# Lecture 6 Review: Review Over Parts 1 + 2

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 1

<u>April 18, 2024</u>

### **Course Logistics**

- Assignment 1 is due tomorrow!
- Project proposal deadline is on Monday

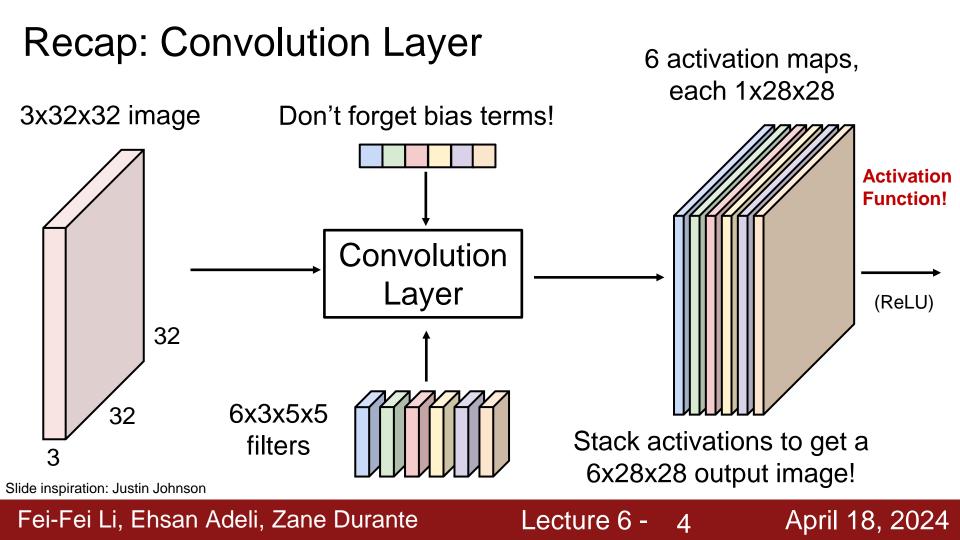
#### Fei-Fei Li, Ehsan Adeli, Zane Durante



# Topic 1: Layers in CNNs

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 3



**Recap: Pooling Layer** 

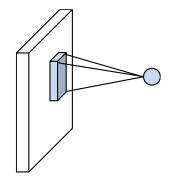


Fei-Fei Li, Ehsan Adeli, Zane Durante

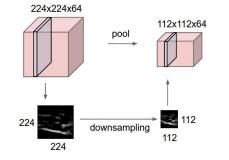
### Lecture 6 - 5

### **Components of CNNs**

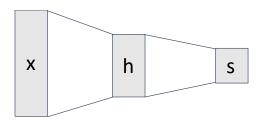
**Convolution Layers** 



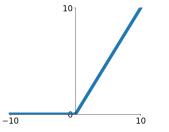
### Pooling Layers



### **Fully-Connected Layers**



Activation Function



Normalization

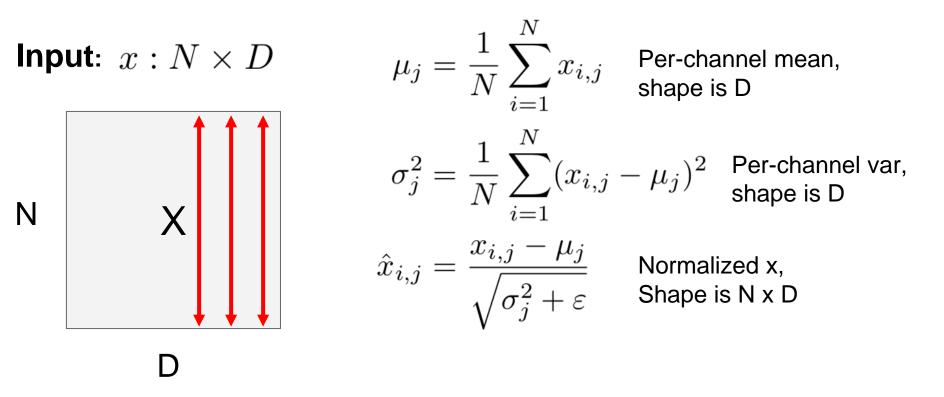
$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 - 6

### **Batch Normalization**

### [loffe and Szegedy, 2015]



#### Fei-Fei Li, Ehsan Adeli, Zane Durante

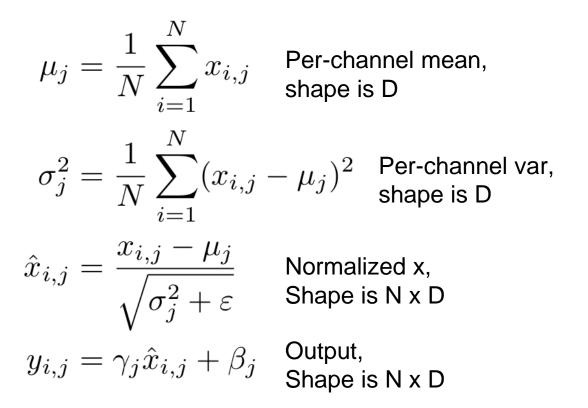
### Lecture 6 - 7

### **Batch Normalization**

Input:  $x : N \times D$ 

Learnable scale and shift parameters:  $\gamma, \beta : D$ 

Learning  $\gamma = \sigma$ ,  $\beta = \mu$  will recover the identity function!



### [loffe and Szegedy, 2015]

### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 - 8

### **Batch Normalization: Test-Time**

Input:  $x : N \times D$ 

Learnable scale and shift parameters:  $\gamma, \beta : D$ 

During testing batchnorm becomes a linear operator! Can be fused with the previous fully-connected or conv layer  $\mu_j=rac{({
m Running})}{
m values}$  seen during training

Per-channel mean, shape is D

 $\sigma_j^2 = \begin{array}{c} ({
m Running}) & {
m average of} \\ {
m values seen during training} \end{array}$ 

Per-channel var, shape is D

 $\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \qquad \begin{array}{c} \mathbf{N} \\ \mathbf{S} \end{array}$ 

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

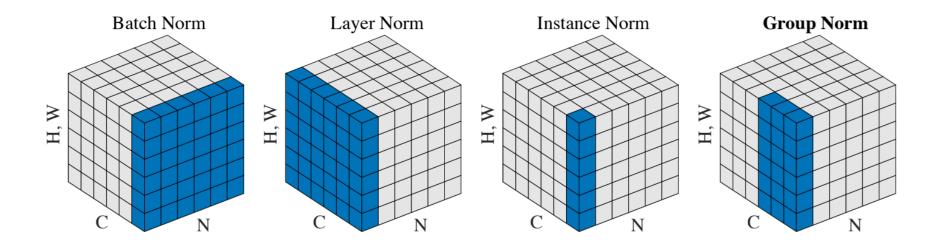
Normalized x, Shape is N x D

Output, Shape is N x D

#### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 - 9

## **Other Normalization Layers**



Wu and He, "Group Normalization", ECCV 2018

### Fei-Fei Li, Ehsan Adeli, Zane Durante

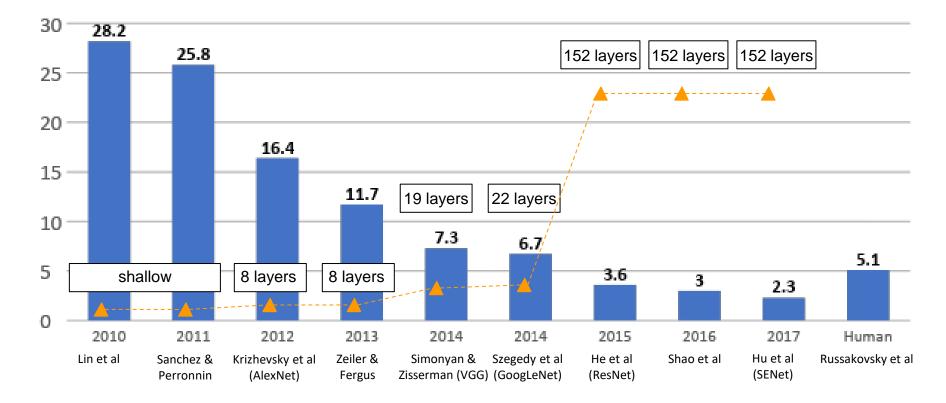
### Lecture 6 - 10

# **Topic 2: CNN Architectures**

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 11

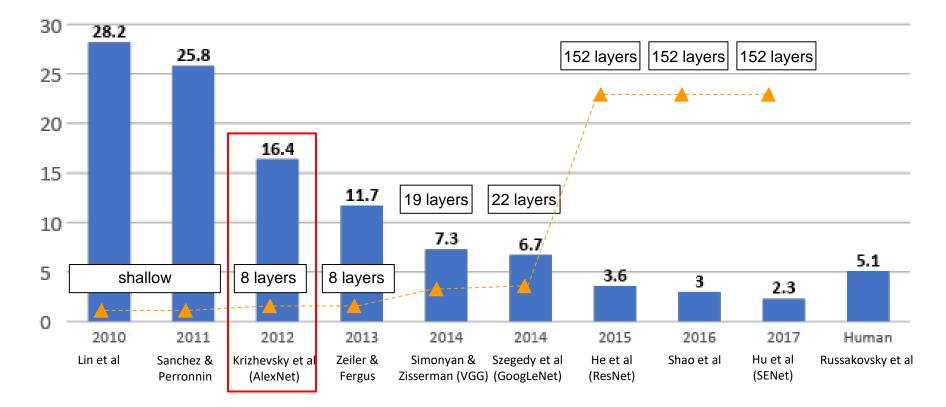
### ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



#### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 - 12

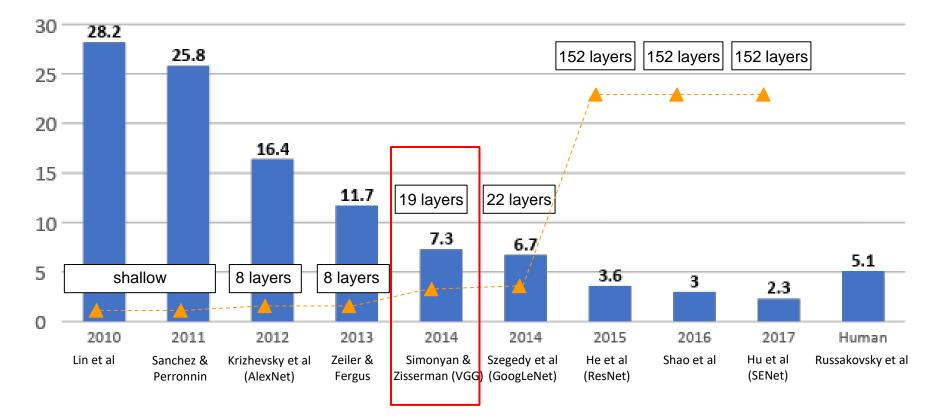
### ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



#### Fei-Fei Li, Ehsan Adeli, Zane Durante

#### Lecture 6 - 13

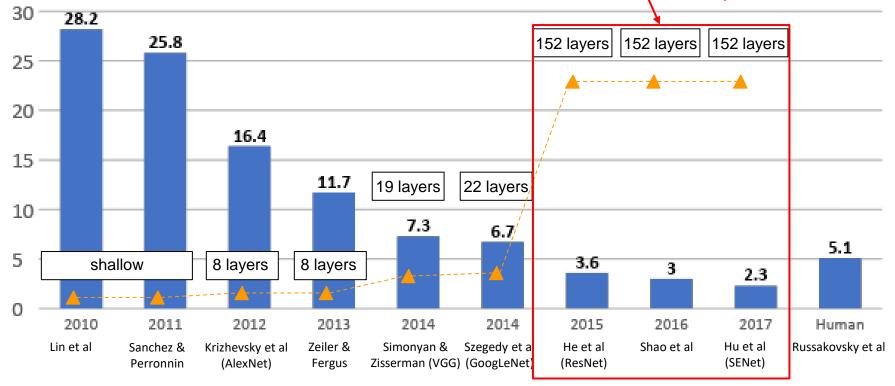
### ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



#### Fei-Fei Li, Ehsan Adeli, Zane Durante

#### Lecture 6 - 14

### ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners "Revolution of Depth"



#### Fei-Fei Li, Ehsan Adeli, Zane Durante

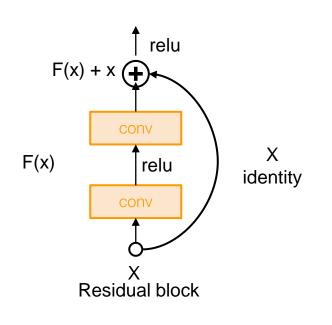
#### Lecture 6 - 15

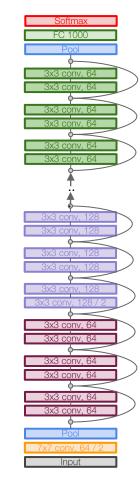
### Case Study: ResNet

[He et al., 2015]

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!





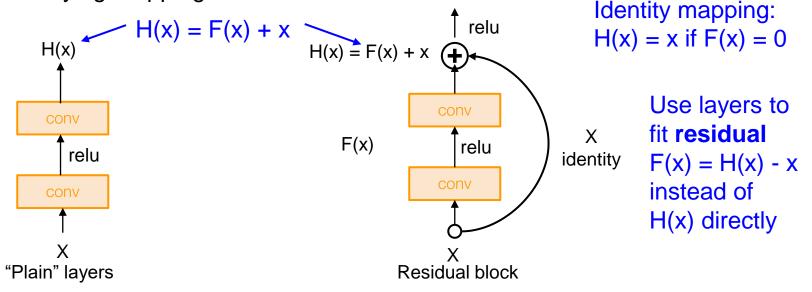
#### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 - 16

### Case Study: ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping



#### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 - 17 April 18, 2024

# **Topic 3: Transfer Learning**

Fei-Fei Li, Ehsan Adeli, Zane Durante

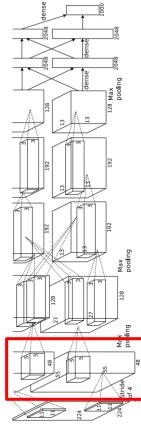
Lecture 6 - 18

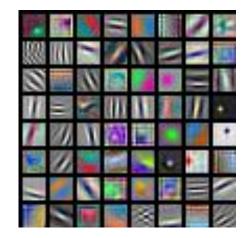
# You don't always need a lot of a data if you want to train/use CNNs!

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 19

<u>April 18, 2024</u>





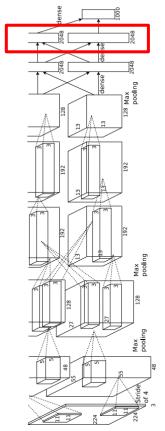
AlexNet: 64 x 3 x 11 x 11

(More on this in Lecture 13)

20

April 18, 2024

### Fei-Fei Li, Ehsan Adeli, Zane Durante



Test image L2 Nearest neighbors in feature space



### (More on this in Lecture 13)

21

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 -

#### 1. Train on Imagenet

| FC-1000  |
|----------|
| FC-4096  |
| FC-4096  |
|          |
| MaxPool  |
| Conv-512 |
| Conv-512 |
|          |
| MaxPool  |
| Conv-512 |
| Conv-512 |
|          |
| MaxPool  |
| Conv-256 |
| Conv-256 |
|          |
| MaxPool  |
| Conv-128 |
| Conv-128 |
| MayDala  |
| MaxPool  |
| Conv-64  |
| Conv-64  |
| Image    |
|          |

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

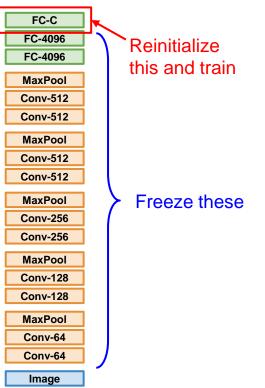
### Fei-Fei Li, Ehsan Adeli, Zane Durante



1. Train on Imagenet

| FC-1000  |
|----------|
| FC-4096  |
| FC-4096  |
| MaxPool  |
| Conv-512 |
| Conv-512 |
| MaxPool  |
| Conv-512 |
| Conv-512 |
| MaxPool  |
| Conv-256 |
| Conv-256 |
| MaxPool  |
| Conv-128 |
| Conv-128 |
| MaxPool  |
| Conv-64  |
| Conv-64  |
| Image    |

2. Small Dataset (C classes)



Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 -

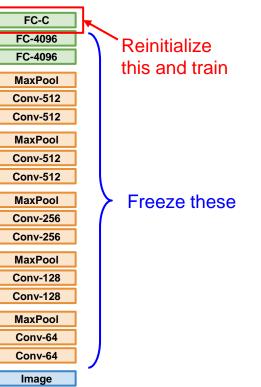


23

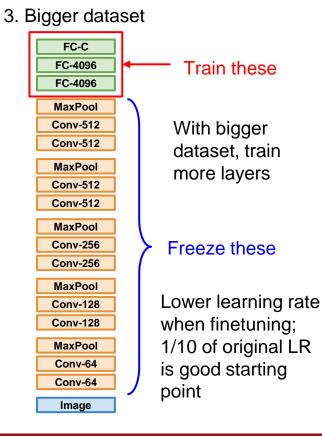
1. Train on Imagenet

| FC-1000  |
|----------|
| FC-4096  |
| FC-4096  |
| MaxPool  |
| Conv-512 |
| Conv-512 |
| MaxPool  |
| Conv-512 |
| Conv-512 |
| MaxPool  |
| Conv-256 |
| Conv-256 |
| MaxPool  |
| Conv-128 |
| Conv-128 |
| MaxPool  |
| Conv-64  |
| Conv-64  |
| Image    |

2. Small Dataset (C classes)



Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014



24

#### Fei-Fei Li, Ehsan Adeli, Zane Durante

#### Lecture 6 -

| FC-1000<br>FC-4096<br>FC-4096<br>MaxPool                                                              |                        | very similar<br>dataset | very different<br>dataset |
|-------------------------------------------------------------------------------------------------------|------------------------|-------------------------|---------------------------|
| Conv-512<br>Conv-512<br>MaxPool<br>Conv-512<br>MaxPool<br>Conv-256<br>Conv-256<br>Conv-256<br>MaxPool | very little data       | ?                       | ?                         |
| Conv-128<br>Conv-128<br>MaxPool<br>Conv-64<br>Image                                                   | quite a lot of<br>data | ?                       | ?                         |

### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 -

25

| FC-1000<br>FC-4096<br>FC-4096<br>MaxPool<br>Conv-512           |                        | very similar<br>dataset                  | very different<br>dataset |
|----------------------------------------------------------------|------------------------|------------------------------------------|---------------------------|
| Conv-512MaxPoolConv-512MaxPoolConv-256Conv-256MaxPoolMaxPool   | very little data       | Use Linear<br>Classifier on<br>top layer | ?                         |
| Conv-128<br>Conv-128<br>MaxPool<br>Conv-64<br>Conv-64<br>Image | quite a lot of<br>data | Finetune a<br>few layers                 | ?                         |

### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 -

26



| FC-1000<br>FC-4096<br>FC-4096<br>MaxPool<br>Cony-512         |                        | very similar<br>dataset                  | very different<br>dataset                                                 |
|--------------------------------------------------------------|------------------------|------------------------------------------|---------------------------------------------------------------------------|
| Conv-512MaxPoolConv-512MaxPoolConv-256Conv-256MaxPoolMaxPool | very little data       | Use Linear<br>Classifier on<br>top layer | You're in<br>trouble Try<br>linear classifier<br>from different<br>stages |
| Conv-128<br>Conv-128<br>MaxPool<br>Conv-64<br>Image          | quite a lot of<br>data | Finetune a<br>few layers                 | Finetune a<br>larger number<br>of layers or start<br>from scratch!        |

### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 -

### Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

Lecture 6 -

28

April 18, 2024

- 1. Find a very large dataset that has similar data, train a big model there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

TensorFlow: <u>https://github.com/tensorflow/models</u> PyTorch: <u>https://github.com/pytorch/vision</u>

### Fei-Fei Li, Ehsan Adeli, Zane Durante

# Topic 4: Activation Functions in NNs

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 29

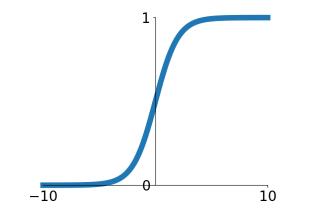
**Standard Optimization Procedure** 

# Mini-batch SGD

Loop:

- 1. Sample a batch of data
- **2. Forward** prop it through the graph (network), get loss
- 3. Backprop to calculate the gradients
- 4. Update the parameters using the gradient

Lecture 6 - 30



Sigmoid

 $\sigma(x) = 1/(1+e^{-x})$ 

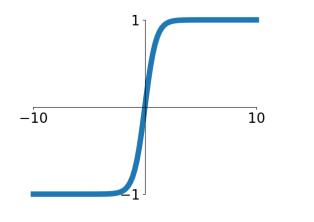
- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

April 18, 2024

Key problem:

Saturated neurons "kill" the gradients

#### Fei-Fei Li, Ehsan Adeli, Zane Durante



tanh(x)

- Squashes numbers to range [-1,1]

- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 32



### Computes f(x) = max(0,x)

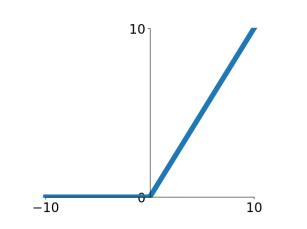
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

### **ReLU** (Rectified Linear Unit)

[Krizhevsky et al., 2012]

April 18, 2024

### Fei-Fei Li, Ehsan Adeli, Zane Durante



### **ReLU** (Rectified Linear Unit)

### Computes f(x) = max(0,x)

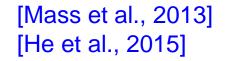
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

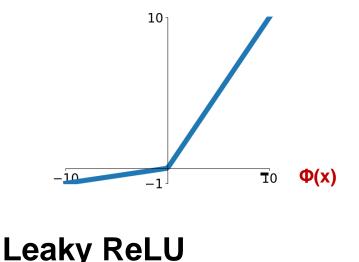
Dead ReLUs when x < 0!

### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 - 34



<u>April 18,</u> 2024



$$f(x) = \max(0.01x, x)$$

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
  will not "die".

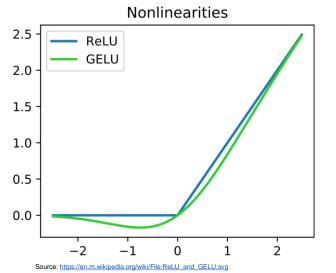
Parametric Rectifier (PReLU)  $f(x) = \max(\alpha x, x)$ backprop into  $\alpha$  (parameter)

#### Fei-Fei Li, Ehsan Adeli, Zane Durante

### [Hendrycks et al., 2016]

April 18, 2024

### **Activation Functions**



**GELU** (Gaussian Error Linear Unit)

Computes 
$$f(x) = x^* \Phi(x)$$

- Very nice behavior around 0
- Smoothness facilitates training in practice
- Higher computational cost than ReLU
  Large negative values can still have

gradient  $\rightarrow 0$ 

### Fei-Fei Li, Ehsan Adeli, Zane Durante

# **TLDR: In practice:**

- Use ReLU. Be careful with your learning rates

Lecture 6 - 37

April 18, 2024

- Try out Leaky ReLU / PReLU / GELU
  - To squeeze out some marginal gains
- Don't use sigmoid or tanh

#### Fei-Fei Li, Ehsan Adeli, Zane Durante

# **Topic 5: Data Preprocessing**

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 38

# TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

 Subtract per-channel mean and
 Divide by per-channel std (almost all modern models) (mean along each channel = 3 numbers)

Lecture 6 - 39

<u>April 18,</u> 2024

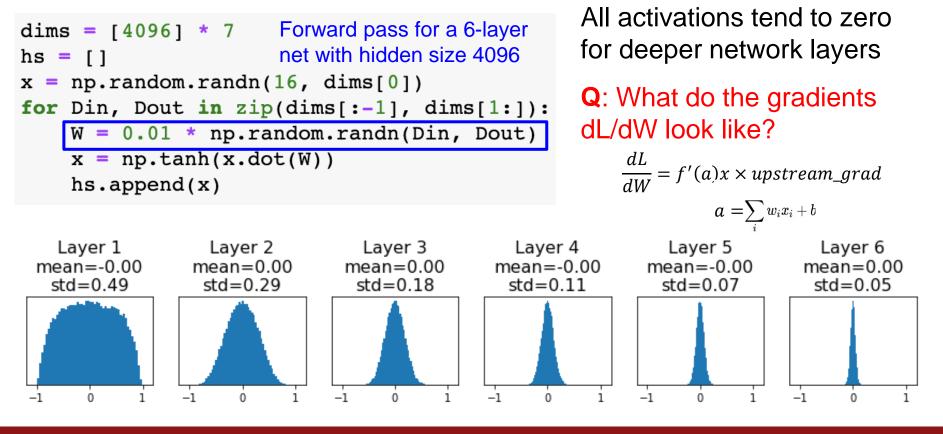
# **Topic 6: Weight Initialization**

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 40

<u>April 18, 2024</u>

# Weight Initialization: Activation statistics

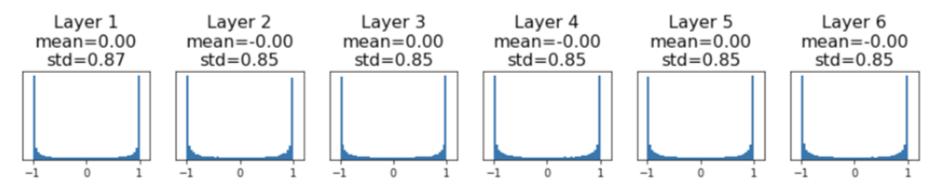


Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 41

# Weight Initialization: Activation statistics





Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 42

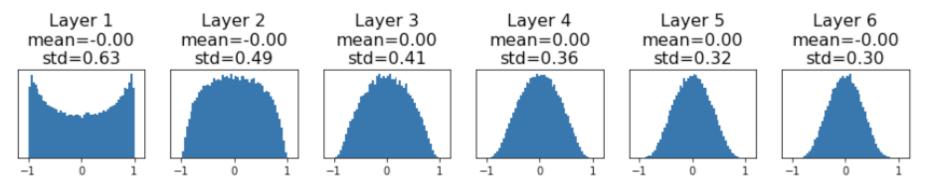
## Weight Initialization: "Xavier" Initialization

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 - 43

## Weight Initialization: "Xavier" Initialization

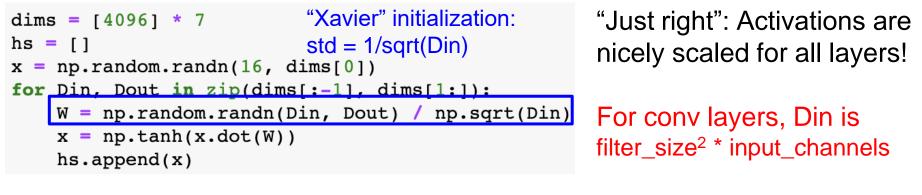


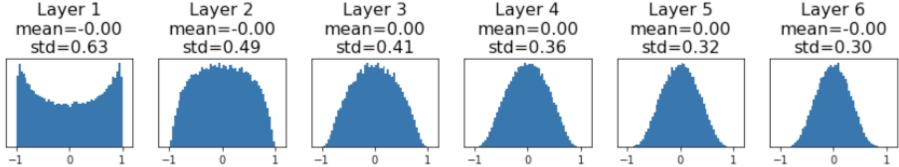
Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

#### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 - 44

# Weight Initialization: "Xavier" Initialization





Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

### Fei-Fei Li, Ehsan Adeli, Zane Durante

## Lecture 465-

## Weight Initialization: What about ReLU?

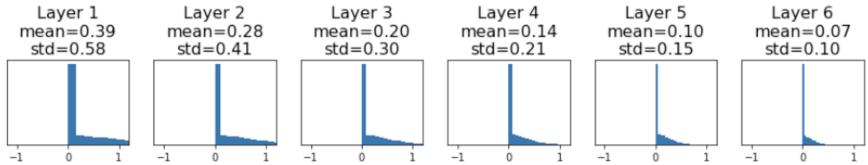
```
dims = [4096] * 7 Change from tanh to ReLU
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.maximum(0, x.dot(W))
    hs.append(x)
```

#### Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 46

## Weight Initialization: What about ReLU?

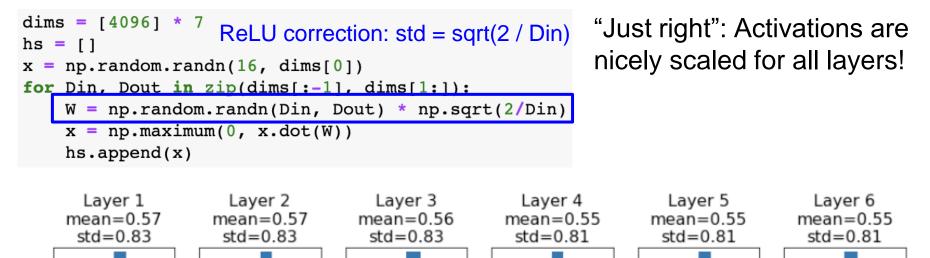


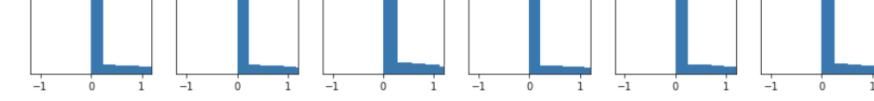


#### Fei-Fei Li, Ehsan Adeli, Zane Durante

#### Lecture 6 - 47

# Weight Initialization: Kaiming / MSRA Initialization





He et al, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", ICCV 2015

### Fei-Fei Li, Ehsan Adeli, Zane Durante

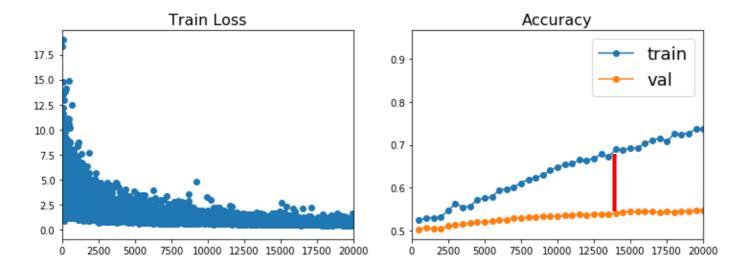
## Lecture 6 - 48

# **Topic 7: Training vs Testing**

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 49

## How to improve single-model performance?



## Regularization

#### Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 50

# Regularization: Add term to loss

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j 
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W)$$

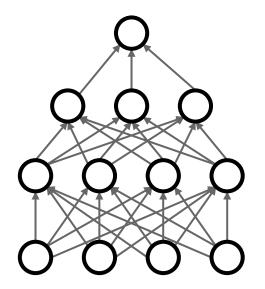
In common use:L2 regularization $R(W) = \sum_k \sum_l W_{k,l}^2$  (Weight decay)L1 regularization $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2) $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$ 

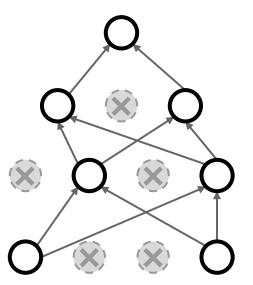
Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 51 April 18, 2024

# **Regularization: Dropout**

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common





April 18, 2024

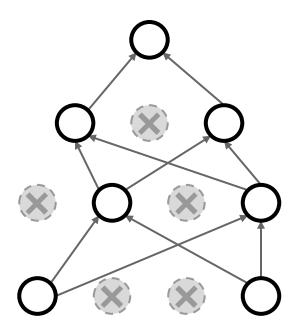
Lecture 6 - 52

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

### Fei-Fei Li, Ehsan Adeli, Zane Durante

# **Regularization: Dropout**

How can this possibly be a good idea?



Forces the network to have a redundant representation; Prevents co-adaptation of features

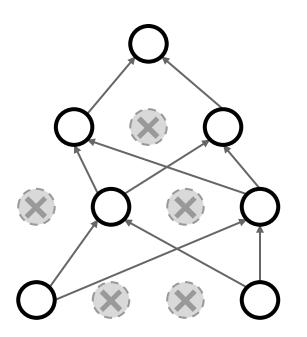


#### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 - 53

# **Regularization: Dropout**

How can this possibly be a good idea?



Another interpretation:

Dropout is training a large **ensemble** of models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has  $2^{4096} \sim 10^{1233}$  possible masks! Only ~  $10^{82}$  atoms in the universe...

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 54 April 18, 2024

# **Dropout: Test time**

```
def predict(X):
```

```
# ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
```

At test time all neurons are active always => We must scale the activations so that for each neuron: <u>output at test time</u> = <u>expected output at training time</u>

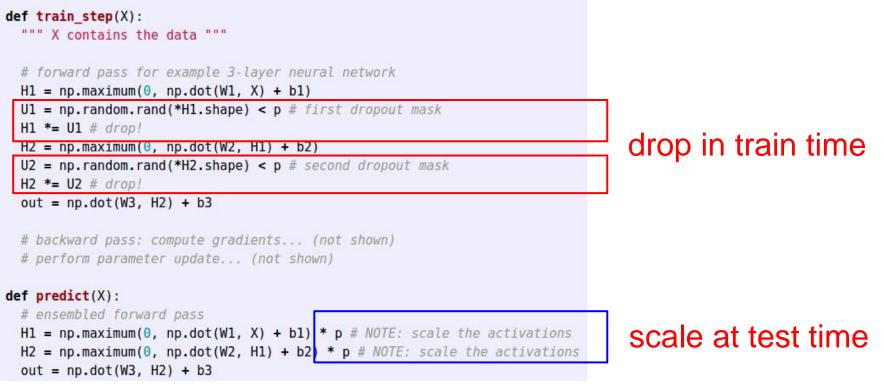
Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 55

<u>April 18, 2024</u>

""" Vanilla Dropout: Not recommended implementation (see notes below) """

**p** = 0.5 # probability of keeping a unit active. higher = less dropout



Lecture 6 -

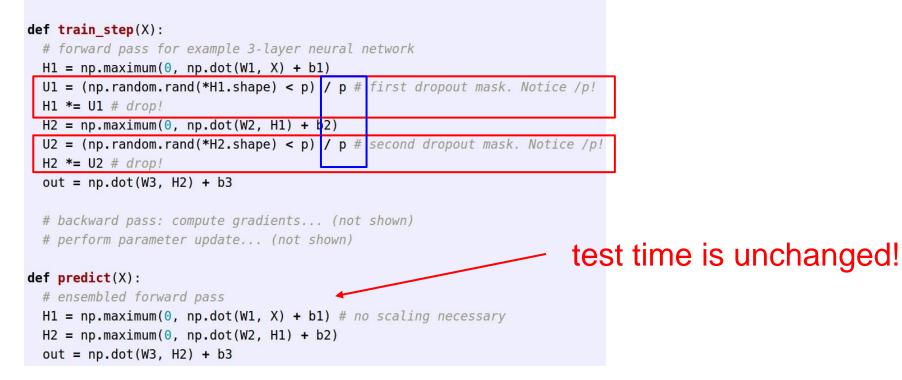
- 56

#### Fei-Fei Li, Ehsan Adeli, Zane Durante

# Dropout Summary

## More common: "Inverted dropout"

p = 0.5 # probability of keeping a unit active. higher = less dropout



#### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 - 57

# Regularization: A common pattern

Training: Add some kind of randomness

$$y = f_W(x, z)$$

**Testing:** Average out randomness (sometimes approximate)

Lecture 6 -

- 58

April 18, 2024

$$y = f(x) = E_z \left[ f(x, z) \right] = \int p(z) f(x, z) dz$$

Fei-Fei Li, Ehsan Adeli, Zane Durante

# Regularization: A common pattern

# **Training**: Add some kind of randomness

$$y = f_W(x, z)$$

**Testing:** Average out randomness (sometimes approximate)

$$y = f(x) = E_z \left[ f(x, z) \right] = \int p(z) f(x, z) dz$$

**Example**: Batch Normalization

## Training:

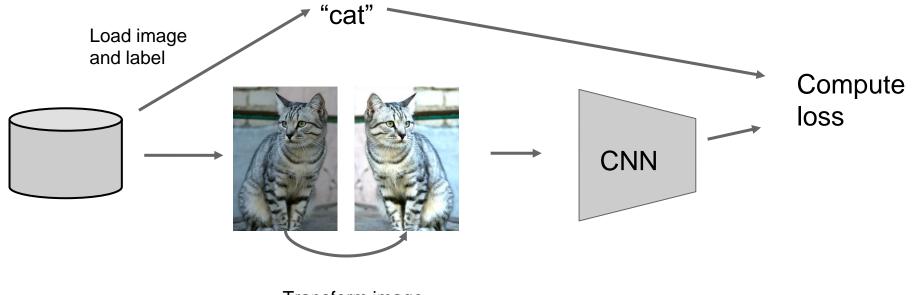
Normalize using stats from random minibatches

**Testing**: Use fixed stats to normalize

### Fei-Fei Li, Ehsan Adeli, Zane Durante

## Lecture 6 - 59 April 18, 2024

# **Regularization: Data Augmentation**



Lecture 6 -

60

April 18, 2024

Transform image

### Fei-Fei Li, Ehsan Adeli, Zane Durante

# Data Augmentation Horizontal Flips





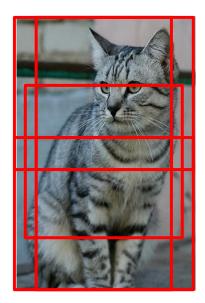
#### Fei-Fei Li, Ehsan Adeli, Zane Durante

## Lecture 6 - 61 April 18, 2024

# Data Augmentation Random crops and scales

**Training**: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch



April 18, 2024

# **Testing**: average a fixed set of crops ResNet:

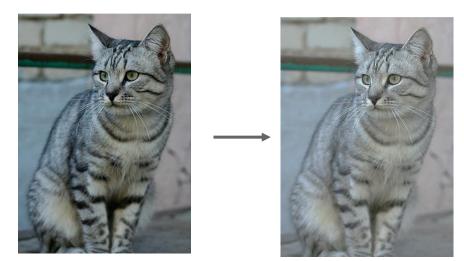
- 1. Resize image at 5 scales: {224, 256, 384, 480, 640}
- 2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

### Fei-Fei Li, Ehsan Adeli, Zane Durante

## Lecture 6 - 62

# Data Augmentation Color Jitter

Simple: Randomize contrast and brightness



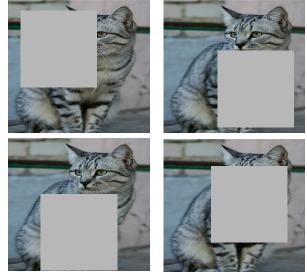
#### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 - 63

Regularization: Cutout Training: Set random image regions to zero Testing: Use full image

## Examples:

Dropout Batch Normalization Data Augmentation Cutout / Random Crop



Works very well for small datasets like CIFAR, less common for large datasets like ImageNet

DeVries and Taylor, "Improved Regularization of Convolutional Neural Networks with Cutout", arXiv 2017

## Fei-Fei Li, Ehsan Adeli, Zane Durante

## Lecture 6 - 64

<u>April 18, 2024</u>

# **Topic 8: Hyperparameter Selection**

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 - 65

# **Choosing Hyperparameters**

Step 1: Check initial lossStep 2: Overfit a small sampleStep 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, turn on small weight decay, find a learning rate that makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

Fei-Fei Li, Ehsan Adeli, Zane Durante

Lecture 6 -

April 18, 2024

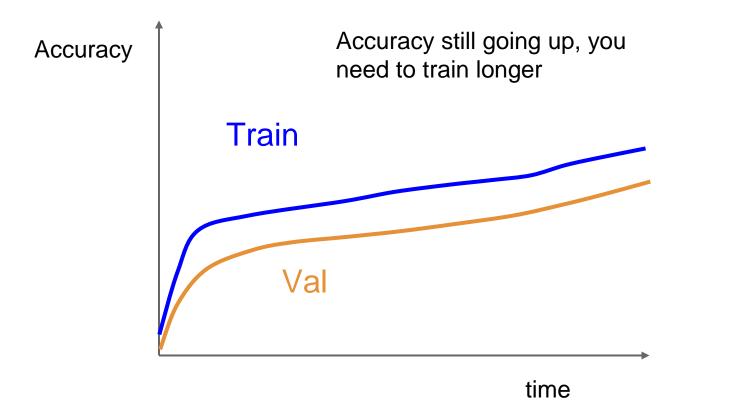
66

# **Choosing Hyperparameters**

- Step 1: Check initial loss
- Step 2: Overfit a small sample
- Step 3: Find LR that makes loss go down
- Step 4: Coarse grid, train for ~1-5 epochs
- Step 5: Refine grid, train longer
- Step 6: Look at loss and accuracy curves (next slides)

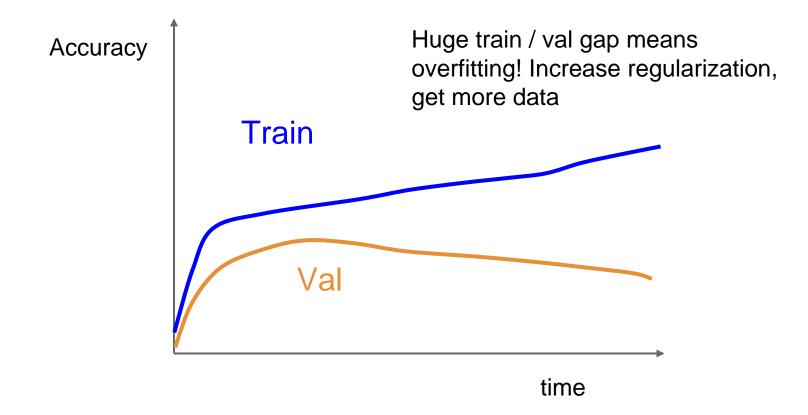
#### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 -



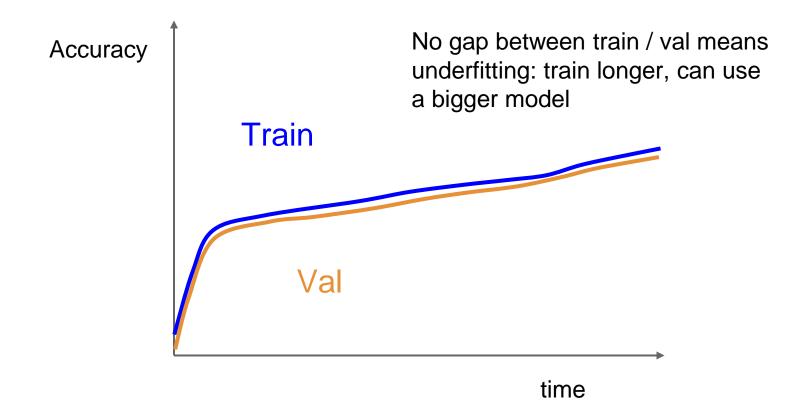
#### Fei-Fei Li, Ehsan Adeli, Zane Durante

### Lecture 6 -



#### Fei-Fei Li, Ehsan Adeli, Zane Durante

## Lecture 6 69



#### Fei-Fei Li, Ehsan Adeli, Zane Durante

## Lecture 6 70

# **Choosing Hyperparameters**

- Step 1: Check initial loss
- Step 2: Overfit a small sample
- Step 3: Find LR that makes loss go down
- Step 4: Coarse grid, train for ~1-5 epochs
- Step 5: Refine grid, train longer
- Step 6: Look at loss and accuracy curves
- Step 7: GOTO step 5

#### Fei-Fei Li, Ehsan Adeli, Zane Durante

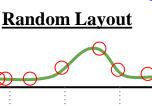
### Lecture 671

# Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

**Grid Layout** 

**Important Parameter** 





April 18, 2024

Fei-Fei Li, Ehsan Adeli, Zane Durante

Unimportant Parameter

Illustration of Bergstra et al., 2012 by Shayne Longpre, copyright CS231n 2017

### Lecture 672

Important Parameter

# Summary

We reviewed 8 topics at a high level:

- 1. Layers in CNNs
- 2. CNN Architectures (ResNets)
- 3. Transfer Learning (train on ImageNet first)
- 4. Activation Functions in NNs (ReLU, GELU, etc.)

Lecture 763-

# Summary

We reviewed 8 topics at a high level:

- 5. Data Preprocessing (subtract mean, divide std)
- 6. Weight Initialization (Xavier vs Kaiming)
- 7. Training vs Testing (Regularization strategies)
- 8. Hyperparameter (Checking Losses + Random Search)

Lecture 764-

<u>April 18, 2024</u>