
Fei-Fei Li, Ehsan Adeli Lecture 4 - April 11, 20241

Lecture 4:
Neural Networks and 
Backpropagation



Fei-Fei Li, Ehsan Adeli Lecture 4 - April 11, 2024

Announcements

Cloud credits for projects: we are in the process of securing them 
and will announce them as soon as we can. 

Assignment 1 due Fri 4/19 at 11:59pm
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Administrative: Project Proposal

Due Mon 4/22

TA expertise are posted on the webpage.

(http://cs231n.stanford.edu/office_hours.html)
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Administrative: Live Q&A

For students who are watching the lecture online live:
● We are hosting a live Q&A session on Ed
● Questions will be responded to by TAs as much as possible. 
● See the Live Lecture Q&A megathread pinned on Ed for more 

information
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Administrative: Discussion Section

Discussion section tomorrow (led by Lucas Leanza):

Backpropagation
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Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss
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Finding the best W: Optimize with Gradient Descent

Landscape image is CC0 1.0 public domain

Walking man image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
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Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient

Gradient descent
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Stochastic Gradient Descent (SGD)
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Full sum expensive 
when N is large!

Approximate sum using 
a minibatch of examples
32 / 64 / 128 common
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Last time: fancy optimizers

SGD

SGD+Momentum

RMSProp

Adam
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Last time: learning rate scheduling

Reduce learning rate

Step: Reduce learning rate at a few fixed points. 
E.g. for ResNets, multiply LR by 0.1 after epochs 
30, 60, and 90.

Cosine:

Linear: 

Inverse sqrt: 

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs
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Today: 

    Deep Learning



Fei-Fei Li, Ehsan Adeli Lecture 4 - April 11, 202413

“Teddy bears working on new AI research on 
the moon in the 1980s.”

Image source: Sam Altman, https://openai.com/dall-e-2/, https://twitter.com/sama/status/1511724264629678084

DALL-E 2

“Rabbits attending a college seminar on 
human anatomy.”

“A wise cat meditating in the Himalayas
searching for enlightenment.”

https://openai.com/dall-e-2/
https://twitter.com/sama/status/1511724264629678084
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Ramesh et al., Hierarchical Text-Conditional Image 
Generation with CLIP Latents, 2022.
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DALL-E 3
In a fantastical setting, a 
highly detailed furry 
humanoid skunk with 
piercing eyes confidently 
poses in a medium shot, 
wearing an animal hide 
jacket. The artist has 
masterfully rendered the 
character in digital art, 
capturing the intricate details 
of fur and clothing texture.

15

Betker, James, et al. "Improving image generation 
with better captions.” Computer Science. https://cdn. 
openai. com/papers/dall-e-3. pdf  (2023).
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DALL-E 3
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Betker, James, et al. "Improving image generation 
with better captions.” Computer Science. https://cdn. 
openai. com/papers/dall-e-3. pdf  (2023).

An illustration from a graphic novel. 
A bustling city street under the shine 
of a full moon. The sidewalks 
bustling with pedestrians enjoying 
the nightlife. At the corner stall, a 
young woman with fiery red hair, 
dressed in a signature velvet cloak, is 
haggling with the grumpy old 
vendor. The grumpy vendor, a tall, 
sophisticated man wearing a sharp 
suit, who sports a noteworthy 
mustache is animatedly conversing 
on his steampunk telephone.



Fei-Fei Li, Ehsan Adeli Lecture 4 - April 11, 202417

GPT-4

Image source: https://openai.com/research/gpt-4
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Kirillov et al., Segment Anything, 2023

Segment Anything Model (SAM)
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Sora

19
https://openai.com/research/video-generation-models-as-world-simulators
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Sora
● Animating Images 

(generated by DALL-E)

● Video-to-video editing
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https://openai.com/research/video-generation-models-as-world-simulators

A Shiba Inu dog wearing a beret and black turtleneck.

change the video setting to be different than 
a mountain? perhaps joshua tree

put the video in space with a rainbow road
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Sora
● More compute 

21
https://openai.com/research/video-generation-models-as-world-simulators

Base Compute 4x Compute 32x Compute
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Neural Networks
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Neural networks: the original linear classifier

(Before) Linear score function:
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: 2 layers

(In practice we will usually add a learnable bias at each layer as well)
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Why do we want non-linearity?

25

x

y

Cannot separate red and 
blue points with linear 
classifier
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x

y

r

θ

f(x, y) = (r(x, y), θ(x, y)) 

Cannot separate red and 
blue points with linear 
classifier

After applying feature 
transform, points can be 
separated by linear 
classifier

Why do we want non-linearity?
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: also called fully connected network

(In practice we will usually add a learnable bias at each layer as well)

“Neural Network” is a very broad term; these are more accurately called 
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)
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Neural networks: 3 layers

(Before) Linear score function:

(Now) 2-layer Neural Network
   or 3-layer Neural Network
      

(In practice we will usually add a learnable bias at each layer as well)
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: hierarchical computation

x hW1 sW2

3072 100 10
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: learning 100s of templates

x hW1 sW2

3072 100 10

Learn 100 templates instead of 10.                               Share templates between classes
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The function.                        is called the activation function.
Q: What if we try to build a neural network without one?

31

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: why is max operator important?
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The function                         is called the activation function.
Q: What if we try to build a neural network without one?

32

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: why is max operator important?

A: We end up with a linear classifier again!
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions ReLU is a good default 
choice for most problems
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“Fully-connected” layers

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Neural networks: Architectures
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Example feed-forward computation of a neural network
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Full implementation of training a 2-layer Neural Network needs ~20 lines:
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Calculate the analytical gradients
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Gradient descent

Forward pass

Calculate the analytical gradients
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Setting the number of layers and their sizes

more neurons = more capacity
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(Web demo with ConvNetJS: 
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

TensorFlow Play Ground: https://playground.tensorflow.org/ 

Do not use size of neural network as a regularizer. Use stronger regularization instead:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
https://playground.tensorflow.org/
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This image by Fotis Bobolas is licensed under CC-BY 2.0

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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sigmoid activation function

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

Neurons in a neural network:
Organized into regular layers for 
computational efficiency

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

But neural networks with random 
connections can work too!

Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, IEEE/CVF 
International Conference on Computer Vision 2019

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Biological Neurons:
● Many different types
● Dendrites can perform complex non-linear computations
● Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Be very careful with your brain analogies!
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Plugging in neural networks with loss functions

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization
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If we can compute                     then we can learn W1 and W2 

52

Problem: How to compute gradients? 

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization
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(Bad) Idea: Derive                 on paper

Problem: What if we want to 
change loss? E.g. use softmax 
instead of SVM? Need to re-derive 
from scratch =(

Problem: Very tedious: Lots of matrix 
calculus, need lots of paper

Problem: Not feasible for very 
complex models!
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x

W

hinge 
loss

R

+ Ls (scores)

Better Idea: Computational graphs + Backpropagation

*
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input image

loss

weights

Convolutional network
(AlexNet)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, 2012. Reproduced with permission. 
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Really complex neural 
networks!!

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

https://twitter.com/karpathy/status/597631909930242048?lang=en
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Neural Turing Machine

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

https://twitter.com/karpathy/status/597631909930242048?lang=en
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Solution: Backpropagation
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Backpropagation: a simple example
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Backpropagation: a simple example
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Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4
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Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4
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Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4



Fei-Fei Li, Ehsan Adeli Lecture 4 - April 11, 202464

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want: 
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Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want: 
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Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want: 
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Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want: 
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Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want: 
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Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want: 
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Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want: 
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Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 
gradient

Local
gradient
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Backpropagation: a simple example

Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient
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Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 
gradient

Local
gradient
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Backpropagation: a simple example

Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient
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f
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f

“local gradient”
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f

“local gradient”

“Upstream
gradient”
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”



Fei-Fei Li, Ehsan Adeli Lecture 4 - April 11, 202481

Another example:
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Another example:
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Another example:
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Another example:
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Another example:



Fei-Fei Li, Ehsan Adeli Lecture 4 - April 11, 202486

Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient



Fei-Fei Li, Ehsan Adeli Lecture 4 - April 11, 202489

Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

[upstream gradient] x [local gradient]
[0.2] x [1] = 0.2
[0.2] x [1] = 0.2  (both inputs!)
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Another example:
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Another example:

[upstream gradient] x [local gradient]
w0: [0.2] x [-1] = -0.2
x0: [0.2] x [2] = 0.4
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Another example:

Sigmoid

Sigmoid 
function

Computational graph 
representation may not be 
unique. Choose one where 
local gradients at each 
node can be easily 
expressed!
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Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not be 
unique. Choose one where 
local gradients at each 
node can be easily 
expressed!
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Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not be 
unique. Choose one where 
local gradients at each 
node can be easily 
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 1/(1+e-1)) (1/(1+e-1))] = 0.2
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Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not be 
unique. Choose one where 
local gradients at each 
node can be easily 
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 0.73) (0.73)] = 0.2
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add gate: gradient distributor

Patterns in gradient flow

+

3

4
7
2

2

2



Fei-Fei Li, Ehsan Adeli Lecture 4 - April 11, 2024102

add gate: gradient distributor

Patterns in gradient flow

+

3

4
7
2

2

2

mul gate: “swap multiplier”

×

2

3
6
5

5*3=15

2*5=10
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add gate: gradient distributor

Patterns in gradient flow

+

3

4
7
2

2

2

mul gate: “swap multiplier”

copy gate: gradient adder

×

2

3
6
5

5*3=15

2*5=10

7

7
7

4+2=6

4

2
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add gate: gradient distributor

Patterns in gradient flow

+

3

4
7
2

2

2

mul gate: “swap multiplier”

max gate: gradient router

max

copy gate: gradient adder

×

2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6

4

2
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Backward pass:
Compute grads
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Base case
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Sigmoid
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Add gate
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Add gate
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Multiply gate
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Multiply gate
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Stage your forward/backward computation!
E.g. for the SVM:

margins

“Flat” Backprop: Do this for assignment 1!
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“Flat” Backprop: Do this for assignment 1!
E.g. for two-layer neural net:
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Backprop Implementation: Modularized API

Graph (or Net) object  (rough pseudo code)
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Need to cache some 
values for use in 
backward

Gate / Node / Function object: Actual PyTorch code

Upstream 
gradient

Multiply upstream 
and local gradients
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Example: PyTorch operators
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Source

Forward

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
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PyTorch sigmoid layer

Source

Forward

Forward actually 
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp
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Source

Forward

Backward

PyTorch sigmoid layer

Forward actually 
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp
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So far: backprop with scalars

What about vector-valued functions?
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Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?
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Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x, if 
it changes by a small 
amount then how much 
will y change?
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Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x, if 
it changes by a small 
amount then how much 
will y change?

Vector to Vector

Derivative is Jacobian:

For each element of x, if it 
changes by a small amount 
then how much will each 
element of y change?
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f

Backprop with Vectors

Loss L still a scalar!
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f

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!
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f

“Upstream gradient”

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!
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f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

Backprop with Vectors
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f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

“Downstream 
gradients”

Backprop with Vectors
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f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz] 

[Dx x Dz] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

“Downstream 
gradients”

Backprop with Vectors
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f

“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz] 

[Dx x Dz] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

Dy

Dx

Matrix-vector
multiply

Backprop with Vectors
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f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

Dy

Dx

Gradients of variables wrt loss have same dims as the original variable
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]



Fei-Fei Li, Ehsan Adeli Lecture 4 - April 11, 2024133

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

Upstream
gradient
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

Jacobian dz/dx
[ 1 0 0 0 ] 
[ 0 0 0 0 ] 
[ 0 0 1 0 ] 
[ 0 0 0 0 ] 

Upstream
gradient
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: 
off-diagonal entries 
always zero! Never 
explicitly form 
Jacobian -- instead 
use implicit 
multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

Upstream
gradient

Jacobian is sparse: 
off-diagonal entries 
always zero! Never 
explicitly form 
Jacobian -- instead 
use implicit 
multiplication

z
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f

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

dL/dx always has the 
same shape as x!
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f

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

For each element of z, how 
much does it influence L?

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!
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“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

For each element of z, how 
much does it influence L?

For each element of y, how much does 
it influence each element of z?

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!
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“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

[(Dx×Mx)×(Dz×Mz)] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

For each element of y, how much does 
it influence each element of z?

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]
[(Dy×My)×(Dz×Mz)] 

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!
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Backprop with Matrices

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]

Also see derivation in the course notes:
http://cs231n.stanford.edu/handouts/linear-backprop.pdf

http://cs231n.stanford.edu/handouts/linear-backprop.pdf
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Backprop with Matrices

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Jacobians:

dy/dx: [(N×D)×(N×M)]
dy/dw: [(D×M)×(N×M)]

For a neural net we may have 
N=64, D=M=4096

Each Jacobian takes ~256 GB of memory! 
Must work with them implicitly!
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Backprop with Matrices

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y are 

affected by one 
element of x?
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Backprop with Matrices

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y are 

affected by one 
element of x?
A:               affects the 
whole row  
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Backprop with Matrices

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y are 

affected by one 
element of x?
A:               affects the 
whole row  

Q: How much does        
affect              ?  
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Backprop with Matrices

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y are 

affected by one 
element of x?
A:               affects the 
whole row  

Q: How much does        
affect              ?  
A:
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Backprop with Matrices

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y are 

affected by one 
element of x?
A:               affects the 
whole row  

Q: How much does        
affect          ?
A:   

[N×D]  [N×M] [M×D]  
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Backprop with Matrices

x: [N×D]
[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]

[N×D]  [N×M] [M×D]  [D×M]  [D×N] [N×M]  

By similar logic:

These formulas are easy 
to remember: they are the 
only way to make shapes 
match up!
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● (Fully-connected) Neural Networks are stacks of linear functions and nonlinear 
activation functions; they have much more representational power than linear classifiers

● backpropagation = recursive application of the chain rule along a computational graph 
to compute the gradients of all inputs/parameters/intermediates

● implementations maintain a graph structure, where the nodes implement the forward() 
/ backward() API

● forward: compute result of an operation and save any intermediates needed for gradient 
computation in memory

● backward: apply the chain rule to compute the gradient of the loss function with respect 
to the inputs

Summary for today:
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Next Time: Convolutional Neural Networks!

152


