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Administrative: Assignment 1

Released last week, due Fri 4/19 at 11:59pm

Office hours: help with high-level questions only, no code
debugging. [No Code Show Policy]
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http://cs231n.stanford.edu/office_hours.html

Administrative: Project proposal + Office Hours

Due Mon 4/22

TA expertise + Office Hours are posted on the webpage. Mix of in-
person and zoom.

(http://cs231n.stanford.edu/office hours.html)
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http://cs231n.stanford.edu/office_hours.html

Administrative: Ed

Please make sure to check and read all pinned Ed posts.

e Project group: fill in your information in the google form and/or
look through existing responses and reach out

e SCPD: if you would like to take the midterm on-campus, send
us an email: cs231n-staff-spr24@stanford.edu + cc scpd-

exams@stanford.edu
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mailto:cs231n-staff-spr24@stanford.edu
mailto:scpd-exams@stanford.edu

Recap from Last Week
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Image Classification: A core task in Computer Vision

(assume given a set of labels)
{dog, cat, truck, plane, ...}

v

cat

This image by Nikita is
licensed under CC-BY 2.0
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Recall from last time: Challenges of recognition

Viewpoint [lumination Deformation Occlusion

LR R
This image by Umberto Salvagnin
is licensed under CC-BY 2.0

This image is CC0 1.0 public domain This image by jonsson is licensed

under CC-BY 2.0

Clutter Intraclass Variation

This image is CC0 1.0 public domain This image is CC0 1.0 public domain
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https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Recall from last tim
airplane .a Wﬂzﬁ’ﬂpﬁ- 1-NN classifier
automobﬂe.,aigﬁﬂﬂga
bird qf.l &!?-&-
cat E!.ﬂﬂmgﬂ
deer ! _"ﬂ m!anﬂ .
dop R S
frog nlo.ﬁ.
horse g i 1D I 5 IR
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train test
train validation test

e: data-driven approach, kNN

5-NN classifier
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Recall from last time: Linear Classifier

) ——= 10 numbers g f(x,W) =Wx +Db

Array of 32x32x3 numbers T
(3072 numbers total) W

parameters
or weights
Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint Class 1. _
ass 1: Class 1:
1 <=L2norm <=2 Three modes
Class 2: Class 2;
f(X,W) = Wx One template Hyperplanes Everything else Everything else
per class cutting up space

mmmmmmmmmmmmm

plane ar bird cat deer
dog frog horse ship truck
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W)= Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

A loss function tells how good
our current classifier is

Given a dataset of examples

{(zi,y:) Nl

Where x; is image and
Y; s (integer) label

Loss over the dataset is a
average of loss over examples:

ZL ZEZ, ) yz)

Fei-Fei Li, Ehsan Adeli, Zane Durante
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e’V

ng = —log( Zj 5 ) VS. Li = Zj#yz- maX(O, Sj — Syi + 1)
Softmax vs. SVM .
hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—»| | 0.86 max(0, 0.86 - 0.28 + 1)
0.01 | -005| 01 | 0.05 15 0.0 =
o 1.58
0.7 0.2 0.05 0.16
22 + 0.2
00 | 045 | -02 | 0.03 -44 0.3 cross-entropy loss (Softmax)
-2.85 0.058 0.016
W 56 b
ex normalize
— | 0.86 _'f:, 236 | — 5 | 0.631 | -100(0.353)
:I:i {to sum =
to one) 0.452
0.28 1.32 0.353
Y| 2
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flx, W) =Wx

L= ity Xz, max(0, f(2i; W); — f(zi; W)y, + 1)

Q: Suppose that we found a W such that L = 0.
Is this W unique?
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flx, W) =Wx
L= % Zz]\il Z#yi max (0, f(zi; W); — f(zi; W)y, + 1)

Q: Suppose that we found a W such that L = 0.
Is this W unique?

No! 2W iIs also has L = 0!
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Suppose: 3 training examples, 3 classes. i = Z#y, max(0, s; — sy, + 1)
With some W the scores f(z,W) =Wz are: z

Before:

=max(0, 1.3-4.9+1)
+max(0, 2.0-4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0
cat 3.2 1.3 2.2 With W twice as large:
car 5.1 4.9 2.5 i Trigi%b,zfd ? ;98_8:1)1)
frog _17 20 _31 : BnixéO, -6.2) + max(0, -4.8)
Losses: 2.9 0 =0
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flx, W) =Wx

L= ity Xz, max(0, f(2i; W); — f(zi; W)y, + 1)

E.g. Suppose that we found a W such that L = 0.
Is this W unique?

No! 2W iIs also has L = 0!
How do we choose between W and 2W?
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Regularization -

\. J
Y

Data loss: Model predictions
should match training data
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Regularization

= o ZL (26, W), :) + AR(W)

N J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data
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Regularization intuition: toy example training data

O
O
© @
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Regularization intuition: Prefer Simpler Models

fy f,
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Regularization: Prefer Simpler Models

fy f,

Regularization pushes against fitting the data
too well so we don'’t fit noise in the data
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Regularization

= o ZL (26, W), :) + AR(W)

_ J W_J
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Occam’s Razor: Among multiple
competing hypotheses, the simplest is the
best, William of Ockham 1285-1347
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Regularization \ = regularization strength

(hyperparameter)
NZL (23, W), y:) + AR(W)

N J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data
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Regularization \ = regularization strength
(hyperparameter)

= o ZL (26, W), :) + AR(W)

_ J W_J
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples

L2 regularization: R(W) = >, >, W2,

L1 regularization: R(W) = >, >, [Whk,]

Elastic net (L1 + L2): R(W) = >, >, AW, + [Wi,|
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Regularization \ = regularization strength

(hyperparameter)
NZL (23, W), y:) + AR(W)

N ~ J W_J

Data loss: Model predictions  Regularization: Prevent the model

should match training data from doing too well on training data
Simple examples More complex:
L2 reqularization: R(W) = >, >, W2, Dropout
L1 regularization: R(W) = >, >, [Whk,] Batch normalization

Elastic net (L1 + L2): R(W) = >, >, W}, + |[Wii| Stochastic depth, fractional pooling, etc
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Regularization \ = regularization strength

(hyperparameter)
NZL (23, W), y:) + AR(W)

_ J W_J
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Why regularize?
- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature
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Regularization: Expressing Preferences

L2 Regularization

RW) =32 2 Wi

Which of wl or w2 will
the L2 regularizer prefer?

z=1[1,1,1,1]
w; = [1,0,0,0]

wy = [0.25,0.25,0.25, 0.25]

{ LI - S
’wlm—w2m—1
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Regularization: Expressing Preferences

L2 Regularization

— 2
R(W) =2 2 Wi,
Which of wl or w2 will
the L2 regularizer prefer?

Wy = [[]25! 0:25.4.25; {]25] L2 regularization likes to

“spread out” the weights

z=1[1,1,1,1]
w; = [1,0,0,0]

{ LI - S
’wla:—w2a:—1
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Regularization: Expressing Preferences

L2 Regularization

— 2
RW) = 2. 2. Wy,
Which of wl or w2 will
the L2 regularizer prefer?

Wy = [[]25! 0:25.4.25; {]25] L2 regularization likes to

“spread out” the weights

z=1[1,1,1,1]
w; = [1,0,0,0]

’U_J%-IQ;' — wggj e ]_ Which one would L1

regularization prefer?
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Recap

- We have some dataset of (X,y)
- We have a score function: s = f(z; W) = Wz
- We have a loss function:

Softmax

L; = —log(=

Z 8 SVM regularization loss

g e 3 Wi , L
LZ T Z]#yz maX(07 S] Syz + 1) scorefunctlon‘uf(xi’wj dataloss }/‘

\A

% SN Li + R(W) Eull loss L)
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Recap How do we find the best W?

- We have some dataset of (X,y) eq.
- We have a score function: s = f(z; W) = Wz
- We have a loss function:

Softmax

L; = —log(=

Z 8 SVM regularization loss

g e 3 Wi , L
LZ T Z]#yz maX(07 S] Syz + 1) scorefunctlon‘uff'(x—:‘—/vj dataloss }/‘

% SN Li + R(W) Eull loss L)
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Optimization
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This image is CCO 1.0
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http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/

Walking man image is CCO0 1.0
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http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Strategy #1: A first very bad idea solution: Random search

bestloss = float("inf") # Python assig
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001 # generate rand
loss = L(X train, Y_train, W) # get 1/
if loss < bestloss: # keep i
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
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Lets see how well this works on the test set...

scores = Wbest.dot(Xte cols) # 10 x 1000
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~99.7%)
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Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

af(z) _ . f@+h) - f@)

dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 3 -

gradient dW:

&)

AR BELO RELO BELO BELO BETO IS |

-~

[]

[]
e
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current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 loss 1.25322
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current W: W + h (first dim): gradient dW:

0.34, [0.34 + 0.0001, [-2.5,

-1.11, -1.11, ?,

0.78, 0.78, ?, \

0.12, 0.12, (1.25322 - 1.25347)/0.0001
0.55, 0.55, =-25

2.81, 2.81, df(z) _ . fl@+h) - f()
-3.1, -3.1, de_ noo i

-1.5, -1.5, ?,

0.33,...] 0.33,...] ?2,..]

loss 1.25347 loss 1.25322
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current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25353
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25353

gradient dW:

[_

0
?

?

2.5,

2\

(1.25353 - 1.25347)/0.0001

=0.6

= lim
h —0

f(z +h) — f(z)
h

Fei-Fei Li, Ehsan Adeli,

Zane Durante Lecture 3 -

46
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

> N
L

D) N )N Y NI O

-~
[]
[]

e

Fei-Fei Li, Ehsan Adeli,

Zane Durante

Lecture 3 -
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current W: W + h (third dim): gradient dW:

[0.34, [0.34, [-2.5,

-1.11, -1.11, 0.6,

0.78, 0.78 + 0.0001, 0,

0.12, 0.12, ?, \

0.55, 0.55,

281, 281 (:1625347 - 1.25347)/0.0001
-3.1, -3.1, af@) _ . fa+h) - f@)
'1.5, '1.5, dx P h
0.33,...] 0.33,...] 7]

loss 1.25347 | loss 1.25347
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current W: W + h (third dim): gradient dW:

[0.34, [0.34, [-2.5,

-1.11, -1.11, 0.6,

0.78, 0.78 + 0.0001, 0,

0.12, 0.12, ?,

0.55, 0.55, Numeric Gradient

2.81, 2.81, Slow! Need to loop over
-3.1, -3.1, all dimensions

-1.5, -1.5, - Approximate

0.33,...] 0.33,..] o—

loss 1.25347 | loss 1.25347
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This is silly. The loss is just a function of W:
L= %Zf\;Li + 3 Wi

Li = .., max(0,s; — sy, +1)

s=f(z; W) =Wz

want VwL
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This is silly. The loss is just a function of W:
L= %Zf\;Li + 3 Wi

Li = .., max(0,s; — sy, +1)

s=f(z; W) =Wz

want VwL

Use calculus to compute an
analytic gradient
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https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

dw = ...
(some function
data and W)

\

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 3 -

gradient dW:

[-2.5,
0.6,

0,

0.2,
0.7,
0.5,
1.1,
1.3,
2.1,..]
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In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In_practice: Always use analytic gradient, but check

Implementation with numerical gradient. This is called a
gradient check.
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Gradient Descent

while 'rue:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # perform parameter update
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original W

o

negative gradient direction
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N
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Stochastic Gradient Descent (SGD)

Full sum expensive

N
1 :
LW) =+ Y Li(zi,yi, W) + AR(W) when N is large!
q z? Approximate sum
= E 7 —— using a minibatch of
VwL(W) N VwLi(zi,yi, W)+ AV R(W) examples

=1 32 / 64 / 128 common

while |
data batch = sample training data(data, 256) # sample 256 examp
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad # perform parameter dat
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Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

—

w2

v

wl
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Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

a2 W2
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Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

a2 W2

v

Aside: Loss function has high condition number: ratio of largest to wi

smallest singular value of the Hessian matrix is large
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Optimization: Problem #2 with SGD

What if the loss
function has a
local minima or
saddle point?

loss
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Optimization: Problem #2 with SGD

loss

What if the loss
function has a
local minima or
saddle point?

Zero gradient, ®
gradient descent
gets stuck
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Optimization: Problem #2 with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimization: Problem #2 with SGD

saddle point in two dimension

Rk
G

f(may):mz_y X
N

SN
SRR
DR

.

0

E(:zzz—yz):2;1:—:-2(13):0 .
E(mz —y*) = -2y = —2(0)=0 i

a,y 1/2 R

Image source: https://en.wikipedia.org/wiki/Saddle point
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https://en.wikipedia.org/wiki/Saddle_point

Optimization: Problem #3 with SGD

Our gradients come from
minibatches so they can be noisy!

L(W) = % ZLi(SUi,yi, W)

=1

N
1
VwL(W) =+ > VwLi(zi,yi, W)

=1
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SGD + Momentum Gradient Noise

Local Minima  Saddle points

AN

Poor Conditioning

E— SGD+Momentum
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SGD: the simple two line update code

SGD

T4l — Tt — OéVf(l‘t)

while True:
dx = compute_gradient(x)
x —= learning_rate * dx
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SGD + Momentum:

continue moving in the general direction as the previous iterations

SGD SGD+Momentum
Vi1 = pvy + V f(xy)

T4l = Tt — QU4

T4l — Tt — OéVf(fL‘t)

while True:
dx = compute_gradient(x)
x —= learning_rate * dx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum:

continue moving in the general direction as the previous iterations

SGD SGD+Momentum
v = pvy + Vf(xy)

T4l = Tt — QU4

T4l — Tt — OéVf(fL‘t)

vX = 0
while True:

while True:
dx = compute_gradient(x)

x —= learning_rate * dx dx = compute_gradient(x)
vX = rho * vx + dx
X —= learning_rate * vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum:

alternative equivalent formulation

SGD+Momentum SGD+Momentum
Vi1 = pvg — aV f(xy) vir1 = pve + V f(xe)
Tyl = Tt + Vi1 T4l = Tt — QU4
vX = 0 VX = 0
while True: while True:
dx = compute_gradient(x) dx = compute_gradient(x)
vX = rho * vx — learning_rate * dx vX = rho * vx + dx
X += VX X —= learning_rate * vx

You may see SGD+Momentum formulated different ways,
but they are equivalent - give same sequence of X

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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More Complex Optimizers: RMSProp

xﬁiie@wue_ Adds element-wise scaling of the
SGD + dx = Com[')ute gradient(x) 9radient based on the historical sum of
Momentum  vx = rho * vx + dx squares in each dimension (with decay)
x —= learning_rate * vx

grad_squared = 0

while True:

RMSPI’Op dx = compute_gradient(x)

|grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dxl
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Tieleman and Hinton, 2012
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More Complex Optimizers: RMSProp

vx = 0 “ . ”
Per-parameter learning rates

while True: - . . )
SGD + dx = compute_gradient(x) OF ‘@daptive learning rates

Momentum vX = rho * vx + dx

x —= learning_rate * vx
grad_squared = 0

while True:

RMSPI’Op dx = compute_gradient(x)

grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
|x -= learning_rate * dx / (np.sgrt(grad_squared) + 1e—7)|

Tieleman and Hinton, 2012
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RMSProp

grad_squared = 0
while True:
RMSPI’Op dx = compute_gradient(x)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
X -= learning_rate * dx /|(np.sqrt(grad_squared) + 1le-7)

Q: What happens with RMSProp?

Tieleman and Hinton, 2012
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RMSProp

grad_squared = 0
while True:
RMSPI’Op dx = compute_gradient(x)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
X -= learning_rate * dx /|(np.sqrt(grad_squared) + 1le-7)

Q. What happens Wlth RMSPrOpr) Progress along “steep” directions is damped;

progress along “flat” directions is accelerated

Tieleman and Hinton, 2012
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RMSProp

—— SGD+Momentum

m— RMSProp
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Optimizers: Adam (almost)

first_moment = 0
second_moment = 0
while True:
dx = compute_gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1le-7))

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (almost)

first_moment = 0
second_moment = 0
while True:

dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx Momentum
second_moment = betaZ * second_moment + (1 - beta2) ® dx * 4X
X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7)) FQAAESFHTDD

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute_gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

| second_moment = beta2 * second_moment + (1 - beta2) * dx * dx |

first_unbias = first_moment / (1 - betal ** t) ) .
second_unbias = second_moment / (1 - betaz ** t) Blas correction
| X -= learning_rate * first_unbias / (np.sqgrt(second_unbias) + 1e—7))|

AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute_gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

| second_moment = beta2 * second_moment + (1 - beta2) * dx * dx |

first_unbias = first_moment / (1 - betal ** t) ) .
second_unbias = second_moment / (1 - betaz ** t) Blas correction
| X -= learning_rate * first_unbias / (np.sqgrt(second_unbias) + 1e—7))|

AdaGrad / RMSProp

Bias correction for the fact that Adam with betal = 0.9,

first and second moment beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
estimates start at zero is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam

SGD

SGD+Momentum

RMSProp

Adam
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AdamW: Adam Variant with Weight Decay

Q: How does regularization interact
with the optimizer? (e.g., L2)

first_moment = 0

second_moment = 0

for t in range(l, num_iterations):
dx = compute_gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - betal ** t)
second_unbias = second_moment / (1 - beta2 ** t)
X -= learning_rate * first_unbias / (np.sgrt(second_unbias) + le-7))

Fei-Fei Li, Ehsan Adeli, Zane Durante
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AdamW: Adam Variant with Weight Decay

Q: How does regularization interact
with the optimizer? (e.g., L2)

first_moment = 0

second_moment = 0

for t in range(l, num_iterations):
dx = compute_gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - betal ** t)
second_unbias = second_moment / (1 - beta2 ** t)
X -= learning_rate * first_unbias / (np.sgrt(second_unbias) + le-7))

A: It depends!

Fei-Fei Li, Ehsan Adeli, Zane Durante
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AdamW: Adam Variant with Weight Decay

Q: How does regularization interact
with the optimizer? (e.g., L2)

first_moment = 8 Standard Adam computes L2 here

second_moment = 0 .
for t in range(1, num_iterations): LJS;E}(j (j[jr|r]gl moment
dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx (:Eil(:l]lfit|()r155!
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - betal ** t)

second_unbias = second_moment / (1 - beta2 ** t)

X -= learning_rate * first_unbias / (np.sgrt(second_unbias) + le-7))
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AdamW: Adam Variant with Weight Decay

Q: How does regularization interact
with the optimizer? (e.g., L2)

first_moment = 0
second_moment = 0

for t in range(1, num_iterations): Computed after the
dx = compute_gradient(x) |
first_moment = betal * first_moment + (1 - betal) * dx moments

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - betal ** t)
second_unbias = second_moment / (1 - beta2 ** t)

X -= learning_rate * first_unbias / (np.sgrt(second_unbias) + le-7))
AdamW (Weight Decay) adds term here 4]
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AdamW: Adam Variant with Weight Decay

Q: How does regularization interact
with the optimizer? (e.g., L2)

first_moment = 8 Standard Adam computes L2 here

second_moment = 0
for t in range(l, num_iterations):
dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - betal ** t)

second_unbias = second_moment / (1 - beta2 ** t)

X -= learning_rate * first_unbias / (np.sqgrt(second_unbias) +

AdamW (Weight Decay) adds term here
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le-7))
I Source: https://www.fast.ai/posts/2018-07-02-

adam-weight-decay.htm
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https://www.fast.ai/posts/2018-07-02-adam-weight-decay.html

Learning rate schedules

while 'rue:

weights grad = _gradient(loss fun, data, weights)
weights += -|step size]* weights grad # perform parameter update

|

Learning rate

Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 3 - 86 April 9, 2024



SGD, SGD+Momentum, RMSProp, Adam, AdamW all have
learning rate as a hyperparameter.

Q: Which one of these learning
> rates is best to use?

low learning rate

high learning rate

good learning rate
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SGD, SGD+Momentum, RMSProp, Adam, AdamW all have
learning rate as a hyperparameter.

Q: Which one of these learning
> rates is best to use?

low learning rate

high learning rate A: In reality, all of these could be

\\— good learning rates.

good learning rate
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Learning rate decays over time

Training Loss

4.0 1

Step: Reduce learning rate at a few fixed
Reduce learning rate points. E.g. for ResNets, multiply LR by 0.1
l after epochs 30, 60, and 90.
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Learning Rate Decay

Learning rate

10 Step: Reduce learning rate at a few fixed
_ points. E.g. for ResNets, multiply LR by 0.1
v after epochs 30, 60, and 90.
0.6 1 1
Cosine: a; = 500 (1 + cos(tm/T))
0.4 -
0.2 1
0.0 1
0 20 0 60 B 100
Epoch

X : Initial learning rate
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 at . Leamlng rate at epOCh t
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018 .
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 2 ' TOtaI number Of epOChS
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Learning Rate Decay

Training Loss

110 1

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

&

0.6 1

L oss

1
Cosine: a; = 500 (1 + cos(tm/T))

04

02 1

Dl:l T T T
0 50 100 150 200 250 300
Epoch
X : Initial learning rate

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017 . .

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 at . Leamlng rate at GDOCh t
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018 .

Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 2 ' TOtaI number Of epOChS
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Learning Rate Decay

Learning rate _ _
10 Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

0.6 1 1
Cosine: a; = 500 (1 + cos(tm/T))

0.8 1

04 A

03 | Linear: oy = ap(1 —t/T)

0.0 1

0 20 a 60 B0 100
Epoch
&0 : Initial learning rate
(v+ : Learning rate at epoch t

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for ! Z ' Total number of epOChS
Language Understanding”, 2018
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Learning Rate Decay

Learning rate

Lo Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1

08 1 after epochs 30, 60, and 90.

06 1 1

Cosine: a; = 500 (1 + cos(tm/T))

Linear: a;y = agp(1 —t/T)

02 A

Inverse sqrt: vy = Ozo/\/i

0 20 40 &0 80 100

Epoch N _
&0 : Initial learning rate
(v+ : Learning rate at epoch t
Vaswani et al, “Attention is all you need”, NIPS 2017 T : TOtaI number Of epOChS
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Learning Rate Decay: Linear Warmup

Learning rate L :
06 J High initial learning rates can make loss

05 explode; linearly increasing learning rate
from O over the first ~5,000 iterations can
prevent this.

04
03 4

021 Empirical rule of thumb: If you increase the
batch size by N, also scale the initial
learning rate by N

01

0.0 4

0 20 40 60 80 100
Epoch

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017

Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 3- 94 April 9, 2024



First-Order Optimization

Loss

wl
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First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

SN,

Loss

wl

v
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Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

Loss

wl

v
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Second-Order Optimization

second-order Taylor expansion:

J(8) ~ J(80) + (6 — &) T VoJ (60) + 5 (60 — 6) TH(6 — )

Solving for the critical point we obtain the Newton parameter update:

0" =0, — H 'Vl (6,)

Q: Why is this bad for deep learning?
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Second-Order Optimization

second-order Taylor expansion:

J(8) ~ J(80) + (6 — &) T VoJ (60) + 5 (60 — 6) TH(6 — )

Solving for the critical point we obtain the Newton parameter update:

0" =0, — H 'Vl (6,)

Hessian has O(N”~2) elements
Inverting takes O(N"3)
N = (Tens or Hundreds of) Millions

Q: Why is this bad for deep learning?
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In practice:

- Adam(W) is a good default choice in many cases; it
often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may
require more tuning of LR and schedule

- If you can afford to do full batch updates then look

beyond 1st order optimization (2" order and
beyond)
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Looking Ahead: How to optimize more complex
functions?

(Currently) Linear score function: f = Wzx

reRP W e ROXP
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Neural networks: 2 layers

(Currently) Linear score function: f = Wz
(Next Class) 2-layer Neural Network f = Ws max (0, Wiz)

r e RP W, e REXP W, e RO*H

(In practice we will usually add a learnable bias at each layer as well)
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Why do we want non-linearity?

Cannot separate red and
blue points with linear
classifier
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Why do we want non-linearity?

f(x, y) = (r(x, y), 8(x, y))

Cannot separate red and
blue points with linear
classifier

Fei-Fei Li, Ehsan Adeli, Zane Durante
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Neural networks: also called fully connected network

(Currently) Linear score function: f = Wzx
(Next Class) 2-layer Neural Network f = W9 max (0, Wiz)

r e RP W, e REXDP W, e RE*XH

“Neural Network” is a very broad term; these are more accurately called
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)

(In practice we will usually add a learnable bias at each layer as well)

Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 3 - 105 April 9, 2024



Next time:

Introduction to neural networks

Backpropagation (How do you calculate dx for neural nets?)
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Appendix Material

Extraneous content that may be of interest
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SGD+Momentum

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k"2)", 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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Nesterov Momentum

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k"2)", 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Nesterov Momentum

Gradient
Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction

Lecture 3- 109
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Nesterov Momentum

Vip1 = pvy — aV f(zy + poy)

Tir1 = Tt + Vg1

Gradient
Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Annoying, usually we want
update in terms of T¢, Vf(élit)

p—

Vip1 = pvy — aV f(z, + poy

Tir1 = Tt + Vg1

Gradient
Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Annoying, usually we want
update in terms of T¢, Vf(élit)

p—

Vip1 = pvy — aV f(z, + poy

Tt41 = T4l + Vg1

Gradient
Velocity

Change of variables Ty =F|T¢|+ PVt | and
rearrange:

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction

https://cs231n.github.io/neural-networks-3/
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https://cs231n.github.io/neural-networks-3/

Nesterov Momentum

Annoying, usually we want
update in terms of T¢, Vf(élit)

p—

Vip1 = pvy — aV f(z, + poy

Tir1 = Tt + Vg1

Gradient
Velocity
Change of variables £+ = I + PU: and il st
rearrange: actuai step
Vi1 = pur — aV f(Ty)
Lt+1 = Lt — PUt + (1 + p)vt+1 “Look ahead” to the point where updating using
o~ velocity would take us; compute gradient there and
— Xt + Ut41 + P(Ut—l—l _ Ut) mix it with velocity to get actual update direction

https://cs231n.github.io/neural-networks-3/

Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 3- 113 April 9, 2024


https://cs231n.github.io/neural-networks-3/

Nesterov Momentum

—— SGD+Momentum

e Nesterov
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AdaGrad

grad_squared = 0

while True:

dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

Q: What happens with AdaGrad?
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

Q: Wha’[ happens Wlth AdaGrad? Progress along “steep” directions is damped,;

progress along “flat” directions is accelerated
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

—

Q2: What happens to the step size over long time?
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

—

Q2: What happens to the step size over long time? Decays to zero
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RMSProp: “Leaky AdaGrad”

grad_squared = 0
while True:

AdaGrad dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + le-7)

grad_squared = 0

while True:

RMSPrOp dx = compute_gradient(x)

grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Tieleman and Hinton, 2012
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Second-Order Optimization

0" =0, — H 'VoJ(6,)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n"3)), approximate
Inverse Hessian with rank 1 updates over time (O(n"2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.
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L-BFGS

- Usually works very well in full batch, deterministic mode
l.e. If you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting second-order methods to large-scale,
stochastic setting Is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017
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In practice:

- Adam is a good default choice in many cases; it
often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may
require more tuning of LR and schedule

- If you can afford to do full batch updates then try out
L-BFGS (and don't forget to disable all sources of noise)
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