Lecture 3: Regularization and Optimization

Administrative: Assignment 1

Released last week, due Fri 4/19 at 11:59pm
Office hours: help with high-level questions only, no code debugging. [No Code Show Policy]

Administrative: Project proposal + Office Hours

Due Mon 4/22

TA expertise + Office Hours are posted on the webpage. Mix of inperson and zoom.

(http://cs231n.stanford.edu/office hours.html)

Administrative: Ed

Please make sure to check and read all pinned Ed posts.

- Project group: fill in your information in the google form and/or look through existing responses and reach out
- SCPD: if you would like to take the midterm on-campus, send us an email: cs231n-staff-spr24@stanford.edu + cc scpdexams@stanford.edu

Recap from Last Week

Image Classification: A core task in Computer Vision

This image by Nikita is
licensed under CC-BY 2.0
(assume given a set of labels) \{dog, cat, truck, plane, ...\}
> cat
> dog
> bird
> deer
> truck

Recall from last time: Challenges of recognition

Recall from last time: data-driven approach, kNN

horse
ship
truck

train		test
train	validation	test

5-NN classifier

Recall from last time: Linear Classifier

Class 1: Three modes
Class 2: Everything else

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

A loss function tells how good our current classifier is

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where x_{i}, is image and y_{i} is (integer) label

Loss over the dataset is a average of loss over examples:

$$
L=\frac{1}{N} \sum_{i} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Softmax vs. SVM

$L_{i}=-\log \left(\frac{e^{s_{i}}}{\sum_{i} e^{s_{j}}}\right)$ vs. $\quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

$$
f(x, W)=W x
$$

$$
L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)
$$

Q: Suppose that we found a W such that $L=0$. Is this W unique?
$f(x, W)=W x$
$L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)$
Q: Suppose that we found a W such that $\mathrm{L}=0$. Is this W unique?

No! 2 W is also has $\mathrm{L}=0$!

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2
5.1
frog
Losses:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Before:

$$
\begin{aligned}
= & \max (0,1.3-4.9+1) \\
& +\max (0,2.0-4.9+1) \\
= & \max (0,-2.6)+\max (0,-1.9) \\
= & 0+0 \\
= & 0
\end{aligned}
$$

With W twice as large:
$=\max (0,2.6-9.8+1)$

$$
+\max (0,4.0-9.8+1)
$$

$$
=\max (0,-6.2)+\max (0,-4.8)
$$

$$
=0+0
$$

$$
=0
$$

$f(x, W)=W x$
$L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)$
E.g. Suppose that we found a W such that $L=0$. Is this W unique?

No! 2 W is also has $\mathrm{L}=0$! How do we choose between W and 2W?

Regularization -

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}
$$

Data loss: Model predictions should match training data

Regularization

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Regularization intuition: toy example training data

Regularization intuition: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Occam's Razor: Among multiple competing hypotheses, the simplest is the best, William of Ockham 1285-1347

Regularization

λ = regularization strength (hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Regularization

λ = regularization strength (hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

L 2 regularization: $R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$
L1 regularization: $R(W)=\sum_{k} \sum_{l}\left|W_{k, l}\right|$
Elastic net (L1 + L2): $R(W)=\sum_{k} \sum_{l} \beta W_{k, l}^{2}+\left|W_{k, l}\right|$

Regularization

λ = regularization strength (hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

L2 regularization: $R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$
L1 regularization: $R(W)=\sum_{k} \sum_{l}\left|W_{k, l}\right|$
Elastic net (L1 + L2): $R(W)=\sum_{k} \sum_{l} \beta W_{k, l}^{2}+\left|W_{k, l}\right|$

Regularization

λ = regularization strength (hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Why regularize?

- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature

Regularization: Expressing Preferences

$$
\begin{aligned}
x= & {[1,1,1,1] } \\
w_{1}= & {[1,0,0,0] } \\
w_{2}= & {[0.25,0.25,0.25,0.25] } \\
& w_{1}^{T} x=w_{2}^{T} x=1
\end{aligned}
$$

L2 Regularization
$R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$ Which of w1 or w2 will the L2 regularizer prefer?

Regularization: Expressing Preferences

$$
\begin{aligned}
x & =[1,1,1,1] \\
w_{1} & =[1,0,0,0]
\end{aligned}
$$

L2 Regularization
$R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$ Which of w1 or w2 will

$$
w_{2}=[0.25,0.25,0.25,0.25]
$$ the L2 regularizer prefer? L2 regularization likes to "spread out" the weights

$$
w_{1}^{T} x=w_{2}^{T} x=1
$$

Regularization: Expressing Preferences

$$
\begin{aligned}
x= & {[1,1,1,1] } \\
w_{1}= & {[1,0,0,0] } \\
w_{2}= & {[0.25,0.25,0.25,0.25] } \\
& w_{1}^{T} x=w_{2}^{T} x=1
\end{aligned}
$$

L2 Regularization

$$
R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}
$$

Which of w1 or w2 will the L2 regularizer prefer? L2 regularization likes to "spread out" the weights

> Which one would L1 regularization prefer?

Recap

- We have some dataset of (x,y)
- We have a score function: $\quad s=f(x ; W) \stackrel{\text { e.g. }}{=} W x$
- We have a loss function:

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
\end{aligned}
$$

Recap

How do we find the best W?

- We have some dataset of (x,y)
- We have a score function: $\quad s=f(x ; W) \stackrel{\text { e.g. }}{=} W x$
- We have a loss function:

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
\end{aligned}
$$

Optimization

Strategy \#1: A first very bad idea solution: Random search

```
# assume X_train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. ID array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
    W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
    loss = L(X_train, Y_train, W) # get the loss over the entire training set
    if loss < bestloss: # keep track of the best solution
        bestloss = loss
        bestW = W
    print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```


Lets see how well this works on the test set...

```
# Assume X test is [3073 x 10000], Y test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5\% accuracy! not bad! (SOTA is ~99.7\%)

Strategy \#2: Follow the slope

Strategy \#2: Follow the slope

In 1-dimension, the derivative of a function:

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

In multiple dimensions, the gradient is the vector of (partial derivatives) along each dimension

The slope in any direction is the dot product of the direction with the gradient The direction of steepest descent is the negative gradient

current W:

gradient dW:

[0.34,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
Ioss 1.25347

current W:

[0.34,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
Ioss 1.25347
$\mathbf{W}+\mathbf{h}$ (first dim):
$[0.34+0.0001$,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25322

gradient dW:

current W:

[0.34,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
Ioss 1.25347
$\mathbf{W}+\mathbf{h}$ (first dim):
$[0.34+0.0001$,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25322

gradient dW:

current W:

$[0.34$,	$[0.34$,
-1.11,	$-1.11+\mathbf{0 . 0 0 0 1}$,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
$0.33, \ldots]$	$0.33, \ldots]$
loss 1.25347	loss 1.25353

gradient dW:

[-2.5,
?,
?,
?
?,
?
?
?
?,...]

current W:

$[0.34$,	$[0.34$,
-1.11,	$-1.11+\mathbf{0 . 0 0 0 1}$,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
$0.33, \ldots]$	$0.33, \ldots]$
loss 1.25347	loss 1.25353

$\mathbf{W}+\mathbf{h}$ (second dim):
[0.34,
$-1.11+0.0001$,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]

Ioss 1.25353

gradient dW:

[-2.5, 0.6, ?, ?
(1.25353-1.25347)/0.0001
$=0.6$

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
?, \ldots]
$$

current W:
[0.34,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (third dim):
[0.34,
-1.11,
$0.78+0.0001$,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
Ioss 1.25347

gradient dW:

[-2.5,
0.6 ,
?,
?
?
?
?
?
?,...]
$\mathbf{W}+\mathbf{h}$ (third dim):
[0.34,
-1.11,
$0.78+\mathbf{0 . 0 0 0 1}$,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
Ioss 1.25347

gradient dW:

current W:

[0.34,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (third dim):
[0.34,
-1.11,
$0.78+0.0001$,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
Ioss 1.25347

gradient dW:

[-2.5,
0.6 ,

0 ,
?,

Numeric Gradient

- Slow! Need to loop over all dimensions
- Approximate

This is silly. The loss is just a function of W:

$$
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& s=f(x ; W)=W x
\end{aligned}
$$

want $\nabla_{W} L$

This is silly. The loss is just a function of W:

$L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2}$
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
$s=f(x ; W)=W x$
want $\nabla_{W} L$

Use calculus to compute an analytic gradient

This image is in the public

This image is in the public

current W:

gradient dW:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
$0.33, \ldots]$
loss 1.25347

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone
=>
In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

Gradient Descent

```
# Vanilla Gradient Descent
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples
32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Optimization: Problem \#1 with SGD

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Optimization: Problem \#1 with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Optimization: Problem \#1 with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction
w2

Aside: Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large

Optimization: Problem \#2 with SGD

What if the loss function has a local minima or saddle point?

Optimization: Problem \#2 with SGD

What if the loss function has a local minima or saddle point?

Zero gradient, gradient descent gets stuck

Optimization: Problem \#2 with SGD

What if the loss
function has a
local minima or saddle point?

Saddle points much more common in high dimension

Optimization: Problem \#2 with SGD

saddle point in two dimension

$$
\begin{gathered}
f(x, y)=x^{2}-y^{2} \\
\frac{\partial}{\partial x}\left(x^{2}-y^{2}\right)=2 x \rightarrow 2(0)=0 \\
\frac{\partial}{\partial y}\left(x^{2}-y^{2}\right)=-2 y \rightarrow-2(0)=0
\end{gathered}
$$

Image source: https://en.wikipedia.org/wiki/Saddle point

Optimization: Problem \#3 with SGD

Our gradients come from minibatches so they can be noisy!

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)
\end{aligned}
$$

SGD + Momentum

Local Minima Saddle points

Poor Conditioning

Gradient Noise

SGD: the simple two line update code

SGD

$$
x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

```
while True:
    dx = compute_gradient(x)
    x -= learning_rate * dx
```


SGD + Momentum:

continue moving in the general direction as the previous iterations

SGD

$$
x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

SGD+Momentum

$$
\begin{aligned}
v_{t+1} & =\rho v_{t}+\nabla f\left(x_{t}\right) \\
x_{t+1} & =x_{t}-\alpha v_{t+1}
\end{aligned}
$$

```
while True:
    dx = compute_gradient(x)
    x -= learning_rate * dx
```

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

SGD + Momentum:

continue moving in the general direction as the previous iterations

SGD

```
xt+1}=\mp@subsup{x}{t}{}-\alpha\nablaf(\mp@subsup{x}{t}{}
while True:
    dx = compute_gradient(x)
    x -= learning_rate * dx
```


SGD+Momentum

$$
\begin{aligned}
& \qquad v_{t+1}=\rho v_{t}+\nabla f\left(x_{t}\right) \\
& x_{t+1}=x_{t}-\alpha v_{t+1} \\
& \mathrm{vx}=0 \\
& \text { while True }: \\
& \qquad \mathrm{dx}=\text { compute_gradient }(\mathrm{x}) \\
& \mathrm{vx}=\text { rho } * \mathrm{vx}+\mathrm{dx} \\
& \mathrm{x}-=\text { learning_rate } * \mathrm{vx}
\end{aligned}
$$

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

SGD + Momentum:

 alternative equivalent formulation
SGD+Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}-\alpha \nabla f\left(x_{t}\right) \\
& x_{t+1}=x_{t}+v_{t+1}
\end{aligned}
$$

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx - learning_rate * dx
    x += vx
```


SGD+Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}+\nabla f\left(x_{t}\right) \\
& x_{t+1}=x_{t}-\alpha v_{t+1}
\end{aligned}
$$

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x -= learning_rate * vx
```

You may see SGD+Momentum formulated different ways, but they are equivalent - give same sequence of x

More Complex Optimizers: RMSProp

More Complex Optimizers: RMSProp

$$
v x=0
$$

SGD + Momentum

```
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x -= learning_rate * vx
        |
grad_squared = 0
while True:
RMSProp
```

"Per-parameter learning rates" or "adaptive learning rates"

RMSProp

```
grad_squared = 0
while True:
RMSProp
    dx = compute_gradient(x)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


Q: What happens with RMSProp?

RMSProp

```
grad_squared = 0
while True:
RMSProp
    dx = compute_gradient(x)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


Q: What happens with RMSProp?

Progress along "steep" directions is damped; progress along "flat" directions is accelerated

RMSProp

Optimizers: Adam (almost)

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```


Adam (almost)

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
\begin{tabular}{|l|}
\hline first_moment \(=\) beta1 \({ }^{*}\) first_moment \(+(1-\text { beta1 })^{*} \mathrm{dx}\) \\
\hline \hline second_moment \(=\) beta2 \({ }^{*}\) second_moment + (1-beta2) \({ }^{*} \mathrm{dx}{ }^{*} \mathrm{dx}\) \\
\(x-=\) learning_rate * first_moment / (np.sqrt(second_moment) \(+1 e-7))\) \\
\hline
\end{tabular}
```


Sort of like RMSProp with momentum

Q: What happens at first timestep?

Adam (full form)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
```

Momentum

Bias correction
AdaGrad / RMSProp

Bias correction for the fact that first and second moment estimates start at zero

Adam (full form)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
```


Momentum

Bias correction
AdaGrad / RMSProp

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta1 $=0.9$,
beta2 $=0.999$, and learning_rate $=1 \mathrm{e}-3$ or $5 \mathrm{e}-4$ is a great starting point for many models!

Adam

Fei-Fei Li, Ehsan Adeli, Zane Durante
Lecture 3-80
April 9, 2024

AdamW: Adam Variant with Weight Decay

Q: How does regularization interact with the optimizer? (e.g., L2)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
    x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
```


AdamW: Adam Variant with Weight Decay

Q: How does regularization interact with the optimizer? (e.g., L2)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
    x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
```

A: It depends!

AdamW: Adam Variant with Weight Decay

Q: How does regularization interact with the optimizer? (e.g., L2)

```
first_moment = 0
    Standard Adam computes L2 here
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
    x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
```


Used during moment calculations!

AdamW: Adam Variant with Weight Decay

Q: How does regularization interact with the optimizer? (e.g., L2)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
    x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
AdamW (Weight Decay) adds term here
```

Computed after the moments!

AdamW: Adam Variant with Weight Decay

Q: How does regularization interact with the optimizer? (e.g., L2)

```
first_moment = 0
    Standard Adam computes L2 here
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
    x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
AdamW (Weight Decay) adds term here
```


Source: https://www.fast.ai/posts/2018-07-02-adam-weight-decay.html

Learning rate schedules

```
# Vanilla Gradient Descent
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
        \downarrow
Learning rate
```

SGD, SGD+Momentum, RMSProp, Adam, AdamW all have learning rate as a hyperparameter.

SGD, SGD+Momentum, RMSProp, Adam, AdamW all have learning rate as a hyperparameter.

Q: Which one of these learning rates is best to use?

A: In reality, all of these could be good learning rates.

Learning rate decays over time

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Learning Rate Decay

Learning rate

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.
Cosine: $\alpha_{t}=\frac{1}{2} \alpha_{0}(1+\cos (t \pi / T))$
α_{0} : Initial learning rate α_{t} : Learning rate at epoch t T : Total number of epochs

Learning Rate Decay

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.
Cosine: $\alpha_{t}=\frac{1}{2} \alpha_{0}(1+\cos (t \pi / T))$
α_{0} : Initial learning rate α_{t} : Learning rate at epoch t T : Total number of epochs

Learning Rate Decay

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30,60 , and 90.
Cosine: $\alpha_{t}=\frac{1}{2} \alpha_{0}(1+\cos (t \pi / T))$
Linear: $\quad \alpha_{t}=\alpha_{0}(1-t / T)$
α_{0} : Initial learning rate
α_{t} : Learning rate at epoch t
T : Total number of epochs

Learning Rate Decay

Learning rate

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30,60 , and 90 .
Cosine: $\alpha_{t}=\frac{1}{2} \alpha_{0}(1+\cos (t \pi / T))$
Linear: $\alpha_{t}=\alpha_{0}(1-t / T)$
Inverse sqrt: $\alpha_{t}=\alpha_{0} / \sqrt{t}$
α_{0} : Initial learning rate
α_{t} : Learning rate at epoch t
T : Total number of epochs

Learning Rate Decay: Linear Warmup

Learning rate

High initial learning rates can make loss explode; linearly increasing learning rate from 0 over the first $\sim 5,000$ iterations can prevent this.

Empirical rule of thumb: If you increase the batch size by N , also scale the initial learning rate by N

First-Order Optimization

First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

Second-Order Optimization

second-order Taylor expansion:

$$
J(\boldsymbol{\theta}) \approx J\left(\boldsymbol{\theta}_{0}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{\top} \nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}_{0}\right)+\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{\top} \boldsymbol{H}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)
$$

Solving for the critical point we obtain the Newton parameter update:

$$
\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{0}-\boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}_{0}\right)
$$

Q: Why is this bad for deep learning?

Second-Order Optimization

second-order Taylor expansion:

$$
J(\boldsymbol{\theta}) \approx J\left(\boldsymbol{\theta}_{0}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{\top} \nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}_{0}\right)+\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{\top} \boldsymbol{H}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)
$$

Solving for the critical point we obtain the Newton parameter update:

$$
\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{0}-\boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}_{0}\right)
$$

Hessian has $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$ elements Inverting takes $\mathrm{O}\left(\mathrm{N}^{\wedge} 3\right)$
$\mathrm{N}=$ (Tens or Hundreds of) Millions
Q: Why is this bad for deep learning?

In practice:

- Adam(W) is a good default choice in many cases; it often works ok even with constant learning rate
- SGD+Momentum can outperform Adam but may require more tuning of LR and schedule
- If you can afford to do full batch updates then look beyond $1^{\text {st }}$ order optimization ($\mathbf{2}^{\text {nd }}$ order and beyond)

Looking Ahead: How to optimize more complex functions?

(Currently) Linear score function: $\quad f=W x$

$$
x \in \mathbb{R}^{D}, W \in \mathbb{R}^{C \times D}
$$

Neural networks: 2 layers

(Currently) Linear score function: $\quad f=W x$
(Next Class) 2-layer Neural Network $f=W_{2} \max \left(0, W_{1} x\right)$

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

(In practice we will usually add a learnable bias at each layer as well)

Why do we want non-linearity?

Cannot separate red and blue points with linear classifier

Why do we want non-linearity?

Cannot separate red and blue points with linear classifier

After applying feature transform, points can be separated by linear classifier

Neural networks: also called fully connected network

(Currently) Linear score function: $\quad f=W x$
(Next Class) 2-layer Neural Network $f=W_{2} \max \left(0, W_{1} x\right)$

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)
(In practice we will usually add a learnable bias at each layer as well)

Next time:

Introduction to neural networks

Backpropagation (How do you calculate dx for neural nets?)

Appendix Material

Extraneous content that may be of interest

SGD+Momentum

Momentum update:

Combine gradient at current point with velocity to get step used to update weights

Nesterov Momentum

Momentum update:

Gradient
Combine gradient at current point with velocity to get step used to update weights

Nesterov Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}-\alpha \nabla f\left(x_{t}+\rho v_{t}\right) \\
& x_{t+1}=x_{t}+v_{t+1}
\end{aligned}
$$

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Nesterov Momentum

$$
\begin{aligned}
v_{t+1} & =\rho v_{t}-\alpha \nabla f\left(x_{t}+\rho v_{t}\right. \\
x_{t+1} & =x_{t}+v_{t+1}
\end{aligned}
$$

Annoying, usually we want update in terms of $x_{t}, \nabla f\left(x_{t}\right)$

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Nesterov Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}-\alpha \nabla f\left(x_{t}+\rho v_{t}\right) \\
& x_{t+1}=x_{t}+v_{t+1}
\end{aligned}
$$

Change of variables $\tilde{x}_{t}=x_{t}+\rho v_{t}$ and
rearrange:

Annoying, usually we want update in terms of $x_{t}, \nabla f\left(x_{t}\right)$

Velocity

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Nesterov Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}-\alpha \nabla f\left(x_{t}+\rho v_{t}\right) \\
& x_{t+1}=x_{t}+v_{t+1}
\end{aligned}
$$

Annoying, usually we want update in terms of $x_{t}, \nabla f\left(x_{t}\right)$

Velocity

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Nesterov Momentum

SGD
SGD+Momentum
Nesterov

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension
"Per-parameter learning rates" or "adaptive learning rates"

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


Q: What happens with AdaGrad?

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


Q: What happens with AdaGrad?
Progress along "steep" directions is damped; progress along "flat" directions is accelerated
Fei-Fei Li, Ehsan Adeli, Zane Durante

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


Q2: What happens to the step size over long time?

Fei-Fei Li, Ehsan Adeli, Zane Durante
Lecture 3-118
April 9, 2024

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


Q2: What happens to the step size over long time? Decays to zero
Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 3-119 April 9, 2024

RMSProp: "Leaky AdaGrad"

AdaGrad

$$
\text { grad_squared = } 0
$$

while True:

```
    dx = compute_gradient (x)
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


grad_squared $=0$
while True:

RMSProp

Second-Order Optimization

$$
\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{0}-\boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}_{0}\right)
$$

- Quasi-Newton methods (BGFS most popular): instead of inverting the Hessian ($O\left(n^{\wedge} 3\right)$), approximate inverse Hessian with rank 1 updates over time ($O\left(n^{\wedge} 2\right.$) each).
- L-BFGS (Limited memory BFGS):

Does not form/store the full inverse Hessian.

L-BFGS

- Usually works very well in full batch, deterministic mode i.e. if you have a single, deterministic $f(x)$ then L-BFGS will probably work very nicely
- Does not transfer very well to mini-batch setting. Gives bad results. Adapting second-order methods to large-scale, stochastic setting is an active area of research.

In practice:

- Adam is a good default choice in many cases; it often works ok even with constant learning rate
- SGD+Momentum can outperform Adam but may require more tuning of LR and schedule
- If you can afford to do full batch updates then try out L-BFGS (and don't forget to disable all sources of noise)

