Lecture 4: Neural Networks and Backpropagation

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 1

<u>April 11, 2024</u>

Cloud credits for projects: we are in the process of securing them and will announce them as soon as we can.

Assignment 1 due Fri 4/19 at 11:59pm

Lecture 4 - 2

<u>April 11, 2024</u>

Administrative: Project Proposal

Due Mon 4/22

TA expertise are posted on the webpage.

(http://cs231n.stanford.edu/office_hours.html)

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 3

Administrative: Live Q&A

For students who are watching the lecture online live:

- We are hosting a live Q&A session on Ed
- Questions will be responded to by TAs as much as possible.
- See the Live Lecture Q&A megathread pinned on Ed for more information

Administrative: Discussion Section

Discussion section tomorrow (led by Lucas Leanza):

Backpropagation

Lecture 4 - 5

Recap

- We have some dataset of (x,y)
- We have a score function:
- We have a loss function:

$$s=f(x;W)\stackrel{ ext{e.g.}}{=}Wx$$

April 11, 2024

Fei-Fei Li, Ehsan Adeli

Finding the best W: Optimize with Gradient Descent

April 11, 2024

Vanilla Gradient Descent

while True:

weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update

Landscape image is CC0 1.0 public domain Walking man image is CC0 1.0 public domain

Fei-Fei Li, Ehsan Adeli

Gradient descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 8

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples 32 / 64 / 128 common

<u>April 11, 2024</u>

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Fei-Fei Li, Ehsan Adeli

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 10

Last time: learning rate scheduling

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear: $\alpha_t = \alpha_0 (1 - t/T)$
Inverse sqrt: $\alpha_t = \alpha_0 / \sqrt{t}$

 $lpha_0$: Initial learning rate $lpha_t$: Learning rate at epoch t T : Total number of epochs

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 11

Today:

Deep Learning

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 12

DALL-E 2

"Teddy bears working on new AI research on the moon in the 1980s." "Rabbits attending a college seminar on human anatomy."

"A wise cat meditating in the Himalayas searching for enlightenment."

April 11, 2024

Image source: Sam Altman, https://openai.com/dall-e-2/, https://twitter.com/sama/status/1511724264629678084

Fei-Fei Li, Ehsan Adeli

vibrant portrait painting of Salvador Dalí with a robotic half face

a close up of a handpalm with leaves growing from it

an espresso machine that makes coffee from human souls, artstation

panda mad scientist mixing sparkling chemicals, artstation

a corgi's head depicted as an explosion of a nebula

a dolphin in an astronaut suit on saturn, artstation

Fei-Fei Li, Ehsan Adeli

Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents, 2022.

Lecture 4 - 14

DALL-E 3

In a fantastical setting, a highly detailed furry humanoid skunk with piercing eyes confidently poses in a medium shot, wearing an animal hide jacket. The artist has masterfully rendered the character in digital art, capturing the intricate details of fur and clothing texture.

Betker, James, et al. "Improving image generation with better captions." *Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf* (2023).

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 15

DALL-E 3

An illustration from a graphic novel. A bustling city street under the shine of a full moon. The sidewalks bustling with pedestrians enjoying the nightlife. At the corner stall, a young woman with fiery red hair, dressed in a signature velvet cloak, is haggling with the grumpy old vendor. The grumpy vendor, a tall, sophisticated man wearing a sharp suit, who sports a noteworthy mustache is animatedly conversing on his steampunk telephone.

Betker, James, et al. "Improving image generation with better captions." *Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf* (2023). The sidewalks bustling with pedestrians enjoying the nightlife.

A bustling city street under the shine of a **full moon.**

At the corner stall, a **young woman** with fiery red hair, dressed in a signature velvet cloak, is **haggling with the grumpy old vendor**.

The grumpy vendor, a **tall, sophisticated man**, is wearing a sharp suit, sports a **noteworthy moustache** and is animatedly conversing on his **steampunk telephone**.

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 16

GPT-4

User What is unusual about this image?

Source: Barnorama

GPT-4 The unusual thing about this image is that a man is ironing clothes on an ironing board attached to the roof of a moving taxi.

User Can you explain this meme? Sometimes I just look at pictures of the earth from space and I marvel at how beautiful it all is.

GPT-4 This meme is a joke that combines two unrelated things: pictures of the earth from space and chicken nuggets.

The text of the meme suggests that the image below is a beautiful picture of the earth from space. However, the image is actually of chicken nuggets arranged to vaguely resemble a map of the world.

The humor in this meme comes from the unexpected juxtaposition of the text and the image. The text sets up an expectation of a majestic image of the earth, but the image is actually something mundane and silly.

Image source: https://openai.com/research/gpt-4

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 17

Segment Anything Model (SAM)

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 18

Sora

- Animating Images (generated by DALL-E)
- Video-to-video editing

A Shiba Inu dog wearing a beret and black turtleneck.

put the video in space with a rainbow road

change the video setting to be different than a mountain? perhaps joshua tree

April 11, 2024

https://openai.com/research/video-generation-models-as-world-simulators

Fei-Fei Li, Ehsan Adeli

Sora

• More compute

Base Compute

4x Compute

April 11, 2024

32x Compute

https://openai.com/research/video-generation-models-as-world-simulators

Fei-Fei Li, Ehsan Adeli

Neural Networks

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 22

Neural networks: the original linear classifier

(Before) Linear score function:

$$f = Wx$$

 $x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 23

Neural networks: 2 layers

$$egin{aligned} f &= Wx \ f &= W_2 \max(0, W_1 x) \end{aligned}$$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(In practice we will usually add a learnable bias at each layer as well)

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 24

Why do we want non-linearity?

Cannot separate red and blue points with linear classifier

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 25

Why do we want non-linearity?

 $f(x, y) = (r(x, y), \theta(x, y))$

Cannot separate red and blue points with linear classifier After applying feature transform, points can be separated by linear classifier

θ

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 26

r

Neural networks: also called fully connected network

(Before) Linear score function: f = W x(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

April 11, 2024

Fei-Fei Li, Ehsan Adeli

Neural networks: 3 layers

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ or 3-layer Neural Network $f = W_3 \max(0, W_2 \max(0, W_1x))$

$$x \in \mathbb{R}^{D}, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 28

Neural networks: hierarchical computation

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 29

Neural networks: learning 100s of templates

Learn 100 templates instead of 10.

Share templates between classes

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 30

Neural networks: why is max operator important?

(Before) Linear score function:
$$f = W x$$

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the activation function. Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

<u>April 11, 2024</u>

Neural networks: why is max operator important?

(Before) Linear score function:
$$f = Wx$$

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function $\max(0, z)$ is called the activation function. Q: What if we try to build a neural network without one? $f = W_2 W_1 x$ $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

<u>April 11, 2024</u>

Activation functions

ReLU is a good default choice for most problems

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \mathsf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 33

Neural networks: Architectures

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 34

Example feed-forward computation of a neural network

forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 35

Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
      loss = np.square(y_pred - y).sum()
11
      print(t, loss)
12
13
14
      grad_y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w2 = 1e - 4 * grad_w2
```

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 36

Define the network

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 37

Define the network

Forward pass

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 38

Define the network

Forward pass

Calculate the analytical gradients

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 39

Define the network

Forward pass

Calculate the analytical gradients

Gradient descent

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 40

Setting the number of layers and their sizes

more neurons = more capacity

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 41 April 07, 2022

Do not use size of neural network as a regularizer. Use stronger regularization instead:

 $\lambda = 0.001$ $\lambda = 0.01$ $\lambda = 0.1$ 0 0 (Web demo with ConvNetJS: $L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$ http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html) TensorFlow Play Ground: https://playground.tensorflow.org/

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 42 April 07, 2022

This image by Fotis Bobolas is licensed under CC-BY 2.0

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 43

Impulses carried toward cell body

This image by Felipe Perucho is licensed under <u>CC-BY 3.0</u>

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 44

Impulses carried toward cell body

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 45

Impulses carried toward cell body

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 46

Biological Neurons: Complex connectivity patterns

Neurons in a neural network: Organized into regular layers for computational efficiency

April 11, 2024

This image is CC0 Public Domain

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 48

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

Fei-Fei Li, Ehsan Adeli

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", IEEE/CVF International Conference on Computer Vision 2019

Lecture 4 - 49

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Lecture 4 - 50

<u>April 11, 2024</u>

Plugging in neural networks with loss functions

$$\begin{split} s &= f(x; W_1, W_2) = W_2 \max(0, W_1 x) \quad \text{Nonlinear score function} \\ L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM Loss on predictions} \\ R(W) &= \sum_k W_k^2 \quad \text{Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization} \end{split}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 51

Problem: How to compute gradients?

$$\begin{split} s &= f(x; W_1, W_2) = W_2 \max(0, W_1 x) \quad \text{Nonlinear score function} \\ L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM Loss on predictions} \\ R(W) &= \sum_k W_k^2 \quad \text{Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization} \\ \text{If we can compute} \quad \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2} \text{we can learn } W_1 \text{ and } W_2 \end{split}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 52

(Bad) Idea: Derive $abla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

$$\nabla_{W}L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

Problem: Not feasible for very complex models!

April 11, 2024

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 53

Better Idea: Computational graphs + Backpropagation

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 54

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 55

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 56

Neural Turing Machine

Fei-Fei Li, Ehsan Adeli

Lecture 4 -

Solution: Backpropagation

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 58

$$f(x,y,z) = (x+y)z$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 59

$$f(x,y,z) = (x+y)z$$

April 11, 2024

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 60

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 61

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4
 $q = x + y$ $rac{\partial q}{\partial x} = 1, rac{\partial q}{\partial y} = 1$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 62

$$egin{aligned} f(x,y,z) &= (x+y)z\ ext{e.g. x = -2, y = 5, z = -4} \end{aligned}$$
 $q &= x+y \quad rac{\partial q}{\partial x} = 1, rac{\partial q}{\partial y} = 1\ egin{aligned} f &= qz & rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q \end{aligned}$

April 11, 2024

Fei-Fei Li, Ehsan Adeli

Lecture 4 - <u>63</u>

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4
$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$\overline{f = qz} \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

April 11, 2024

Fei-Fei Li, Ehsan Adeli

Lecture 4 - <u>64</u>

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4
$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

April 11, 2024

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 65

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4
$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

April 11, 2024

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 66

$$f(x, y, z) = (x + y)z$$
e.g. $x = -2, y = 5, z = -4$

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$\frac{z - 4}{2}$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

x
$$\frac{-2}{y 5}$$

y $\frac{5}{z -4}$
 $\frac{\partial f}{\partial z}$

April 11, 2024

Fei-Fei Li, Ehsan Adeli

Lecture 4 - <u>67</u>

$$\frac{f(x, y, z) = (x + y)z}{\text{e.g. } x = -2, y = 5, z = -4}$$

$$\frac{q = x + y}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$\frac{z - 4}{3}$$

$$\frac{z - 4}{3}$$

$$\frac{z - 4}{3}$$

$$\frac{z - 4}{3}$$

$$\frac{z - 4}{3}$$
Want: $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial q} = q$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$x \xrightarrow{-2} + q \xrightarrow{3} + f \xrightarrow{-12} + f \xrightarrow{-12} 1$$

$$z \xrightarrow{-4} \xrightarrow{3} + \overline{3} + \overline{3}$$

April 11, 2024

Fei-Fei Li, Ehsan Adeli

Lecture 4 - <u>68</u>

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4
$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

April 11, 2024

Fei-Fei Li, Ehsan Adeli

Lecture 4 - <u>69</u>

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4
$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

April 11, 2024

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 70

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2, y = 5, z = -4$

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \quad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$
Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

Upstream Local gradient

x -2

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 71

$$f(x, y, z) = (x + y)z$$
e.g. $x = -2, y = 5, z = -4$

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \quad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$Chain rule:$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$Upstream Local gradient$$

x -2

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 72

$$f(x, y, z) = (x + y)z$$
e.g. $x = -2, y = 5, z = -4$

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \quad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$Chain rule:$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$
Upstream Local gradient

x -2

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 73
Backpropagation: a simple example

$$\frac{f(x,y,z) = (x+y)z}{e.g. x = -2, y = 5, z = -4}$$

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \quad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$Chain rule: \qquad \frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

$$Upstream \quad Local gradient$$

x -2

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 74

Lecture 4 - 75

Lecture 4 - 76

Lecture 4 - 77

Lecture 4 - 78

Lecture 4 - 79

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 81

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 82

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 83

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 84

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 85

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 86

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 87

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 88

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 89

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 90

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 91

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 92

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 93

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 94

Lecture 4 - 95

Lecture 4 - 96

w0 2.00

-0.20

-2.00

$$f(w,x) = rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Sigmoid function $\sigma(x) = rac{1}{1+e^{-x}}$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 97

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00 0.20

0.40

-0.20

-2.00

0.20

6.00

0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Sigmoid
function
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

-1.00

-0.20

1.00

0.20

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

1/x

1.37

-0.53

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 98

0.37

-0.53

(exp)

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

0.40

-0.20

$$f(w,x) = \frac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$
Computational representation unique. Choose local gradients a node can be ease expressed!
$$\frac{-2.00}{0.20}$$

$$function$$

$$\sigma(x) = \frac{1}{1+e^{-x}}$$
Computational representation unique. Choose local gradients a node can be ease expressed!
$$\frac{-2.00}{0.20}$$

$$+ \frac{1.00}{0.20}$$

$$+ \frac{1.00}{0.20}$$

$$(upstream gradient] \times [local gradient] = 0.2$$

mputational graph presentation may not be que. Choose one where al gradients at each de can be easily pressed!

0.73

1.00

 \sim

April 11, 2024

1/x

1\\7

Sigmoid local gradient:

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 99

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

-0.20

0.40

-2.00

0.20

6.00

0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Sigmoid
function
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$(+)^{+ \frac{4.00}{0.20}} (+)^{+ \frac{1.00}{0.20}} (+)^{-\frac{1.00}{0.20}} (+)^{-\frac{0.37}{0.53}} (+)^{+\frac{1.00}{0.20}} (+)^{-\frac{1.00}{0.20}} (+)^{-\frac{1.00}{0.20}} (+)^{-\frac{0.37}{0.53}} (+)^{-\frac{1.00}{0.20}} (+)^{-\frac{1.00}{0$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

April 11, 2024

1/x

[upstream gradient] x [local gradient] [1.00] x [(1 - 0.73) (0.73)] = 0.2

1.37

-0.53

Sigmoid local gradient:

al
$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 100

add gate: gradient distributor

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 101

add gate: gradient distributor

mul gate: "swap multiplier"

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 102

add gate: gradient distributor

mul gate: "swap multiplier"

copy gate: gradient adder

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 103

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 104

Fei-Fei Li, Ehsan Adeli

Forward pace
Forward pass.
Compute output

Backward pass: Compute grads

d	ef f(w0,	x0,	w1,	x1,	w2):
	s0 = w0) * X	0		
	s1 = w1	* x	1		
	s2 = s0) + s	1		
	s3 = s2	. + w	2		
	L = sig	moid	(s3)		

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Lecture 4 - 105

	<pre>def f(w0,</pre>	x0,	w1,	x1,	w2):
Forward pass: Compute output	s0 = w0	* X	0		
	s1 = w1	* X	1		
	s2 = s0	+ s	1		
	s3 = s2	+ w	2		
	L = sig	moid	(s3)		

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad x0 = grad s0 * w0

Lecture 4 - 106

Base case

April 11, 2024

	<mark>def f</mark> (w0,	x0, w1,	x1,	w2):
	s0 = w0	* X0		
Forward pass	s1 = w1	* x1		
Compute output	s2 = s0	+ s1		
Compute output	s3 = s2	+ w2		

Sigmoid

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

L = sigmoid(s3)

Lecture 4 - 107

April 11, 2024

Forward pass: Compute output

Add gate

de	ef f(w0,	×0,	w1,	x1,
ſ	s0 = w0	* X(0	
l	s1 = w1	* X	1	
l	s2 = s0	+ s2	1	
l	s3 = s2	+ w2	2	
	L = sig	moid	(s3)	

$grad_L = 1.0$
<u>grad_s3 = grad_L * (1 - L) * L</u>
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

w2):

Lecture 4 - 108

April 11, 2024

	<pre>def f(w0, x0, w1, x1, w2):</pre>
	s0 = w0 * x0
Forward pass: Compute output	s1 = w1 * x1
	s2 = s0 + s1
	s3 = s2 + w2
	L = sigmoid(s3)

	grad_L = 1.0
	$grad_s3 = grad_L * (1 - L) * L$
	grad_w2 = grad_s3
	grad_s2 = grad_s3
ſ	grad_s0 = grad_s2
	grad_s1 = grad_s2
	grad_w1 = grad_s1 * x1
	grad_x1 = grad_s1 * w1
	grad_w0 = grad_s0 * x0
	grad_x0 = grad_s0 * w0

Lecture 4 - 109

Add gate

April 11, 2024
Backprop Implementation: "Flat" code

	<pre>def f(w0, x0, w1, x1,</pre>	w2)
	s0 = w0 * x0	
Forward pass	s1 = w1 * x1	
Compute output	s2 = s0 + s1	
	s3 = s2 + w2	
	L = sigmoid(s3)	

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Lecture 4 - 110

Multiply gate

April 11, 2024

5

Fei-Fei Li, Ehsan Adeli

Backprop Implementation: "Flat" code

Forward pass: Compute output s0 = w0 * x0s1 = w1 * x1s2 = s0 + s1s3 = s2 + w2

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

def f(w0, x0, w1, x1, w2):

L = sigmoid(s3)

Multiply gate

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 111

"Flat" Backprop: Do this for assignment 1!

Stage your forward/backward computation!

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 112

"Flat" Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = #... function of X,W1,b1
scores = #... function of h1,W2,b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = \#...
dh1, dW2, db2 = #...
dW1, db1 = #...
```

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 113

<u>April 11, 2024</u>

Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

<pre>class ComputationalGraph(object):</pre>				
#				
<pre>def forward(inputs):</pre>				
<pre># 1. [pass inputs to input gates]</pre>				
<pre># 2. forward the computational graph:</pre>				
<pre>for gate in self.graph.nodes_topologically_sorted():</pre>				
gate.forward()				
<pre>return loss # the final gate in the graph outputs the loss</pre>				
<pre>def backward():</pre>				
<pre>for gate in reversed(self.graph.nodes_topologically_sorted()):</pre>				
<pre>gate.backward() # little piece of backprop (chain rule applied)</pre>				
<pre>return inputs_gradients</pre>				

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 114

Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code

(x,y,z are scalars)

<pre>class Multiply(torch.autograd.Function):</pre>		
@staticmethod		
<pre>def forward(ctx, x, y):</pre>	Need to cache some	
ctx.save_for_backward(x, y) -	values for use in backward	
z = x * y		
return z		
@staticmethod		
<pre>def backward(ctx, grad_z):</pre>	_ Upstream	
<pre>x, y = ctx.saved_tensors</pre>	graulent	
<pre>grad_x = y * grad_z # dz/dx * dL/dz</pre>	Multiply upstream	
<pre>grad_y = x * grad_z # dz/dy * dL/dz</pre>	and local gradients	
<pre>return grad_x, grad_y</pre>		

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 115

Example: PyTorch operators

pytorch / pytorch		⊙ Watch -	1,221	\star Unstar	26,770	¥ Fork	6,340
<>Code ① Issues 2,286 ①	Pull requests 561 III Projects 4	💷 Wiki 🔟 Insi	ghts				
Tree: 517c7c9861 - pytorch / aten	/ src / THNN / generic /		Create nev	v file Upl	oad files	Find file	History
ezyang and facebook-github-bot C	anonicalize all includes in PyTorch. (#14849)			Latest co	ommit 517	:7c9 on Dec	: 8, 2018
AbsCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
BCECriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
ClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Col2Im.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
ELU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
E FeatureLPPooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
GatedLinearUnit.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
HardTanh.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Im2Col.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
IndexLinear.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
LeakyReLU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
LogSigmoid.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MSECriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MultiLabelMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MultiMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
RReLU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Sigmoid.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SmoothL1Criterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftPlus.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftShrink.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SparseLinear.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SpatialAdaptiveAveragePooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	ths ago
SpatialAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	ths ago
SpatialAveragePooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago

SpatialClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingBilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
E THNN.h	Canonicalize all includes in PyTorch. (#14849)	4 months ago
Tanh.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalRowConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingLinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveAveragePoolin	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAveragePooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingTrilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
linear_upsampling.h	Implement nn.functional.interpolate based on upsample. (#8591)	9 months ago
pooling_shape.h	Use integer math to compute output size of pooling operations (#14405)	4 months ago
infold.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 116

Lecture 4 - 117

Lecture 4 - 118

Lecture 4 - 119

So far: backprop with scalars

What about vector-valued functions?

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 120

Recap: Vector derivatives

Scalar to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

If *x* changes by a small amount, how much will *y* change?

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 121

Recap: Vector derivatives

Scalar to Scalar

Vector to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If *x* changes by a small amount, how much will *y* change?

Derivative is Gradient:

 $x \in \mathbb{R}^N, y \in \mathbb{R}$

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

For each element of *x*, if it changes by a small amount then how much will *y* change?

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 122

<u>April 11, 2024</u>

Recap: Vector derivatives

Scalar to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

If *x* changes by a small amount, how much will *y* change?

Fei-Fei Li, Ehsan Adeli

Vector to Scalar

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Derivative is Gradient:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

Vector to Vector $x \in \mathbb{R}^N, y \in \mathbb{R}^M$

Derivative is Jacobian:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_m}{\partial x_n}$$

For each element of *x*, if it changes by a small amount then how much will *y* change? For each element of *x*, if it changes by a small amount then how much will each element of *y* change?

April 11, 2024

Lecture 4 - 123

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 124

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 125

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 126

much does it influence L?

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 127

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 128

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 129

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 130

Gradients of variables wrt loss have same dims as the original variable

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 131

Lecture 4 - 132

Fei-Fei Li, Ehsan Adeli

Upstream gradient

[5] -----

[9]

Lecture 4 - 133

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 134

Upstream gradient

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 135

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 136

4D input x: 4D output z: f(x) = max(0,x)Jacobian is sparse: 3 | 3 (elementwise) off-diagonal entries [-1] ▶ | 0 | always zero! Never explicitly form Jacobian -- instead 4D dL/dx: 4D dL/dz: $\left[\frac{dz}{dx}\right]\left[\frac{dL}{dz}\right]$ use implicit multiplication [4] -- [1000][4] | 4 | Upstream ____ [0000][-1] 01 | -1 | gradient 5 5 [0000][9] [9] [0] ◀_____

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 137

4D input x: 4D output z: f(x) = max(0,x)Jacobian is sparse: 3 3 (elementwise) off-diagonal entries [-1] always zero! Never explicitly form Jacobian -- instead 4D dL/dx: $\left[\frac{dz}{dx}\right]\left[\frac{dL}{dz}\right]$ 4D dL/dz: use implicit multiplication Upstream gradient [0] ← ← [9] ← ____

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 138

Lecture 4 - 139

Lecture 4 - 140 April 1

Lecture 4 - 141

Lecture 4 - 142

Also see derivation in the course notes:

http://cs231n.stanford.edu/handouts/linear-backprop.pdf

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 143

<u>April 11, 2024</u>

Backprop with Matrices

x: [N×D] [2 1 -3]
[-3 4 2]
w: [D×M]
[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply $y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$

Jacobians: dy/dx: [(N×D)×(N×M)] dy/dw: [(D×M)×(N×M)]

For a neural net we may have N=64, D=M=4096 Each Jacobian takes ~256 GB of memory! Must work with them implicitly!

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 144

April 11, 2024

y: [N×M]

[13 9 -2 -6]

[52171]

dL/dy: [N×M]

[23-39]

[-8 1 4 6]

Backprop with Matrices

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 145

April 11, 2024

y: [N×M]
[2]]-3] [-3]4]2] w: [D×M] [3]2]1-1] [2]1]3[2] [3]2]1-2]

x: [N×D]

Matrix Multiply $y_{n,m} = \sum x_{n,d} w_{d,m}$ Q: What parts of y are affected by one element of x? A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$ ∂I ∂I au

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial g_{n,m}}{\partial x_{n,d}}$$

[13 9 -2 -6
[5 2 17 1]
dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]

v: [N×M]

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 146

April 11, 2024

[2]]-3] [-3]4]2] w: [D×M] [32]1-1] [2]]32]1-2]

x: [N×D]

Matrix Multiply $y_{n,m} = \sum x_{n,d} w_{d,m}$ Q: What parts of y are affected by one element of x? A: $\overline{x_{n,d}}$ affects the whole row $y_{n,\cdot}$ $\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$

Q: How much does $x_{n,d}$ affect $y_{n,m}$?

147

Lecture 4 -

v: [N×M]

dL/dy: [N×M]

2 3 - 3 9

-8146]

April 11, 2024

Fei-Fei Li, Ehsan Adeli

x: [N×D] Matrix Multiply $y_{n,m} = \sum x_{n,d} w_{d,m}$ [-3 4 2] dL/dy: [N×M] w: [D×M] 2 3 - 3 9 -8146| [3 2 1 - 1] Q: What parts of y are [2132] affected by one Q: How much does $x_{n,d}$ [321-2] element of x? affect $y_{n,m}$? mul gate: "swap multiplier" A: $x_{n,d}$ affects the A: $w_{d,m}$ 5*3=15 whole row $y_{n,\cdot}$ 2*5=10 $\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m}$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 148

April 11, 2024

v: IN×M

x: [N×D] Matrix Multiply [2]1-3] $y_{n,m} = \sum x_{n,d} w_{d,m}$ [-3 4 2] dL/dy: [N×M] w: [D×M] 2 3 - 3 9 [321-1] Q: How much does [-8 1 4 6] Q: What parts of y are [2132] affected by one affect $x_{n,d}$ [321-2] element of x? $y_{n,m}$ A: A: $x_{n,d}$ affects the $w_{d,m}$ $[N \times D] [N \times M] [M \times D]$ whole row $y_{n,\cdot}$ $\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$ $\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m}$

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 149

April 11, 2024

v: [N×M]

Fei-Fei Li, Ehsan Adeli

Lecture 4 -150

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

$$[N \times D] [N \times M] [M \times D]$$

x: [N×D]

[-3 4 2]

 $W \cdot [D \times M]$

Backprop with Matrices

[D×M] [D×N] [N×M]

 $-x^T$

 ∂L

These formulas are easy to remember: they are the only way to make shapes match up!

April 11, 2024

Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Next Time: Convolutional Neural Networks!

Fei-Fei Li, Ehsan Adeli

Lecture 4 - 152

April 11, 2024