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Released last week, due Fri 4/19 at 11:59pm

Office hours: help with high-level questions only, no code 

debugging. [No Code Show Policy]

Administrative: Assignment 1 
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http://cs231n.stanford.edu/office_hours.html
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Administrative: Project proposal + Office Hours

Due Mon 4/22

TA expertise + Office Hours are posted on the webpage. Mix of in-

person and zoom.

(http://cs231n.stanford.edu/office_hours.html)

3

http://cs231n.stanford.edu/office_hours.html
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Administrative: Ed

Please make sure to check and read all pinned Ed posts.

● Project group: fill in your information in the google form and/or 

look through existing responses and reach out

● SCPD: if you would like to take the midterm on-campus, send 

us an email: cs231n-staff-spr24@stanford.edu + cc scpd-

exams@stanford.edu
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mailto:cs231n-staff-spr24@stanford.edu
mailto:scpd-exams@stanford.edu
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Recap from Last Week
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cat

dog

bird

deer

truck

Image Classification: A core task in Computer Vision
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(assume given a set of labels)

{dog, cat, truck, plane, ...}

This image by Nikita is 

licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Recall from last time: Challenges of recognition

7

This image is CC0 1.0 public domain
This image by Umberto Salvagnin

is licensed under CC-BY 2.0
This image by jonsson is licensed 

under CC-BY 2.0

Illumination Deformation Occlusion

This image is CC0 1.0 public domain

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

Viewpoint

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Recall from last time: data-driven approach, kNN

8

1-NN classifier 5-NN classifier

train test

train testvalidation
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Recall from last time: Linear Classifier

9

f(x,W) = Wx + b
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cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some W the scores                           are:
A loss function tells how good 

our current classifier is

Given a dataset of examples

Where       is image and 

is (integer) label

Loss over the dataset is a 

average of loss over examples:
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Softmax vs. SVMSoftmax vs. SVM
vs.
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Q: Suppose that we found a W such that L = 0. 

Is this W unique? 

15
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Q: Suppose that we found a W such that L = 0. 

Is this W unique? 

No! 2W is also has L = 0! 
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Suppose: 3 training examples, 3 classes.

With some W the scores                           are:

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

= max(0, 1.3 - 4.9 + 1) 

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

0Losses: 2.9

Before:

With W twice as large:

= max(0, 2.6 - 9.8 + 1) 

+max(0, 4.0 - 9.8 + 1)

= max(0, -6.2) + max(0, -4.8)

= 0 + 0

= 0
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E.g. Suppose that we found a W such that L = 0. 

Is this W unique?

No! 2W is also has L = 0! 

How do we choose between W and 2W?
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Regularization -

19

Data loss: Model predictions 

should match training data
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Regularization

20

Data loss: Model predictions 

should match training data
Regularization: Prevent the model 

from doing too well on training data
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Regularization intuition: toy example training data

21

x

y
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Regularization intuition: Prefer Simpler Models

22

x

y
f1 f2
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Regularization: Prefer Simpler Models

23

x

y
f1 f2

Regularization pushes against fitting the data 

too well so we don’t fit noise in the data
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Regularization

24

Data loss: Model predictions 

should match training data
Regularization: Prevent the model 

from doing too well on training data

Occam’s Razor: Among multiple 

competing hypotheses, the simplest is the 

best, William of Ockham 1285-1347



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 3 - April 9, 2024

Regularization

25

Data loss: Model predictions 

should match training data
Regularization: Prevent the model 

from doing too well on training data

= regularization strength

(hyperparameter)
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Regularization

26

Data loss: Model predictions 

should match training data
Regularization: Prevent the model 

from doing too well on training data

= regularization strength

(hyperparameter)

Simple examples

L2 regularization: 

L1 regularization: 

Elastic net (L1 + L2): 
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Regularization

27

Data loss: Model predictions 

should match training data
Regularization: Prevent the model 

from doing too well on training data

= regularization strength

(hyperparameter)

Simple examples

L2 regularization: 

L1 regularization: 

Elastic net (L1 + L2): 

More complex:

Dropout

Batch normalization

Stochastic depth, fractional pooling, etc
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Regularization

28

Data loss: Model predictions 

should match training data
Regularization: Prevent the model 

from doing too well on training data

= regularization strength

(hyperparameter)

Why regularize?

- Express preferences over weights

- Make the model simple so it works on test data

- Improve optimization by adding curvature
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Regularization: Expressing Preferences

29

L2 Regularization

Which of w1 or w2 will 

the L2 regularizer prefer?
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Regularization: Expressing Preferences

30

L2 Regularization

L2 regularization likes to 

“spread out” the weights 

Which of w1 or w2 will 

the L2 regularizer prefer?
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Regularization: Expressing Preferences

31

L2 Regularization

L2 regularization likes to 

“spread out” the weights 

Which one would L1 

regularization prefer? 

Which of w1 or w2 will 

the L2 regularizer prefer?
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Recap

- We have some dataset of (x,y)

- We have a score function: 

- We have a loss function: 

e.g.

Softmax

SVM

Full loss
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Recap

- We have some dataset of (x,y)

- We have a score function: 

- We have a loss function: 

e.g.

Softmax

SVM

Full loss

How do we find the best W?
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Optimization
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This image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
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Walking man image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
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Strategy #1: A first very bad idea solution: Random search
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Lets see how well this works on the test set...

15.5% accuracy! not bad!

(SOTA is ~99.7%)
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Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives) along 

each dimension

The slope in any direction is the dot product of the direction with the gradient

The direction of steepest descent is the negative gradient
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25322

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]
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gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

(1.25322 - 1.25347)/0.0001

= -2.5

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25322
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gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25353
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gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25353

(1.25353 - 1.25347)/0.0001

= 0.6
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gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347
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gradient dW:

[-2.5,

0.6,

0,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

(1.25347 - 1.25347)/0.0001

= 0
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gradient dW:

[-2.5,

0.6,

0,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

Numeric Gradient

- Slow! Need to loop over 

all dimensions

- Approximate
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This is silly. The loss is just a function of W:

want
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This is silly. The loss is just a function of W:

want

This image is in the public 

domain

This image is in the public 

domain

Use calculus to compute an 

analytic gradient

https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg
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gradient dW:

[-2.5,

0.6,

0,

0.2,

0.7,

-0.5,

1.1,

1.3,

-2.1,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

dW = ...

(some function 

data and W)
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In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check 

implementation with numerical gradient. This is called a 

gradient check.
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Gradient Descent
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original W

negative gradient direction
W_1

W_2
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Stochastic Gradient Descent (SGD)

57

Full sum expensive 

when N is large!

Approximate sum 

using a minibatch of 

examples

32 / 64 / 128 common
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Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another?

What does gradient descent do?

w2

w1
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Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another?

What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction
w2

w1
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Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another?

What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

Aside: Loss function has high condition number: ratio of largest to 

smallest singular value of the Hessian matrix is large

w2

w1
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Optimization: Problem #2 with SGD

What if the loss 

function has a 

local minima or 

saddle point?

lo
s
s

w
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Optimization: Problem #2 with SGD

What if the loss 

function has a 

local minima or 

saddle point?

Zero gradient, 

gradient descent 

gets stuck
lo

s
s

w



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 3 - April 9, 202463

Optimization: Problem #2 with SGD

What if the loss 

function has a 

local minima or 

saddle point?

Saddle points much 

more common in 

high dimension
Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimization: Problem #2 with SGD

Image source: https://en.wikipedia.org/wiki/Saddle_point

saddle point in two dimension

https://en.wikipedia.org/wiki/Saddle_point
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Optimization: Problem #3 with SGD

Our gradients come from 

minibatches so they can be noisy!
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SGD + Momentum

Local Minima Saddle points

Poor Conditioning

Gradient Noise

SGD SGD+Momentum
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SGD: the simple two line update code

SGD
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SGD + Momentum:
continue moving in the general direction as the previous iterations

SGD

- Build up “velocity” as a running mean of gradients

- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum
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SGD + Momentum:
continue moving in the general direction as the previous iterations

SGD

- Build up “velocity” as a running mean of gradients

- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum
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SGD + Momentum: 
alternative equivalent formulation

SGD+Momentum SGD+Momentum

You may see SGD+Momentum formulated different ways, 

but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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More Complex Optimizers: RMSProp

SGD + 

Momentum

RMSProp

Tieleman and Hinton, 2012

Adds element-wise scaling of the 

gradient based on the historical sum of 

squares in each dimension (with decay)
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More Complex Optimizers: RMSProp

SGD + 

Momentum

RMSProp

Tieleman and Hinton, 2012

“Per-parameter learning rates” 

or “adaptive learning rates”
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RMSProp

RMSProp

Tieleman and Hinton, 2012

Q: What happens with RMSProp?
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RMSProp

RMSProp

Tieleman and Hinton, 2012

Q: What happens with RMSProp? Progress along “steep” directions is damped; 

progress along “flat” directions is accelerated
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RMSProp

SGD

SGD+Momentum

RMSProp
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Optimizers: Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

RMSProp

Sort of like RMSProp with momentum

Q: What happens at first timestep?
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Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 

first and second moment 

estimates start at zero



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 3 - April 9, 202479

Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 

first and second moment 

estimates start at zero

Adam with beta1 = 0.9, 

beta2 = 0.999, and learning_rate = 1e-3 or 5e-4

is a great starting point for many models! 
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Adam 

SGD

SGD+Momentum

RMSProp

Adam
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AdamW: Adam Variant with Weight Decay 

Q: How does regularization interact 

with the optimizer? (e.g., L2)
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AdamW: Adam Variant with Weight Decay 

A: It depends!

Q: How does regularization interact 

with the optimizer? (e.g., L2)
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AdamW: Adam Variant with Weight Decay 

Standard Adam computes L2 here

Q: How does regularization interact 

with the optimizer? (e.g., L2)

Used during moment 

calculations!
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AdamW: Adam Variant with Weight Decay 

Q: How does regularization interact 

with the optimizer? (e.g., L2)

AdamW (Weight Decay) adds term here

Computed after the 

moments!
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AdamW: Adam Variant with Weight Decay 

Source: https://www.fast.ai/posts/2018-07-02-

adam-weight-decay.html

Im
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Training Epoch

Q: How does regularization interact 

with the optimizer? (e.g., L2)

AdamW (Weight Decay) adds term here

Standard Adam computes L2 here

https://www.fast.ai/posts/2018-07-02-adam-weight-decay.html
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Learning rate schedules

86

Learning rate
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SGD, SGD+Momentum, RMSProp, Adam, AdamW all have 

learning rate as a hyperparameter.

Q: Which one of these learning 

rates is best to use?
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Q: Which one of these learning 

rates is best to use?

A: In reality, all of these could be 

good learning rates.

SGD, SGD+Momentum, RMSProp, Adam, AdamW all have 

learning rate as a hyperparameter.
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Learning rate decays over time

Reduce learning rate

Step: Reduce learning rate at a few fixed 

points. E.g. for ResNets, multiply LR by 0.1 

after epochs 30, 60, and 90.
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Learning Rate Decay

: Initial learning rate

: Learning rate at epoch t

: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018

Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed 

points. E.g. for ResNets, multiply LR by 0.1 

after epochs 30, 60, and 90.

Cosine:
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Learning Rate Decay

: Initial learning rate

: Learning rate at epoch t

: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018

Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed 

points. E.g. for ResNets, multiply LR by 0.1 

after epochs 30, 60, and 90.

Cosine:
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Learning Rate Decay

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding”, 2018

Step: Reduce learning rate at a few fixed 

points. E.g. for ResNets, multiply LR by 0.1 

after epochs 30, 60, and 90.

Cosine:

Linear:

: Initial learning rate

: Learning rate at epoch t

: Total number of epochs
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Step: Reduce learning rate at a few fixed 

points. E.g. for ResNets, multiply LR by 0.1 

after epochs 30, 60, and 90.

Cosine:

Linear:

Inverse sqrt: 

Learning Rate Decay

: Initial learning rate

: Learning rate at epoch t

: Total number of epochs
Vaswani et al, “Attention is all you need”, NIPS 2017
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High initial learning rates can make loss 

explode; linearly increasing learning rate 

from 0 over the first ~5,000 iterations can 

prevent this.

Empirical rule of thumb: If you increase the 

batch size by N, also scale the initial 

learning rate by N

Learning Rate Decay: Linear Warmup

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017
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First-Order Optimization

Loss

w1
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First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation

(2) Step to minimize the approximation
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Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation

(2) Step to the minima of the approximation
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: Why is this bad for deep learning?
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: Why is this bad for deep learning?

Hessian has O(N^2) elements

Inverting takes O(N^3)

N = (Tens or Hundreds of) Millions
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- Adam(W) is a good default choice in many cases; it 

often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may 

require more tuning of LR and schedule

- If you can afford to do full batch updates then look 

beyond 1st order optimization (2nd order and 

beyond)

In practice:
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Looking Ahead: How to optimize more complex 

functions?

(Currently) Linear score function:
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(Currently) Linear score function:

(Next Class) 2-layer Neural Network

Neural networks: 2 layers

(In practice we will usually add a learnable bias at each layer as well)
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Why do we want non-linearity?

10

3

x

y

Cannot separate red and 
blue points with linear 
classifier
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4

x

y

r

θ

f(x, y) = (r(x, y), θ(x, y)) 

Cannot separate red and 
blue points with linear 
classifier

After applying feature 
transform, points can be 
separated by linear 
classifier

Why do we want non-linearity?
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(Currently) Linear score function:

(Next Class) 2-layer Neural Network

Neural networks: also called fully connected network

(In practice we will usually add a learnable bias at each layer as well)

“Neural Network” is a very broad term; these are more accurately called 
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)
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Next time:

Introduction to neural networks

Backpropagation (How do you calculate dx for neural nets?)

106
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Appendix Material 

Extraneous content that may be of interest

107
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Gradient

Velocity

actual step

Momentum update:

SGD+Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point with 

velocity to get step used to update weights
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Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient

Velocity

actual step

Nesterov Momentum

Combine gradient at current point with 

velocity to get step used to update weights

“Look ahead” to the point where updating using 

velocity would take us; compute gradient there and 

mix it with velocity to get actual update direction
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Nesterov Momentum

Gradient

Velocity

actual step

“Look ahead” to the point where updating using 

velocity would take us; compute gradient there and 

mix it with velocity to get actual update direction
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Nesterov Momentum
Annoying, usually we want 

update in terms of

Gradient

Velocity

actual step

“Look ahead” to the point where updating using 

velocity would take us; compute gradient there and 

mix it with velocity to get actual update direction
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Nesterov Momentum
Annoying, usually we want 

update in terms of

Gradient

Velocity

actual step

“Look ahead” to the point where updating using 

velocity would take us; compute gradient there and 

mix it with velocity to get actual update direction

Change of variables                                   and 

rearrange: 

https://cs231n.github.io/neural-networks-3/

https://cs231n.github.io/neural-networks-3/
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Nesterov Momentum
Annoying, usually we want 

update in terms of

Gradient

Velocity

actual step

“Look ahead” to the point where updating using 

velocity would take us; compute gradient there and 

mix it with velocity to get actual update direction

Change of variables                                   and 

rearrange: 

https://cs231n.github.io/neural-networks-3/

https://cs231n.github.io/neural-networks-3/
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Nesterov Momentum

SGD

SGD+Momentum

Nesterov
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AdaGrad

Added element-wise scaling of the gradient based 

on the historical sum of squares in each dimension

“Per-parameter learning rates” 

or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

Q: What happens with AdaGrad?
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AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped; 

progress along “flat” directions is accelerated
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AdaGrad

Q2: What happens to the step size over long time?
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AdaGrad

Q2: What happens to the step size over long time? Decays to zero
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RMSProp: “Leaky AdaGrad”

AdaGrad

RMSProp

Tieleman and Hinton, 2012
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Second-Order Optimization

- Quasi-Newton methods (BGFS most popular):

instead of inverting the Hessian (O(n^3)), approximate 

inverse Hessian with rank 1 updates over time (O(n^2) 

each).

- L-BFGS (Limited memory BFGS): 

Does not form/store the full inverse Hessian.
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L-BFGS

- Usually works very well in full batch, deterministic mode 

i.e. if you have a single, deterministic f(x) then L-BFGS will 

probably work very nicely

- Does not transfer very well to mini-batch setting. Gives 

bad results. Adapting second-order methods to large-scale, 

stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”

Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017
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- Adam is a good default choice in many cases; it 

often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may 

require more tuning of LR and schedule

- If you can afford to do full batch updates then try out 

L-BFGS (and don’t forget to disable all sources of noise)

In practice:


