Lecture 4: Neural Networks and Backpropagation

Announcements

Cloud credits for projects: we are in the process of securing them and will announce them as soon as we can.

Assignment 1 due Fri 4/19 at 11:59pm

Administrative: Project Proposal

Due Mon 4/22
TA expertise are posted on the webpage.
(http://cs231n.stanford.edu/office hours.html)

Administrative: Live Q\&A

For students who are watching the lecture online live:

- We are hosting a live Q\&A session on Ed
- Questions will be responded to by TAs as much as possible.
- See the Live Lecture Q\&A megathread pinned on Ed for more information

Administrative: Discussion Section

Discussion section tomorrow (led by Lucas Leanza):

Backpropagation

Recap

- We have some dataset of (x, y)
- We have a score function:

$$
s=f(x ; W) \stackrel{\text { e.g. }}{=} W x
$$

- We have a loss function:

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \text { Softmax } \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \mathrm{sVM} \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
\end{aligned}
$$

Finding the best W: Optimize with Gradient Descent


```
# Vanilla Gradient Descent
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Gradient descent

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Last time: fancy optimizers

SGD
SGD+Momentum
RMSProp
Adam

Last time: learning rate scheduling

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.
Cosine: $\quad \alpha_{t}=\frac{1}{2} \alpha_{0}(1+\cos (t \pi / T))$
Linear: $\quad \alpha_{t}=\alpha_{0}(1-t / T)$
Inverse sqrt:

$$
\begin{aligned}
& \alpha_{t}=\alpha_{0} / \sqrt{t} \\
& \quad \alpha_{0} \text { : Initial learning rate }
\end{aligned}
$$

α_{t} : Learning rate at epoch t
T : Total number of epochs

Today:

Deep Learning

DALL-E 2

"A wise cat meditating in the Himalayas searching for enlightenment."
the moon in the 1980s."
"Teddy bears working on new AI research on
the moon in the 1980s."正
.
-
$8-1$

號
 or enlightenment." -

DALL-E 3

In a fantastical setting, a highly detailed furry humanoid skunk with piercing eyes confidently poses in a medium shot, wearing an animal hide jacket. The artist has masterfully rendered the character in digital art, capturing the intricate details of fur and clothing texture.

DALL-E 3

An illustration from a graphic novel. A bustling city street under the shine of a full moon. The sidewalks bustling with pedestrians enjoying the nightlife. At the corner stall, a young woman with fiery red hair, dressed in a signature velvet cloak, is haggling with the grumpy old vendor. The grumpy vendor, a tall, sophisticated man wearing a sharp suit, who sports a noteworthy mustache is animatedly conversing on his steampunk telephone. with better captions." Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf (2023).

The sidewalks bustling

The grumpy vendor, a tall, sophisticated man, is wearing a sharp suit, sports a noteworthy moustache and is animatedly conversing on his steampunk telephone.

At the corner stall, a young woman with fiery red hair, dressed in a signature velvet cloak, is haggling with the grumpy old vendor.

GPT-4

User Can you explain this meme?

Sometimes I just look at pictures of the earth from space and I marvel at how beautiful it all is.

GPT-4 This meme is a joke that combines two unrelated things: pictures of the earth from space and chicken nuggets.
The text of the meme suggests that the image below is a beautiful picture of the earth from space. However, the image is actually of chicken nuggets arranged to vaguely resemble a map of the world.
The humor in this meme comes from the unexpected juxtaposition of the text and the image. The text sets up an expectation of a majestic image of the earth, but the image is actually something mundane and silly.

Segment Anything Model (SAM)

Sora

- Animating Images (generated by DALL-E)
- Video-to-video editing

A Shiba Inu dog wearing a beret and black turtleneck.

put the video in space with a rainbow road

change the video setting to be different than a mountain? perhaps joshua tree
https://openai.com/research/video-generation-models-as-world-simulators

Fei-Fei Li, Ehsan Adeli

Lecture 4-20

Sora

- More compute

Base Compute

4x Compute

32x Compute

Fei-Fei Li, Ehsan Adeli

Lecture 4-21
April 11, 2024

Neural Networks

Neural networks: the original linear classifier
(Before) Linear score function: $\quad f=W x$

$$
x \in \mathbb{R}^{D}, W \in \mathbb{R}^{C \times D}
$$

Neural networks: 2 layers

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $f=W_{2} \max \left(0, W_{1} x\right)$

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

(In practice we will usually add a learnable bias at each layer as well)

Why do we want non-linearity?

Cannot separate red and blue points with linear classifier

Why do we want non-linearity?

Cannot separate red and blue points with linear classifier

After applying feature transform, points can be separated by linear classifier

Neural networks: also called fully connected network

(Before) Linear score function:

$$
f=W x
$$

(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)
(In practice we will usually add a learnable bias at each layer as well)

Neural networks: 3 layers

(Before) Linear score function:

$$
f=W x
$$

(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$ or 3-layer Neural Network

$$
\begin{gathered}
f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right) \\
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H_{1} \times D}, W_{2} \in \mathbb{R}^{H_{2} \times H_{1}}, W_{3} \in \mathbb{R}^{C \times H_{2}}
\end{gathered}
$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: hierarchical computation

(Before) Linear score function:
 $$
f=W x
$$

(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Neural networks: learning 100s of templates

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Neural networks: why is max operator important?
(Before) Linear score function:
(Now) 2-layer Neural Network

$$
f=W x
$$

$$
f=W_{2} \max \left(0, W_{1} x\right)
$$

The function $\max (0, z)$ is called the activation function. Q: What if we try to build a neural network without one?

$$
f=W_{2} W_{1} x
$$

Neural networks: why is max operator important?
(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max (0, W$
The function $\max (0, z)$ is called the activation function. Q: What if we try to build a neural network without one?

$$
f=W_{2} W_{1} x \quad W_{3}=W_{2} W_{1} \in \mathbb{R}^{C \times H}, f=W_{3} x
$$

A: We end up with a linear classifier again!

Activation functions

ReLU is a good default choice for most problems

Leaky ReLU $\max (0.1 x, x)$

> Maxout
> $\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$

ELU
$\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}$

Neural networks: Architectures

Example feed-forward computation of a neural network

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + bl) # calculate first hidden layer activations (4xI)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (IXI)
```


Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    print(t, loss)
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h.T.dot(grad_y_pred)
    grad_h = grad_y_pred.dot(w2.T)
    grad_w1 = x.T.dot(grad_h * h * (1 - h))
    w1 -= 1e-4 * grad_w1
    w2 -= 1e-4 * grad_w2
```


Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    print(t, loss)
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h.T.dot(grad_y_pred)
    grad_h = grad_y_pred.dot(w2.T)
    grad_w1 = x.T.dot(grad_h * h * (1 - h))
    w1 -= 1e-4 * grad_w1
    w2 -= 1e-4 * grad_w2
```


Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    print(t, loss)
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h.T.dot(grad_y_pred)
    grad_h = grad_y_pred.dot(w2.T)
    grad_w1 = x.T.dot(grad_h * h * (1 - h))
    w1 -= 1e-4 * grad_w1
    w2 -= 1e-4 * grad_w2
```


Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad w1 = x.T.dot(grad h * h * (1 - h))
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2
```


Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    print(t, loss)
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h.T.dot(grad_y_pred)
    grad_h = grad_y_pred.dot(w2.T)
    grad_w1 = x.T.dot(grad_h * h * (1 - h))
Define the network
Forward pass
Calculate the analytical gradients
```

```
w1 -= 1e-4 * grad_w1
```

w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2

```

\author{
Gradient descent
}

\section*{Setting the number of layers and their sizes}


Do not use size of neural network as a regularizer. Use stronger regularization instead:



This image by Eotis Bobolas is licensed under CC-BY 2.0


Impulses carried toward cell body


Impulses carried toward cell body


Biological Neurons:
Complex connectivity patterns


This image is CCO Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

hidden layer 1 hidden layer 2

Biological Neurons:
Complex connectivity patterns


This image is CCO Public Domain

\section*{But neural networks with random connections can work too!}

\section*{Be very careful with your brain analogies!}

Biological Neurons:
- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
[Dendritic Computation. London and Hausser]

\section*{Plugging in neural networks with loss functions}
\[
\begin{aligned}
s & =f\left(x ; W_{1}, W_{2}\right)=W_{2} \max \left(0, W_{1} x\right) \quad \text { Nonlinear score function } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \quad \text { SVM Loss on predictions } \\
R(W) & =\sum_{k} W_{k}^{2} \quad \text { Regularization } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda R\left(W_{1}\right)+\lambda R\left(W_{2}\right) \quad \text { Total loss: data loss + regularization }
\end{aligned}
\]

\section*{Problem: How to compute gradients?}
\(s=f\left(x ; W_{1}, W_{2}\right)=W_{2} \max \left(0, W_{1} x\right) \quad\) Nonlinear score function
\(L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \quad\) SVM Loss on predictions
\(R(W)=\sum_{k} W_{k}^{2} \quad\) Regularization
\(L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda R\left(W_{1}\right)+\lambda R\left(W_{2}\right)\) Total loss: data loss + regularization
If we can compute \(\frac{\partial L}{\partial W_{1}}, \frac{\partial L}{\partial W_{2}}\) I we can learn \(\mathrm{W}_{1}\) and \(\mathrm{W}_{2}\)

\section*{(Bad) Idea: Derive \(\nabla_{W} L\) on paper}
\[
\begin{aligned}
s & =f(x ; W)=W x \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right) \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda \sum_{k} W_{k}^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right)+\lambda \sum_{k} W_{k}^{2}
\end{aligned}
\]

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch \(=\) (
Problem: Not feasible for very complex models!
\(\nabla_{W} L=\nabla_{W}\left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right)+\lambda \sum_{k} W_{k}^{2}\right)\)

\section*{Better Idea: Computational graphs + Backpropagation}


\section*{Convolutional network (AlexNet)}


\title{
Really complex neural networks!!
}
input image


Figure reproduced with permission from a Twitter post by Andrej Karpathy.

\section*{Neural Turing Machine}


\section*{Solution: Backpropagation}

\section*{Backpropagation: a simple example}
\[
f(x, y, z)=(x+y) z
\]

Backpropagation: a simple example
\[
f(x, y, z)=(x+y) z
\]


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\(q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1\)
\(f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q\)
Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\(q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1\)
\(f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q\)
Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\(q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1\)
\(f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q\)
Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\(q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1\)
\(f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q\)
Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\(q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1\)
\(f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q\)
Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

\(\frac{\partial f}{\partial z}\)

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\(q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1\)
\(f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q\)
Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\(q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1\)
\(f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q\)
Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\(q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1\)
\(f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q\)
Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

\[
\begin{aligned}
& \underbrace{\frac{\partial f}{\partial y}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial y}}_{\text {Upstream }} \\
& \text { gradient gradient }
\end{aligned}
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\(q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1\)
\(f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q\)
Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

\[
\begin{aligned}
& \underbrace{\frac{\partial f}{\partial y}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial y}}_{\text {Upstream }} \\
& \text { gradient gradient }
\end{aligned}
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\(f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q\)
Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\(f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q\)
Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)








Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\[
\begin{array}{lll|lll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & & f_{c}(x)=c+x &
\end{array}
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\[
\begin{array}{lll|l}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & \rightarrow \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & \rightarrow \frac{1}{x} \\
f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
\hline
\end{array}
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\[
\begin{array}{lll|lll|}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & & \(f_{c}(x)=c+x\) & \\
\end{tabular}

\section*{Another example: \\ \[
f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
\]}

\begin{tabular}{lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & \(\rightarrow\) & \(\frac{d f}{d x}=1\) \\
\hline
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\[
\begin{array}{|lll|lll}
\hline f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\[
\begin{array}{|lll|lll}
\hline f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \begin{array}{l}
\frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x
\end{array} \\
\hline
\end{array}
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{|lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & & \\
\(f_{c}(x)=c+x\) & & \(\frac{d f}{d x}=1\)
\end{tabular}

\section*{Another example: \\ \[
f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
\]}

\begin{tabular}{|lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \begin{tabular}{c}
\(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\)
\end{tabular} \\
\hline
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\[
\begin{array}{lll|lll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
\]

\section*{Another example: \\ \[
f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
\]}


Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \begin{tabular}{l}
\(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\)
\end{tabular} \\
& \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & \(\rightarrow\) & \(\frac{d f}{d x}=1\)
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & & \(f_{c}(x)=c+x\) & \(\rightarrow\)
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


\section*{Another example: \\ \[
f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
\]}


Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

\(\begin{aligned} & \text { Sigmoid local } \\ & \text { gradient: }\end{aligned} \frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)\)

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!


Sigmoid local \(\quad \frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x), ~\)

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!


Sigmoid local \(\quad \frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x), ~\)

\section*{Patterns in gradient flow}
add gate: gradient distributor


\section*{Patterns in gradient flow}
add gate: gradient distributor

mul gate: "swap multiplier"


\section*{Patterns in gradient flow}
add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"


\section*{Patterns in gradient flow}
add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router


\section*{Backprop Implementation: "Flat" code}


Forward pass:
Compute output
def \(f(w 0, x 0, w 1, x 1, w 2):\)
\(\mathrm{s} 0=\mathrm{w} 0 * \mathrm{x0}\)
\(\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1\)
\(\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1\)
\(\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2\)
\(\mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)\)
```

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

```

\section*{Backprop Implementation: "Flat" code}

def f(w0, x0, w1, x1, w2):

Forward pass: Compute output
\[
\begin{aligned}
& \mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0 \\
& \mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1 \\
& \mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1 \\
& \mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2 \\
& \mathrm{~L}=\text { sigmoid }(\mathrm{s} 3)
\end{aligned}
\]

Base case
\[
\begin{aligned}
& \text { grad_L }=1.0 \\
& \text { grad_s3 }=\text { grad_L } *(1-\mathrm{L}) * \mathrm{~L} \\
& \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 } \\
& \text { grad_s0 }=\text { grad_s2 } \\
& \text { grad_s1 }=\text { grad_s2 } \\
& \text { grad_w1 }=\text { grad_s1 } * x 1 \\
& \text { grad_x1 }=\text { grad_s1 } * w 1 \\
& \text { grad_w0 }=\text { grad_s0 } * x 0 \\
& \text { grad_x0 }=\text { grad_s0 } * w 0
\end{aligned}
\]

\section*{Backprop Implementation: "Flat" code}


Forward pass:
Compute output
Forward pass:
Compute output
def \(f(w 0, x 0, w 1, x 1, w 2):\)
\begin{tabular}{|l|}
\(\mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0\) \\
\(\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1\) \\
\(\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1\) \\
\(\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2\) \\
\(\mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)\) \\
\hline
\end{tabular}
grad_L = 1.0
Sigmoid
\[
\begin{aligned}
\text { grad_s3 } & =\text { grad_L } *(1-\mathrm{L}) * \mathrm{~L} \\
\text { grad_w2 } & =\text { grad_s3 } \\
\text { grad_s2 } & =\text { grad_s3 } \\
\text { grad_s0 } & =\text { grad_s2 } \\
\text { grad_s1 } & =\text { grad_s2 } \\
\text { grad_w1 } & =\text { grad_s1 } * \text { x1 } \\
\text { grad_x1 } & =\text { grad_s1 } * w 1 \\
\text { grad_w0 } & =\text { grad_s0 } * x 0 \\
\text { grad_x0 } & =\text { grad_s0 } * w 0
\end{aligned}
\]

\section*{Backprop Implementation: "Flat" code}


Forward pass: Compute output
def f(w0, x0, w1, x1, w2):
\begin{tabular}{|l|}
\hline\(s 0=w 0 * x 0\) \\
\(s 1=w 1 * x 1\) \\
\(s 2=s 0+s 1\) \\
\(s 3=s 2+w 2\) \\
\(L=s i g m o i d(s 3)\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { grad_L }=1.0 \\
& \text { grad s3 }=\text { grad L } *(1-\mathrm{L}) * \mathrm{~L} \\
& \hline \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 } \\
& \text { grad_s0 }=\text { grad_s2 } \\
& \text { grad_s1 }=\text { grad_s2 } \\
& \text { grad_w1 }=\text { grad_s1 } * \text { x1 } \\
& \text { grad_x1 }=\text { grad_s1 } * \text { w1 } \\
& \text { grad_w0 }=\text { grad_s0 } * \text { x0 } \\
& \text { grad_x0 }=\text { grad_s0 } * \text { w0 }
\end{aligned}
\]

\section*{Backprop Implementation: "Flat" code}

def f(w0, x0, w1, x1, w2):

Forward pass:
Compute output
\(\mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0\)
\(\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1\)
\(\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1\)
\(\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2\)
\(\mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)\)
\[
\begin{aligned}
& \operatorname{grad\_ L}=1.0 \\
& \text { grad_s3 }=\text { grad_L } *(1-L) * L \\
& \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 }
\end{aligned}
\]

Add gate

\section*{Backprop Implementation: "Flat" code}


Forward pass: Compute output
def \(f(w 0, x 0, w 1, x 1, w 2):\)
\(\mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0\)
\(\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1\)
\(\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1\)
\(\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2\)
\(\mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)\)
\[
\begin{aligned}
& \text { grad_L }=1.0 \\
& \text { grad_s3 }=\text { grad_L } *(1-L) * L \\
& \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 } \\
& \text { grad_s0 }=\text { grad_s2 } \\
& \text { grad_s1 }=\text { grad_s2 }
\end{aligned}
\]

Multiply gate

\section*{Backprop Implementation: "Flat" code}



Forward pass: Compute output
def \(f(w 0, x 0, w 1, x 1, w 2):\)
\[
\begin{aligned}
& \text { grad_L }=1.0 \\
& \text { grad_s3 }=\text { grad_L } *(1-\mathrm{L}) * \mathrm{~L} \\
& \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 } \\
& \text { grad_s0 }=\text { grad_s2 } \\
& \text { grad_s1 }=\text { grad_s2 } \\
& \text { grad_w1 }=\text { grad_s1 } * \text { x1 } \\
& \text { grad_x1 }=\text { grad_s1 } * \text { w1 } \\
& \hline \text { grad_w0 }=\text { grad_s0 } * \text { x0 } \\
& \text { grad_x0 }=\text { grad_s0 } * \text { w0 }
\end{aligned}
\]

Multiply gate

\section*{"Flat" Backprop: Do this for assignment 1!}

\section*{Stage your forward/backward computation!}
E.g. for the SVM:
\# receive W (weights), X
\# forward pass (we have
scores = \#...
margins = \#. .
data loss = \#...
reg_loss = \#...
margins
loss = data_loss + reg_loss

\# backward pass (we have 5 lines)
dmargins = \# ... (optionally, we go direct to dscores)
dscores = \#...
dW = \#. . .

\section*{"Flat" Backprop: Do this for assignment 1!}
E.g. for two-layer neural net:
```


receive W1,W2,b1,b2 (weights/biases), X (data)

forward pass:

h1 = \#... function of X,W1,b1
scores = \#... function of h1,W2,b2
loss = \#... (several lines of code to evaluate Softmax loss)

backward pass:

dscores = \#...
dh1,dW2,db2 = \#...
dW1,db1 = \#...

```

\section*{Backprop Implementation: Modularized API}

\section*{Graph (or Net) object (rough pseudo code)}

```

class ComputationalGraph(object):
\#..
def forward(inputs):
\# 1. [pass inputs to input gates...]
\# 2. forward the computational graph:
for gate in self.graph.nodes_topologically_sorted():
gate.forward()
return loss \# the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes_topologically_sorted()):
gate.backward() \# little piece of backprop (chain rule applied)
return inputs_gradients

```

\section*{Modularized implementation: forward / backward API}

Gate / Node / Function object: Actual PyTorch code

( \(x, y, z\) are scalars)
```

class Multiply(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(x, y)
z = x * y
return z
@staticmethod
def backward(ctx, grad_z):
x, y = ctx.saved_tensors
grad_x = y * grad_z \# dz/dx * dL/dz
grad_y = x * grad_z \# dz/dy * dL/dz
return grad_x, grad_y

```

\section*{Example：PyTorch operators}


目ClassNLLCriterion．c
（1）Col21m． 6
国elu．c
國FeatureLPPooing．c
国 GatedLinearunit．c
目Im2Col．c
－ 1 IndexLinear．
－LeakyRelu．c
目 LogSigmoid．c
© MSECriterion．
© MutiLiabelMarginCriterion．c
（1）MutimarginCriterion．c
© RRelU． C
－Sigmoid．c
图SmoothLICriterion．c
－SortmarginCriterion．c
目 SottPus．c
目 SottShrink．c
目Sparselinearc
－SpatialAdaptiveAveragePooling．c
－SpatialAdaativeMaxPooling．c
目SpatialiveragePooling．c
\begin{tabular}{|c|c|}
\hline Canonicalize all includes in PyTorch．（\＃74849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＄7 4849） & 4 montrs ago \\
\hline Canonicalize all includes in PyTorch．（\＃714849） & 4 montrs ago \\
\hline Canonicalize all includes in PyTorch．（\＃7 1849） & 4 montrs ago \\
\hline Canonicalize all includes in PyTorch．（1714849） & 4 montrs ago \\
\hline Canonicalize all includes in PyTorch．（1714849） & 4 montrs ago \\
\hline Canonicalize all includes in PyTorch．（171849） & 4 montrs ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（t7 1849） & 4 montrs ago \\
\hline Canonicalize all includes in PyTorch．（\＃7 4849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃17849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（174849） & 4 montrs ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（171849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃74849） & 4 montrs ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicaize all includes in PyTorch．（174849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（174849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（141849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline
\end{tabular}
－SpataiclassNLLCriterion．c
 －SpatialialatedMaxPooling．c目 Spataifractionalmaxpooling．c Spatiafulidiatectconvolution．c S SpatialMaxUnpooling．c Spatiallaxunupooing．c ）SpatialReflection Padding．c SpataRepicationPadaing．c I Spatialupsampling Bilinear．c E SpatialupSamplingNearest．c国THNN．h OTanh．c
Temporarenerectionpadaling．c
TemporareppilicaitionPading．c T TemporaraowConvolution．c －Temporalupsampingulinearc T TemporaiupSamplingvearest．c EVolumerticadapiliveAveragepoolin VolumetricAdaptiveMaxPooling．c 2 VolumetricaveragePooling．c
－VolumetricConvolutionMM．C
Volumerticollaredconvolution．c ZVolumericoiliatedMaxPooiling．c


Evolumetric fullibiated Convolution．c
evolumerticmaxunpooing．c
D VolumericreeplicationPadding．c
PolumetricupsamplingNearest．c
OVolumetricupSamplingTrilinear．c
linear upsamping．h （1）pooling＿shnpe．h Duntold．c
\begin{tabular}{|c|c|}
\hline Canonicalize all includes in PyTorch．（\＄14849） & 4 monts ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（174849） & 4 monts ago \\
\hline Canonicalze all includes in PyTroch．（\＃14849） & 4 montrs ago \\
\hline Canoicalize all includes in PyTorch．（\＃14849） & 4 month ago \\
\hline Canonicalize all includes in PyTorch．（\＄14849） & 4 monts ago \\
\hline Canonicalize all includes in PyTorch．（114849） & 4 months ago \\
\hline Canonicalze all includes in PyTroch．（714849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＄14849） & 4 monts ago \\
\hline Canoricalize all includes in PyTorch．（148849） & 4 month ago \\
\hline Canonicalize all includes in PyTroch．（\＃74849） & 4 months ago \\
\hline Canonicalize all ncludes in PyTroch．（714849） & 4 montrs ago \\
\hline Canonicalize all includes in PyTorch．（\＄18849） & 4 month ago \\
\hline Canonicalize all includes in PyTorch．（\＄14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalze all includes in PyTroch．（174849） & 4 monts ago \\
\hline Canonicalize all includes in PyTorch．（174849） & 4 months ago \\
\hline Canoricalize all includes in PyTorch．（\＃14849） & 4 monts ago \\
\hline Canonicalize all includes in PyTorch．（1718449） & 4 monts aso \\
\hline Canonicalize all includes in PyTorch．（174849） & 4 monts ago \\
\hline Canonicalize al includes in PyTroch．（774849） & 4 monts ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 monhs ago \\
\hline Canonicalize all includes in PyTorch．（\＄14849） & 4 monts ago \\
\hline Canonicalize all includes in PyTorch．（t74849） & 4 months ago \\
\hline Canonicalze all includes in PyTroch．（t74849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＄14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 monts ago \\
\hline Canonicalize all includes in PyTorch．（148849） & 4 month aso \\
\hline Implement no．tunctionali．iterpolate based on ussample．（\＃\＃5591） & 9 monts ago \\
\hline Use integer math to compute output size ot pooling operations（\＃14405） & 4 montrs ago \\
\hline Canonicalize all includes in PyTorch．（\＄14849） & \\
\hline
\end{tabular}

\section*{\#ifndef TH_GENERIC_FILE}
\#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
\#else
PyTorch sigmoid layer
```

void THNN_(Sigmoid_updateOutput)(
THNNState *state,
THTensor *input,
THTensor *output)
{
THTensor_(sigmoid)(output, input);
}

```

\section*{Forward}
\[
\sigma(x)=\frac{1}{1+e^{-x}}
\]
void THNN_(Sigmoid_updateGradInput)(
            THNNState *state,
            THTensor *gradOutput,
            THTensor *gradInput,
            THTensor *output)
\{
    THNN_CHECK_NELEMENT(output, gradOutput);
    THTensor_(resizeAs)(gradInput, output);
    TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
        scalar_t z = *output_data;
        *gradInput_data \(=\) *gradOutput_data * (1. - z) * z;
    );
\}
\#endif

\section*{\#ifndef TH_GENERIC_FILE}

\section*{PyTorch sigmoid layer}

```

}
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [\&]() \{ unary_kernel_vec (
iter,
[=](scalar_t a) \rightarrow scalar_t \{return $(1 /(1+\operatorname{std}:: \exp ((-a))))$
[=](Vec256<scalar_t> a) \{
a = Vec256<scalar_t>((scalar_t)(0)) - a;
$\mathrm{a}=\mathrm{a} \cdot \exp ()$;
a = Vec256<scalar_t>((scalar_t)(1)) + a;
$a=a . r e c i p r o c a l() ;$

```

\section*{return \(a ;\)}
\}):

THTensor *grad0utput,
THTensor *gradInput,
THTensor *output)

Forward actually defined elsewhere...
```

{
THNN_CHECK_NELEMENT (output, gradOutput);
THTensor_(resizeAs)(gradInput, output);
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output, scalar_t z = *output_data; *gradInput_data $=$ *grad0utput_data $*(1 .-z) * z$;
);
}
static void sigmoid_kernel(TensorIterator\& iter) \{

\#ifndef TH_GENERIC_FILE

\#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c" \#else

PyTorch sigmoid layer

void THNN_(Sigmoid_updateOutput)(
void THNN_(Sigmoid_updateOutput)(
THNNState *state,
THNNState *state,
THTensor *input,
THTensor *input,
THTensor *output)
THTensor *output)
{
{
THTensor_(sigmoid)(output, input);
THTensor_(sigmoid)(output, input);
}
}
void THNN_(Sigmoid_updateGradInput)(
THNNState $*$ state,
THTensor *gradOutput,
THTensor *gradInput,
THTensor *output)
\{
THNN_CHECK_NELEMENT(output, gradOutput);
THTensor_(resizeAs)(gradInput, output);
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, grad0utput, scalar_t, output,
scalar_t z = *output_data;
gradInput_data $=$ grad0utput_data $*(1 .-z) * z ;$
);
\}
\#endif

So far: backprop with scalars

What about vector-valued functions?

Recap: Vector derivatives

Scalar to Scalar

$x \in \mathbb{R}, y \in \mathbb{R}$
Regular derivative:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}
$$

If x changes by a small amount, how much will y change?

Recap:Vector derivatives

Scalar to Scalar

$x \in \mathbb{R}, y \in \mathbb{R}$
Regular derivative:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}
$$

If \boldsymbol{x} changes by a small amount, how much will y change?

$$
\frac{\partial y}{\partial x} \in \mathbb{R}^{N} \quad\left(\frac{\partial y}{\partial x}\right)_{n}=\frac{\partial y}{\partial x_{n}}
$$

Vector to Scalar

$$
x \in \mathbb{R}^{N}, y \in \mathbb{R}
$$

Derivative is Gradient:

For each element of \boldsymbol{x}, if it changes by a small amount then how much will y change?

Recap: Vector derivatives

Scalar to Scalar

$x \in \mathbb{R}, y \in \mathbb{R}$
Regular derivative:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}
$$

If \boldsymbol{x} changes by a small amount, how much will y change?

Vector to Scalar

$$
x \in \mathbb{R}^{N}, y \in \mathbb{R}
$$

Derivative is Gradient:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}^{N} \quad\left(\frac{\partial y}{\partial x}\right)_{n}=\frac{\partial y}{\partial x_{n}}
$$

For each element of \boldsymbol{x}, if it changes by a small amount then how much will y change?

Vector to Vector

$$
x \in \mathbb{R}^{N}, y \in \mathbb{R}^{M}
$$

Derivative is Jacobian:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M}\left(\frac{\partial y}{\partial x}\right)_{n, m}=\frac{\partial y_{m}}{\partial x_{n}}
$$

For each element of \boldsymbol{x}, if it changes by a small amount then how much will each element of \boldsymbol{y} change?

Backprop with Vectors

Gradients of variables wrt loss have same dims as the original variable

Backprop with Vectors

Backprop with Vectors

4D input x :

4D output z:

Upstream gradient

Backprop with Vectors

4D input x :
4D output z:

Jacobian dz/dx

Upstream gradient

Backprop with Vectors

4D input x :
4D output z:

[dz/dx] [dL/dz]
4D dL/dz:
[1000][4]
[000000 [-1]
[0010][5]
[0000][9]

Upstream gradient

Backprop with Vectors

Backprop with Vectors

Backprop with Vectors

4D input x :

Backprop with Matrices (or Tensors)

```
Loss L still a scalar!
```


Backprop with Matrices (or Tensors)

Loss L still a scalar!

Backprop with Matrices (or Tensors)

Loss L still a scalar!

Backprop with Matrices (or Tensors)

Loss L still a scalar!

Backprop with Matrices

$$
\mathrm{x}:[\mathrm{N} \times \mathrm{D}]
$$

$$
\left[\begin{array}{lll}
2 & 1 & -3
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
-3 & 4 & 2
\end{array}\right]
$$

$$
\mathrm{w}:[\mathrm{D} \times \mathrm{M}]
$$

$$
\begin{gathered}
\mathrm{y}:\left[\begin{array}{cc}
{[\mathrm{N} \times \mathrm{M}]} \\
{[13} & 9
\end{array}-2-6\right. \\
{\left[\begin{array}{llll}
5 & 2 & 17 & 1
\end{array}\right]} \\
\\
\mathrm{dL} / \mathrm{dy}:\left[\begin{array}{c}
\mathrm{N} \times \mathrm{M}]
\end{array}\right. \\
{\left[\begin{array}{cccc}
2 & 3 & -3 & 9
\end{array}\right]} \\
{\left[\begin{array}{llll}
-8 & 1 & 4 & 6
\end{array}\right]}
\end{gathered}
$$

$$
\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
2 & 1 & 3 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
3 & 2 & 1 & -2
\end{array}\right]
$$

Also see derivation in the course notes: http://cs231n.stanford.edu/handouts/linear-backprop.pdf

Backprop with Matrices

$y:[N \times M]$

$$
\begin{gathered}
\text { Matrix Multiply } \\
y_{n, m}=\sum_{d} x_{n, d} w_{d, m} \\
\text { Jacobians: } \\
\begin{array}{c}
\mathrm{dy} / \mathrm{dx}:[(\mathrm{N} \times \mathrm{D}) \times(\mathrm{N} \times \mathrm{M})] \\
\mathrm{dy} / \mathrm{dw}:[(\mathrm{D} \times \mathrm{M}) \times(\mathrm{N} \times \mathrm{M})]
\end{array}
\end{gathered}
$$

For a neural net we may have

$$
N=64, D=M=4096
$$

Each Jacobian takes ~ 256 GB of memory!
Must work with them implicitly!

Backprop with Matrices

$\mathrm{y}:[\mathrm{N} \times \mathrm{M}]$

x : $[\mathrm{N} \times \mathrm{D}]$
[2 113]
$\left[\begin{array}{lll}-3 & 4 & 2\end{array}\right]$
w : [D×M]
[$\left.\begin{array}{llll}3 & 2 & 1 & -1\end{array}\right]$
[$\left.\begin{array}{llll}2 & 1 & 3 & 2\end{array}\right]$
[3 2 21 - 2]
[13 9 -2 -6] $\left[\begin{array}{llll}5 & 2 & 17 & 1\end{array}\right]$
dL/dy: [$\mathrm{N} \times \mathrm{M}$]
$\left[\begin{array}{llll}2 & 3 & -3 & 9\end{array}\right]$
$\left[\begin{array}{llll}-8 & 1 & 4 & 6\end{array}\right]$

Backprop with Matrices

$\mathrm{x}:[\mathrm{N} \times \mathrm{D}]$
$2[1] 3$
$\left[\begin{array}{llll}-3 & 4 & 2\end{array}\right]$
w: [D×M]
3 2 1-1]
212
3 2 1-2]

affected by one
element of x ?
A: $x_{n, d}$ affects the
whole row y_{n},

$$
\frac{\partial L}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} \frac{\partial y_{n, m}}{\partial x_{n, d}}
$$

Backprop with Matrices

x: [$\mathrm{N} \times \mathrm{D}]$
$\left[\begin{array}{lll}-3 & 4\end{array}\right.$
w: [D×M]
3 21 1-1]
$\left[\begin{array}{llll}2 & 1 & 3\end{array}\right]$
$321-2]$

Backprop with Matrices

x : [$\mathrm{N} \times \mathrm{D}$]
2 173]
$\left[\begin{array}{llll}-3 & 4 & 2\end{array}\right]$
w: [D×M]
3 2 1-1]
[$\left.2 \begin{array}{llll}2 & 1 & 2\end{array}\right]$
$321-2]$

Backprop with Matrices

$$
\begin{aligned}
& \mathrm{x}:[\mathrm{N} \times \mathrm{D}] \\
& \text { [} 2 \text { 1 3] } \\
& {\left[\begin{array}{lll}
-3 & 4 & 2
\end{array}\right]} \\
& \text { w: [D×M] } \\
& \text { [} \left.\begin{array}{llll}
3 & 2 & 1 & -1
\end{array}\right] \\
& {\left[\begin{array}{llll}
2 & 1 & 3 & 2
\end{array}\right]} \\
& \text { [} \left.\begin{array}{llll}
3 & 2 & 1 & -2
\end{array}\right] \\
& {[\mathrm{N} \times \mathrm{D}][\mathrm{N} \times \mathrm{M}][\mathrm{M} \times \mathrm{D}]} \\
& \text { Matrix Multiply } \\
& y_{n, m}=\sum_{d} x_{n, d} w_{d, m} \\
& \frac{\mathrm{dL} / \mathrm{dy}:[\mathrm{N} \times \mathrm{M}]}{\left.\begin{array}{lll}
2 & 3 & -3 \\
\hline
\end{array}\right]}\left[\begin{array}{llll}
-8 & 1 & 4 & 6
\end{array}\right] \\
& \frac{\partial L}{\partial x}=\left(\frac{\partial L}{\partial y}\right) w^{T} \\
& \frac{\partial L}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} \frac{\partial y_{n, m}}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} w_{d, m}
\end{aligned}
$$

Backprop with Matrices

$x:[N \times D]$

[2 1 3]
$\left[\begin{array}{lll}-3 & 4 & 2\end{array}\right]$
$w:[D \times M]$
$\left[\begin{array}{llll}3 & 2 & 1 & -1\end{array}\right]$
[2 1132]
$\left[\begin{array}{llll}3 & 2 & 1 & -2\end{array}\right]$
$[\mathrm{N} \times \mathrm{D}][\mathrm{N} \times \mathrm{M}][\mathrm{M} \times \mathrm{D}]$

$$
\frac{\partial L}{\partial x}=\left(\frac{\partial L}{\partial y}\right) w^{T}
$$

Matrix Multiply

$$
y_{n, m}=\sum_{d} x_{n, d} w_{d, m} \longleftarrow \frac{\mathrm{dL} / \mathrm{dy}:[\mathrm{N} \times \mathrm{M}]}{\left[\begin{array}{llll}
2 & 3 & -3 & 9
\end{array}\right]}\left[\begin{array}{llll}
-8 & 1 & 4 & 6
\end{array}\right]
$$

By similar logic:

$$
[D \times M][D \times N][N \times M]
$$

$$
\frac{\partial L}{\partial w}=x^{T}\left(\frac{\partial L}{\partial y}\right)
$$

These formulas are easy to remember: they are the only way to make shapes match up!

Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Next Time: Convolutional Neural Networks!

