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Lecture 6 (Part 2):
Training Neural Networks
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Where we are now...

CNN Architectures
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Where we are now...

Landscape image is CC0 1.0 public domain

Walking man image is CC0 1.0 public domain

Learning network parameters through optimization
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http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
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Where we are now...

Mini-batch SGD

Loop:

1. Sample a batch of data

2. Forward prop it through the graph 

(network), get loss

3. Backprop to calculate the gradients

4. Update the parameters using the gradient
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Today: Training Neural Networks 
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1. One time set up: activation functions, preprocessing, 

weight initialization, regularization, gradient checking

1. Training dynamics: babysitting the learning process, 

parameter updates, hyperparameter optimization 

1. Evaluation: model ensembles, test-time 

augmentation, transfer learning

Overview
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Activation Functions
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Activation Functions
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Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they 

have nice interpretation as a 

saturating “firing rate” of a neuron
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they 

have nice interpretation as a 

saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 

gradients

11
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sigmoid 

gate

x
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sigmoid 

gate

x

What happens when x = -10?
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sigmoid 

gate

x

What happens when x = -10?
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sigmoid 

gate

x

What happens when x = -10?

What happens when x = 0?
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sigmoid 

gate

x

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?
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sigmoid 

gate

x

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?
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Why is this a problem?

If all the gradients flowing back will be 

zero and weights will never change

sigmoid 

gate

x

18
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Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]

- zero centered (nice)

- still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

ReLU

(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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Activation Functions

ReLU

(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

21
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Activation Functions

ReLU

(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

- An annoyance:

hint: what is the gradient when x < 0?

22
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ReLU 

gate

x

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?
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DATA CLOUD
active ReLU

dead ReLU

will never activate 

=> never update

24
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Activation Functions

Leaky ReLU

- Does not saturate

- Computationally efficient

- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

[Mass et al., 2013]

[He et al., 2015]
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Activation Functions

Leaky ReLU

- Does not saturate

- Computationally efficient

- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PReLU)

[Mass et al., 2013]

[He et al., 2015]
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Activation Functions

GELU

(Gaussian Error 

Linear Unit)

- Computes f(x) = x*Φ(x)

28

[Hendrycks et al., 2016]

Sources: 

https://en.wikipedia.org/wiki/Normal_distribution, 

https://en.m.wikipedia.org/wiki/File:Cumulative_di

stribution_function_for_normal_distribution,_mea

n_0_and_sd_1.png

Φ
(x

)

https://en.wikipedia.org/wiki/Normal_distribution
https://en.m.wikipedia.org/wiki/File:Cumulative_distribution_function_for_normal_distribution,_mean_0_and_sd_1.png
https://en.m.wikipedia.org/wiki/File:Cumulative_distribution_function_for_normal_distribution,_mean_0_and_sd_1.png
https://en.m.wikipedia.org/wiki/File:Cumulative_distribution_function_for_normal_distribution,_mean_0_and_sd_1.png
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Activation Functions

GELU

(Gaussian Error 

Linear Unit)

- Computes f(x) = x*Φ(x)
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[Hendrycks et al., 2016]

Source: https://en.m.wikipedia.org/wiki/File:ReLU_and_GELU.svg

Sources: 

https://en.wikipedia.org/wiki/Normal_distribution, 

https://en.m.wikipedia.org/wiki/File:Cumulative_di

stribution_function_for_normal_distribution,_mea

n_0_and_sd_1.png

Φ
(x

)

https://en.m.wikipedia.org/wiki/File:ReLU_and_GELU.svg
https://en.wikipedia.org/wiki/Normal_distribution
https://en.m.wikipedia.org/wiki/File:Cumulative_distribution_function_for_normal_distribution,_mean_0_and_sd_1.png
https://en.m.wikipedia.org/wiki/File:Cumulative_distribution_function_for_normal_distribution,_mean_0_and_sd_1.png
https://en.m.wikipedia.org/wiki/File:Cumulative_distribution_function_for_normal_distribution,_mean_0_and_sd_1.png
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Activation Functions

GELU

(Gaussian Error 

Linear Unit)

- Computes f(x) = x*Φ(x)

- Very nice behavior around 0

- Smoothness facilitates training in 

practice

- Higher computational cost than ReLU

- Large negative values can still have 

gradient → 0

30

[Hendrycks et al., 2016]

Source: https://en.m.wikipedia.org/wiki/File:ReLU_and_GELU.svg

https://en.m.wikipedia.org/wiki/File:ReLU_and_GELU.svg
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TLDR: In practice:

- Use ReLU. Be careful with your learning rates

- Try out Leaky ReLU / PReLU / GELU

- To squeeze out some marginal gains

- Don’t use sigmoid or tanh
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Data Preprocessing

32
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Data Preprocessing

(Assume X [NxD] is data matrix, 

each example in a row)

33
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TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)

(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)

(mean along each channel = 3 numbers)

- Subtract per-channel mean and

Divide by per-channel std (e.g. ResNet and beyond)

(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images
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Weight Initialization

35
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- Q: what happens when W=constant init is used?

36
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- First idea: Small random numbers 

(gaussian with zero mean and 1e-2 standard deviation)
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- First idea: Small random numbers 

(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with 

deeper networks.

38
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Weight Initialization: Activation statistics

Forward pass for a 6-layer 

net with hidden size 4096

39

What will happen to the activations for the last layer?
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Weight Initialization: Activation statistics

Forward pass for a 6-layer 

net with hidden size 4096
All activations tend to zero 

for deeper network layers

Q: What do the gradients 

dL/dW look like?

40
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Weight Initialization: Activation statistics

Forward pass for a 6-layer 

net with hidden size 4096
All activations tend to zero 

for deeper network layers

Q: What do the gradients 

dL/dW look like?

A: All zero, no learning =(

41
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Weight Initialization: Activation statistics

Increase std of initial 

weights from 0.01 to 0.05

42

What will happen to the activations for the last layer?
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Weight Initialization: Activation statistics

Increase std of initial 

weights from 0.01 to 0.05
All activations saturate

Q: What do the gradients 

look like?

43
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Weight Initialization: Activation statistics

Increase std of initial 

weights from 0.01 to 0.05
All activations saturate

Q: What do the gradients 

look like?

A: Local gradients all zero, 

no learning =(
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Weight Initialization: “Xavier” Initialization

“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

45



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 7 - April 17, 2024

“Just right”: Activations are 

nicely scaled for all layers!

“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

46
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“Just right”: Activations are 

nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

47
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Weight Initialization: What about ReLU?

Change from tanh to ReLU

48
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Weight Initialization: What about ReLU?

Xavier assumes zero 

centered activation function

Activations collapse to zero 

again, no learning =(

Change from tanh to ReLU

49
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Weight Initialization: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

“Just right”: Activations are 

nicely scaled for all layers!

50
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Proper initialization is an ongoing area of research…

Understanding the difficulty of training deep feedforward neural networks

by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et 

al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019
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Training vs. Testing Error

52
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Beyond Training Error

Better optimization algorithms 

help reduce training loss

But we really care about error on 

new data - how to reduce the gap?
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Early Stopping: Always do this

Iteration

Loss

Iteration

Accuracy

Train

Val

Stop training here

Stop training the model when accuracy on the validation set decreases

Or train for a long time, but always keep track of the model snapshot 

that worked best on val
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1. Train multiple independent models

2. At test time average their results
(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Model Ensembles
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How to improve single-model performance?

Regularization
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Regularization: Add term to loss

57

In common use:

L2 regularization

L1 regularization

Elastic net (L1 + L2)

(Weight decay)
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero

Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Regularization: Dropout Example forward 

pass with a 3-

layer network 

using dropout
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Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;

Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous 

look

cat 

score

X

X

X



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 7 - April 17, 202461

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of 

models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has

24096 ~ 101233 possible masks!

Only ~ 1082 atoms in the universe...
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Dropout: Test time

Dropout makes our output random!

Output

(label)

Input

(image)

Random 

mask

Want to “average out” the randomness at test-time

But this integral seems hard … 
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Dropout: Test time

Want to approximate 

the integral

Consider a single neuron.

a

x y

w1 w2
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Dropout: Test time

Want to approximate 

the integral

Consider a single neuron.

At test time we have:
a

x y

w1 w2



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 7 - April 17, 202465

Dropout: Test time

Want to approximate 

the integral

Consider a single neuron.

At test time we have:

During training we have:

a

x y

w1 w2



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 7 - April 17, 202466

Dropout: Test time

Want to approximate 

the integral

Consider a single neuron.

At test time we have:

During training we have:

a

x y

w1 w2

At test time, multiply

by dropout probability
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Dropout: Test time

At test time all neurons are active always

=> We must scale the activations so that for each neuron:

output at test time = expected output at training time
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Dropout Summary

drop in train time

scale at test time



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 7 - April 17, 202469

More common: “Inverted dropout”

test time is unchanged!
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Regularization: A common pattern

Training: Add some kind of randomness

Testing: Average out randomness (sometimes approximate)
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Regularization: A common pattern

Training: Add some kind 

of randomness

Testing: Average out randomness 

(sometimes approximate)

Example: Batch 

Normalization

Training: 

Normalize using 

stats from random 

minibatches

Testing: Use fixed 

stats to normalize
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Load image 

and label

“cat”

CNN

Compute

loss

Regularization: Data Augmentation

This image by Nikita is 

licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Regularization: Data Augmentation

Load image 

and label

“cat”

CNN

Compute

loss

Transform image
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Data Augmentation
Horizontal Flips
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales:  {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Data Augmentation
Color Jitter

Simple: Randomize 

contrast and brightness
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Data Augmentation
Get creative for your problem!

Examples of data augmentations:

- translation

- rotation

- stretching

- shearing, 

- lens distortions, …  (go crazy)
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Automatic Data Augmentation

Cubuk et al., “AutoAugment: Learning Augmentation Strategies from Data”, CVPR 2019
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Regularization: Cutout
Training: Set random image regions to zero

Testing: Use full image

Examples:
Dropout

Batch Normalization

Data Augmentation

Cutout / Random Crop

DeVries and Taylor, “Improved Regularization of 

Convolutional Neural Networks with Cutout”, arXiv 2017

Works very well for small datasets like CIFAR, 

less common for large datasets like ImageNet
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Regularization - In practice
Training: Add random noise

Testing: Marginalize over the noise

Examples:
Dropout

Batch Normalization

Data Augmentation

Cutout / Random Crop

- Consider dropout for large fully-

connected layers

- Batch normalization and data 

augmentation almost always a 

good idea

- Try cutout especially for small 

classification datasets
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Choosing Hyperparameters
(without tons of GPUs)
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Choosing Hyperparameters

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization

e.g. log(C) for softmax with C classes

Random guessing → 1/C probability for each class

Softmax Loss → -log(1/C) = log(C)
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of 

training data (~5-10 minibatches); fiddle with architecture, 

learning rate, weight initialization

Loss not going down? LR too low, bad initialization

Loss explodes to Inf or NaN? LR too high, bad initialization
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training 

data, turn on small weight decay, find a learning rate that 

makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around 

what worked from Step 3, train a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 

epochs) with constant learning rate
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss and accuracy curves
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Accuracy

time

Train

Accuracy still going up, you 

need to train longer

Val
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Accuracy

time

Train

Huge train / val gap means 

overfitting! Increase regularization, 

get more data

Val
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Accuracy

time

Train

No gap between train / val means 

underfitting: train longer, can use 

a bigger model

Val



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 7 - April 17, 202492

Losses may be noisy, use a 

scatter plot and also plot moving 

average to see trends better

Look at learning curves!
Training Loss Train / Val Accuracy
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Cross-validation 

We develop "command 

centers" to visualize all our 

models training with different 

hyperparameters

check out weights and biases

https://wandb.ai/site?gclid=Cj0KCQjw9_mDBhCGARIsAN3PaFOdNLAotsNwzHZDz2szIWhaM-2Pu5hq07RBOuDL9l8TG8UQkdralcwaAvNJEALw_wcB
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You can plot all your loss curves for different hyperparameters on a single plot
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Don't look at accuracy or loss curves for too long!
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss and accuracy curves

Step 7: GOTO step 5
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Random Search vs. Grid Search

Important Parameter Important Parameter
U

n
im

p
o

rt
an

t 
P

ar
am

et
er

U
n

im
p

o
rt

an
t 

P
ar

am
et

er

Grid Layout Random Layout

Illustration of Bergstra et al., 2012 by Shayne 

Longpre, copyright CS231n 2017

Random Search for Hyper-

Parameter Optimization

Bergstra and Bengio, 2012
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Summary
We looked in detail at:

- Activation Functions (use ReLU)

- Data Preprocessing (images: subtract mean)

- Weight Initialization (use Xavier/Kaiming init)

- Batch Normalization (use this!)

- Transfer learning (use this if you can!)

TLDRs

98
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In Lecture: Recap of Content + QA
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Appendix – Slides from Previous Years of the Course
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they 

have nice interpretation as a 

saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 

gradients

2. Sigmoid outputs are not zero-

centered

101
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Consider what happens when the input to a neuron is 

always positive...

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 

always positive...

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 

always positive...

What can we say about the gradients on w?

104

We know that local gradient of sigmoid is always positive
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Consider what happens when the input to a neuron is 

always positive...

What can we say about the gradients on w?

We know that local gradient of sigmoid is always positive

We are assuming x is always positive

105
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Consider what happens when the input to a neuron is 

always positive...

What can we say about the gradients on w?

We know that local gradient of sigmoid is always positive

We are assuming x is always positive

So!! Sign of gradient for all wi is the same as the sign of upstream scalar gradient!
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Consider what happens when the input to a neuron is 

always positive...

What can we say about the gradients on w?

Always all positive or all negative :(

hypothetical 

optimal w 

vector

zig zag path

allowed 

gradient 

update 

directions

allowed 

gradient 

update 

directions

107
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108

Consider what happens when the input to a neuron is 

always positive...

What can we say about the gradients on w?

Always all positive or all negative :(

(For a single element! Minibatches help)

hypothetical 

optimal w 

vector

zig zag path

allowed 

gradient 

update 

directions

allowed 

gradient 

update 

directions
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they 

have nice interpretation as a 

saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 

gradients

2. Sigmoid outputs are not zero-

centered

3. exp() is a bit compute expensive

109



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 7 - April 17, 2024

Activation Functions

Exponential Linear Units (ELU)

- All benefits of ReLU

- Closer to zero mean outputs

- Negative saturation regime 

compared with Leaky ReLU 

adds some robustness to noise 

- Computation requires exp()

[Clevert et al., 2015]

110

(Alpha default = 1)
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Activation Functions

Scaled Exponential Linear Units (SELU)

- Scaled version of ELU that 

works better for deep networks

- “Self-normalizing” property;

- Can train deep SELU networks 

without BatchNorm 

[Klambauer et al. ICLR 2017]
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Maxout “Neuron”

- Does not have the basic form of dot product -> 

nonlinearity

- Generalizes ReLU and Leaky ReLU 

- Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]
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Remember: Consider what happens when 

the input to a neuron is always positive...

What can we say about the gradients on w?

Always all positive or all negative :(

(this is also why you want zero-mean data!)

hypothetical 

optimal w 

vector

zig zag path

allowed 

gradient 

update 

directions

allowed 

gradient 

update 

directions
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(Assume X [NxD] is data matrix, each example in a row)

Data Preprocessing

114
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Data Preprocessing

In practice, you may also see PCA and Whitening of the data

(data has diagonal 

covariance matrix)

(covariance matrix is the 

identity matrix)
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Data Preprocessing
Before normalization: classification loss 

very sensitive to changes in weight matrix; 

hard to optimize

After normalization: less sensitive to small 

changes in weights; easier to optimize
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“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Xavier Initialization: Proof of Optimality

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 

nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 

nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

118

Assume: Var(x1) = Var(x2)= …=Var(xDin)
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“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 

nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

119

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)
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“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              

[substituting value of y]
Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 

nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

120
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We want: Var(y) = Var(xi)
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“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              

= Din Var(xiwi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 

nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

121
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We want: Var(y) = Var(xi)
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“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              

= Din Var(xiwi)

= Din Var(xi) Var(wi)

[Assume all xi, wi are zero mean]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 

nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              

= Din Var(xiwi)

= Din Var(xi) Var(wi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 

nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din
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Data Augmentation
Color Jitter

Simple: Randomize 

contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B] 

pixels in training set

2. Sample a “color offset” 

along principal component 

directions

3. Add offset to all pixels of a 

training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)
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Regularization: A common pattern
Training: Add random noise

Testing: Marginalize over the noise

Examples:
Dropout

Batch Normalization

Data Augmentation
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Regularization: DropConnect
Training: Drop connections between neurons (set weights to 0)

Testing: Use all the connections

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect
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Regularization: Fractional Pooling
Training: Use randomized pooling regions

Testing: Average predictions from several regions

Graham, “Fractional Max Pooling”, arXiv 2014

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling
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Regularization: Stochastic Depth
Training: Skip some layers in the network

Testing: Use all the layer

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016
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Regularization: Mixup
Training: Train on random blends of images

Testing: Use original images

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout / Random Crop

Mixup
Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Randomly blend the pixels 

of pairs of training images, 

e.g. 40% cat, 60% dog

CNN
Target label:

cat: 0.4

dog: 0.6
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Transfer learning
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You need a lot of a data if you want to 

train/use CNNs?
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Transfer Learning with CNNs

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-1000

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation 

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An 

Astounding Baseline for Recognition”, CVPR Workshops 

2014
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Transfer Learning with CNNs

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-1000

1. Train on Imagenet

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 

this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation 

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An 

Astounding Baseline for Recognition”, CVPR Workshops 

2014
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Transfer Learning with CNNs

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-1000

1. Train on Imagenet

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 

this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation 

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An 

Astounding Baseline for Recognition”, CVPR Workshops 

2014

Donahue et al, “DeCAF: A Deep Convolutional Activation 

Feature for Generic Visual Recognition”, ICML 2014

Finetuned from AlexNet
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Transfer Learning with CNNs

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-1000

1. Train on Imagenet

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 

this and train

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-C

3. Bigger dataset

Freeze these

Train these

With bigger 

dataset, train 

more layers

Lower learning rate 

when finetuning; 

1/10 of original LR 

is good starting 

point

Donahue et al, “DeCAF: A Deep Convolutional Activation 

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An 

Astounding Baseline for Recognition”, CVPR Workshops 

2014
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Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has 

similar data, train a big ConvNet there

2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of pretrained 

models so you don’t need to train your own

TensorFlow: https://github.com/tensorflow/models

PyTorch: https://github.com/pytorch/vision
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Summary

- Improve your training error:
- Optimizers

- Learning rate schedules

- Improve your test error:
- Regularization

- Choosing Hyperparameters
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