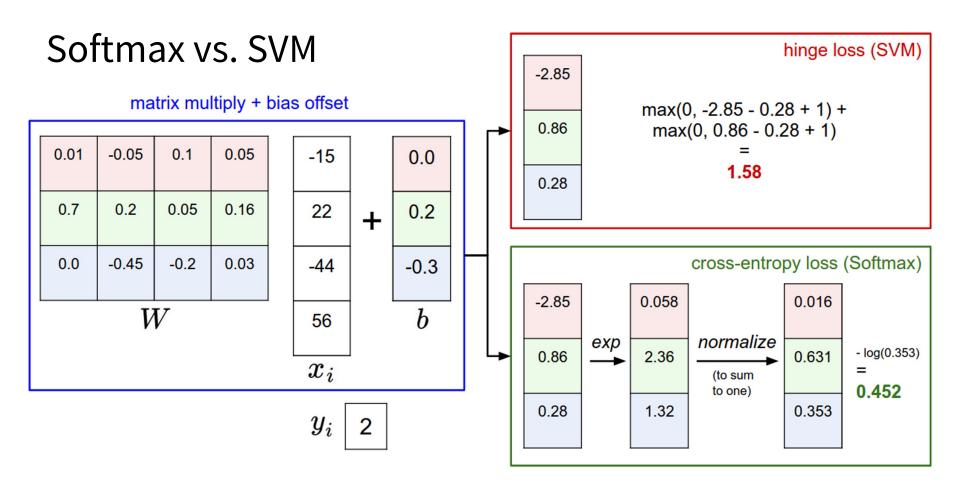
car

5.1

-1.7frog

Q1: What is the min/max possible softmax loss L_i?

Q2: At initialization all s_i will be approximately equal; what is the softmax loss L_i, assuming C classes?



Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100] and $y_i = 0$

Q: What is the softmax loss and the SVM loss?

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What is the softmax loss and the

assume scores: [20, -2, 3]

and

[20, -100, -100] and
$$y_i = 0$$

SVM loss if I double the correct

class score from 10 -> 20?

Coming up:

- Regularization
- Optimization

