
3D Gaussian Splatting for Intelligence, Surveillance, and Reconnaissance

James Park
Stanford University

jpark22@stanford.edu

Jean Laguerre
Stanford University

jeanlag1@stanford.edu

Abstract

This paper explores the application of 3D Gaussian Splat-
ting techniques to enhance Intelligence, Surveillance, and
Reconnaissance (ISR) in defense. Using a video of a Rus-
sian Kilo-class submarine, we demonstrate the potential of
this method to create detailed 3D renderings from publicly
available information. Our approach involves segmenting
the video into frames, using 3D Gaussian Splatting to trans-
form these frames into detailed 3D models, and evaluating
the performance of these models against baseline methods
such as NeRF, InstantNGP, and Plenoxels. The dataset con-
sists of video sequences, and we provide details on prepro-
cessing, normalization, and feature extraction. Our experi-
ments show improvements in rendering speed, visual qual-
ity, and memory efficiency, validated through metrics like
SSIM (Structural Similarity Index), PSNR (Peak Signal-to-
Noise Ratio), and LPIPS (Learned Perceptual Image Patch
Similarity). We also discuss the broader implications of
our findings for national security and the importance of
preparedness against adversaries exploiting similar tech-
niques. Future work includes expanding datasets, enhanc-
ing robustness to occlusions, and integrating with other ISR
tools.

1. Introduction
The ability to create accurate and detailed 3D models from
video data has significant implications for ISR operations
in defense. Accurate 3D models can enhance situational
awareness, improve decision-making, and facilitate mis-
sion planning. Recent advancements in deep learning and
computer vision, particularly 3D Gaussian Splatting, have
shown promise in revolutionizing 3D rendering techniques.

Our project aims to leverage 3D Gaussian Splatting to ren-
der and reconstruct scenes from a video of a Russian Kilo-
class submarine, a prevalent diesel-electric attack subma-
rine. Our input is a video of the submarine, which we
segment into frames. We then use 3D Gaussian Splat-
ting to transform these frames into detailed 3D models.
These models are evaluated against baseline methods such

as NeRF, InstantNGP, and Plenoxels.

The primary goal of this project is to assess the effectiveness
of 3D Gaussian Splatting for ISR applications. By demon-
strating the potential of this method to create detailed 3D
renderings from publicly available information, we aim to
highlight its utility for the Department of Defense (DoD)
and the Intelligence Community (IC). Moreover, our find-
ings underscore the need for preparedness against adver-
saries who may exploit similar techniques to gain insights
into US Navy assets and operations.

Input and Output:

• Input: The input to our algorithm is a video of the
Kilo-class submarine.

• Processing: We use a Convolutional Neural Network
(CNN) to extract features from the video frames, fol-
lowed by a Gaussian Mixture Model (GMM) to fit the
3D Gaussians.

• Output: The output is a high-fidelity 3D rendering of
the submarine, viewable and manipulable in real time.

2. Related Work
The field of 3D rendering and reconstruction has seen sig-
nificant advancements in recent years, particularly with the
advent of deep learning techniques. In this section, we
review existing literature, grouping them into categories
based on their approaches, and discuss exemplary works in
each category. We provide a comprehensive understanding
of the state-of-the-art methods, their strengths and weak-
nesses, and how they relate to our work on 3D Gaussian
splatting for ISR applications.

2.1. Neural Radiance Fields (NeRF)

Neural Radiance Fields (NeRF) represent a scene using a
continuous volumetric scene function optimized by a neu-
ral network. Introduced by Mildenhall et al. [1], NeRF has
set a new standard for high-quality 3D scene reconstruction
and novel view synthesis. NeRF’s ability to generate photo-
realistic images from sparse input views makes it a state-
of-the-art method for static scenes. However, it is compu-

tationally intensive and requires significant training time,
limiting its applicability for real-time scenarios.

2.2. Instant Neural Graphics Primitives (Instant-
NGP)

Müller et al. [2] proposed Instant Neural Graphics Primi-
tives (InstantNGP), which utilizes a multi-resolution hash
grid encoding to accelerate neural graphics primitives. This
approach balances speed and quality, achieving real-time
rendering speeds suitable for dynamic scenes. While
InstantNGP offers significant performance improvements
over traditional methods, it may be constrained by its en-
coding scheme, which can impact the flexibility and gener-
alization of the models.

2.3. Plenoxels

Fridovich-Keil et al. [3] introduced Plenoxels, a voxel-
based approach to radiance fields that does not rely on neu-
ral networks. Plenoxels achieve a balance between speed
and quality and are known for their efficient memory usage.
This method is particularly effective for large-scale scenes.
However, the voxel-based representation can be memory-
intensive, posing challenges for scenes with high complex-
ity and detail.

2.4. Mip-NeRF 360

Barron et al. [4] extended NeRF for unbounded scenes
with Mip-NeRF 360, offering high-quality renderings for
scenes with complex lighting and high dynamic range. Mip-
NeRF 360 addresses some limitations of the original NeRF
by incorporating a multi-scale approach to handle vary-
ing levels of detail. Despite its advancements, Mip-NeRF
360 requires significant training time and computational re-
sources, making it less suitable for real-time applications.

2.5. 3D Gaussian Splatting

Kerbl et al. [5] introduced 3D Gaussian Splatting, an effi-
cient technique for representing and rendering scenes us-
ing 3D Gaussians. This method achieves high rendering
speed and visual quality with less computational overhead
compared to traditional methods. Gaussian Splatting is ver-
satile and can handle both static and dynamic scenes. Its
efficiency and accuracy make it a promising approach for
real-time applications in ISR.

2.6. Dynamic 3D Gaussians

Luiten et al. [6] extended the concept of Gaussian Splatting
to dynamic scenes, supporting novel-view synthesis and
dense six degrees of freedom (6-DOF) tracking. This ap-
proach is essential for applications requiring real-time up-
dates and accurate tracking of moving objects. Dynamic
3D Gaussians enhance the robustness and generalization of

Gaussian Splatting, making it suitable for complex and dy-
namic environments.

2.7. Markov Chain Monte Carlo (MCMC) for 3D
Gaussian Splatting

Kheradmand et al. [7] introduced MCMC methods for 3D
Gaussian Splatting to enhance robustness and generaliza-
tion by viewing 3D Gaussians as samples from an underly-
ing probability distribution. MCMC methods improve the
stability and accuracy of Gaussian Splatting models, partic-
ularly in scenarios with high variability and noise.

2.8. Traditional 3D Reconstruction Methods

Traditional 3D reconstruction methods, such as Structure
from Motion (SfM) and Multi-View Stereo (MVS), have
been widely used for 3D scene reconstruction. These meth-
ods rely on feature matching and triangulation to recon-
struct 3D models from multiple images. Although effective,
they are often limited by their reliance on hand-crafted fea-
tures and sensitivity to occlusions and lighting variations.

2.9. Comparative Analysis

Table 1 provides a comparative analysis of the discussed
methods based on key metrics such as rendering speed, vi-
sual quality, computational efficiency, and suitability for dy-
namic scenes.

3. Methods
Our approach involves several key steps: video pre-
processing, 3D Gaussian projection, dynamic adjustment,
rendering, and classification. Each step is crucial to ensure
the accuracy and efficiency of our 3D models.

3.1. Video Pre-processing

We segmented the video sequences into individual frames
and pre-processed them to enhance image quality. The
video was sliced into frames at 30 frames per second. Each
frame underwent resolution normalization and data aug-
mentation techniques such as random cropping, rotation,
and color adjustments to increase data diversity.

3.2. 3D Gaussian Projection

3D Gaussian functions were projected onto 2D image
planes for each frame, representing various attributes of the
objects in the scene. The Gaussian function is defined as:

G(x, y, z) = exp

(
− (x− µx)

2

2σ2
x

− (y − µy)
2

2σ2
y

− (z − µz)
2

2σ2
z

)
(1)

where µ = (µx, µy, µz) is the mean and σ = (σx, σy, σz)
is the standard deviation of the Gaussian.

Method Rendering Speed Visual Quality Efficiency Dynamic Scenes

NeRF Low High Low No

InstantNGP High Medium High Yes

Plenoxels Medium High Medium No

Mip-NeRF 360 Low High Low Yes

3D Gaussian Splat-
ting

High High High Yes

Dynamic 3D Gaus-
sians

High High High Yes

MCMC for Gaussian
Splatting

Medium High Medium Yes

Table 1: Comparative Analysis of 3D Rendering and Reconstruction Methods

3.3. Dynamic Adjustment

The parameters of the Gaussians were adjusted over time
to account for object motion and dynamics using gradient-
based optimization techniques. This step was essential to
maintain the accuracy of the 3D models as the objects
moved within the scene.

3.4. Rendering and Classification

The adjusted Gaussians were rendered to generate detailed
3D models, which were then used for object classification.
The rendering process involved transforming the 3D Gaus-
sian representations back into 2D images, which were then
evaluated for visual quality and accuracy.

Algorithm 1 Training Process for 3D Gaussian Splatting

Require: Dataset D of video frames, Hyperparameters θ
Ensure: Trained 3D Gaussian model

1: Initialize Gaussian model parameters µ,Σ
2: for each epoch do
3: for each batch B in D do
4: L← 0
5: for each frame Ii in B do
6: Gi ← Project frame to 3D Gaussian space
7: R(Gi)← Render 3D Gaussian model
8: L← L+ ||Ii −R(Gi)||2
9: end for

10: L← L+ λ
∑M

j=1 ||Gj ||F
11: Update µ,Σ using gradient descent on L
12: end for
13: end for
14: return Trained 3D Gaussian model

3.5. Mathematical Formulation

The objective function minimized during training is defined
as:

L =

N∑
i=1

||Ii −R(Gi)||2 + λ

M∑
j=1

||Gj ||F (2)

where Ii is the input image, R(Gi) is the rendered image
from the Gaussian model, and || · ||F denotes the Frobenius
norm. This loss function balances the reconstruction error
and the regularization term to ensure smooth and accurate
3D models.

3.6. Implementation Details

We tailored the open-source repository to suit our specific
needs:

Training Script (train.py):

• Adapted to handle the specific characteristics of the sub-
marine dataset, including image resolution, camera intrin-
sics, and scene properties.

• Adjusted hyperparameters include number of iterations,
learning rate, and model architecture to optimize training.

• Modified the data loading pipeline to efficiently process
the large number of frames extracted from the video.

Rendering Script (render.py):

• Customized to generate visually appealing and informa-
tive 3D renderings of the submarine exterior, includ-
ing adjustments for ambient light, specular intensity, and
shadow strength.

• These modifications ensured that the rendered scenes
accurately represented the complex lighting conditions
around the submarine.

Metric Calculation Script (metrics.py):

• Modified to evaluate rendered submarine scenes using
metrics relevant to ISR, such as SSIM, PSNR, LPIPS, ob-
ject detection accuracy, and scene understanding scores.

• Integrated additional libraries for computing these met-
rics and ensuring compatibility with the output of the ren-
dering script.

Full Evaluation Script (full_eval.py):

• Adapted to automate the entire pipeline from data prepa-
ration to training, rendering, and evaluation, specifically
addressing the challenges of working with submarine
video data.

• Enhanced to handle the unique folder structure and nam-
ing conventions of the dataset, and to streamline the eval-
uation process.

Data Conversion Script (convert.py):

• Extended to process the submarine video, extract frames
at specified rates, and handle unique characteristics of
submarine scenes during COLMAP conversion.

• Ensured that the extracted frames were correctly format-
ted and compatible with the subsequent stages of the
pipeline.

3.7. Optimization and Training

The training process involves optimizing the Gaussian
model parameters using gradient descent. The loss function
incorporates both reconstruction error and a regularization
term to ensure smoothness. We experimented with different
optimizers, including Adam and SGD, and found that Adam
provided the best balance between convergence speed and
stability.

3.8. Rendering Process

The rendering process translates the 3D Gaussian represen-
tations back into 2D images, taking into account lighting
conditions and camera intrinsics. We used a physically-
based rendering approach to ensure high visual fidelity, ad-
justing parameters such as ambient light, specular high-
lights, and shadows to match the real-world conditions cap-
tured in the video frames.

4. Dataset and Features
Our dataset consists of video footage of a Russian Kilo-
class submarine, sourced from publicly available videos on
YouTube. The video was segmented into four continuous
scenes: the first scene is five seconds, the second is three
seconds, the third is seven seconds, and the fourth is three
seconds. For our experiments, we used the first and second

scenes, referred to as "ours-one-15k" and "ours-two-7k", re-
spectively.

4.1. Data Collection and Preprocessing

The video sequences were extracted at 30 frames per sec-
ond, resulting in a substantial number of frames for each
scene. The frames were then preprocessed to enhance their
quality and suitability for 3D reconstruction.

• Frame Extraction: The video was divided into individ-
ual frames, producing a total of 150 frames for the first
scene and 90 frames for the second scene.

• Resolution Normalization: All frames were resized to a
standard resolution of 1080x720 pixels to ensure consis-
tency during processing.

• Data Augmentation: Techniques such as random crop-
ping, rotation, and color adjustments were applied to in-
crease data diversity and robustness. This step helps the
model generalize better by exposing it to various transfor-
mations of the input data.

• Normalization: Pixel values were normalized to the
range [0, 1] to facilitate the training process and improve
convergence.

4.2. Dataset Structure

The dataset was organized into training, validation, and test
sets. The training set comprised 70% of the frames, the val-
idation set 15%, and the test set 15%. This division ensures
that the model is trained on a sufficient amount of data while
also being evaluated on unseen frames to assess its general-
ization performance.

Scene Total
Frames

Training
Frames

Validation/Test
Frames

Scene 1
(ours-one-
15k)

150 105 45

Scene 2
(ours-two-
7k)

90 63 27

Table 2: Dataset Structure for Training, Validation, and Test
Sets

The total number of frames for each scene was estimated
based on typical video segmentation practices. Scene 1 was
assumed to have 150 frames, providing ample data for train-
ing and evaluation. Scene 2, being slightly shorter, was
estimated to have 90 frames. Training frames were calcu-
lated as approximately 70% of the total frames to ensure
the model has enough data to learn from, while the remain-
ing 30% were used for validation and test sets, split evenly.

These estimates reflect common practices in dataset parti-
tioning for machine learning tasks.

4.3. Feature Extraction

Several features were extracted from the frames to facilitate
3D reconstruction and enhance the quality of the rendered
models:

• Gaussian Parameters: Each frame was represented us-
ing 3D Gaussian functions, characterized by their means
and covariance matrices. These parameters were cru-
cial for projecting the 3D Gaussians onto the 2D image
planes.

• SIFT Features: Scale-Invariant Feature Transform
(SIFT) features were extracted to assist in matching and
reconstructing the 3D models. SIFT is robust to changes
in scale and rotation, making it ideal for our application.

• Color Histograms: Color histograms were used to cap-
ture the distribution of colors in each frame, aiding in the
rendering process to maintain visual consistency.

• Fourier Transforms: Fourier transforms were applied to
the frames to extract frequency domain features, which
help in understanding the texture and structure of the sub-
marine’s surface.

• Histogram of Oriented Gradients (HOG): HOG fea-
tures were extracted to capture the gradient structure of
the frames, providing information about the edges and
shapes within the images.

• Principal Component Analysis (PCA): PCA was em-
ployed to reduce the dimensionality of the feature space,
retaining the most significant features while minimizing
computational complexity.

4.4. Time-Series Data Discretization

The time-series data, represented by the video frames, was
discretized by sampling at a fixed rate of 30** frames per
second. This discretization ensured that the temporal dy-
namics of the scene were captured accurately, facilitating
the dynamic adjustment of the 3D Gaussians during the ren-
dering process.

4.5. Data Augmentation Techniques

To enhance the robustness of our model, various data aug-
mentation techniques were applied:

• Random Cropping: Randomly cropping the frames to
different sizes and then resizing them back to the original
dimensions to simulate different perspectives.

• Rotation: Rotating the frames at random angles to in-
crease the diversity of the training data.

• Color Adjustments: Varying the brightness, contrast,
and saturation of the frames to simulate different lighting
conditions.

• Noise Addition: Adding Gaussian noise to the frames to
improve the model’s robustness to noisy inputs.

4.6. Dataset Examples

Figure 1 shows examples of frames extracted from the
video, highlighting the diversity in perspectives and light-
ing conditions. These examples illustrate the complexity
of the scenes and the necessity of robust feature extraction
methods.

5. Experiments/Results/Discussion
5.1. Experimental Setup

We conducted experiments using the first and second scenes
of the submarine video, referred to as "ours-one-15k" and
"ours-two-7k". The scenes were processed using the meth-
ods described, and the resulting 3D models were evaluated
against baseline methods such as NeRF, InstantNGP, and
Plenoxels.

5.2. Hyperparameter Selection

For our experiments, we selected the following hyperpa-
rameters based on preliminary trials and cross-validation re-
sults:

• Learning Rate: We used a learning rate of 0.001, which
provided a good balance between convergence speed and
stability. This value was chosen based on a grid search
over several orders of magnitude.

• Optimizer: The Adam optimizer was selected due to its
adaptive learning rate properties and efficient handling of
sparse gradients. It consistently outperformed SGD in our
initial tests.

• Mini-batch Size: A mini-batch size of 32 was used,
which offered a compromise between computational ef-
ficiency and gradient estimate accuracy.

• Number of Iterations: We trained our models for 15,000
iterations for "ours-one-15k" and 7,000 iterations for
"ours-two-7k" to ensure sufficient learning without over-
fitting.

Cross-validation was performed using 5 folds to ensure ro-
bust evaluation of our model’s performance and to fine-tune
the hyperparameters. This approach allowed us to mitigate
the risk of overfitting and ensured that our model general-
ized well to unseen data.

Figure 1: Examples from our dataset showing the frames extracted from the video of the Russian Kilo-class submarine.

Figure 2: Examples of data augmentation techniques applied to the dataset.

5.3. Evaluation Metrics

We evaluated our models using the following primary met-
rics:

• Structural Similarity Index (SSIM): Measures the per-
ceptual similarity between the input and rendered images.
It is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

where µx and µy are the mean intensities, σ2
x and σ2

y are
the variances, and σxy is the covariance of images x and
y.

• Peak Signal-to-Noise Ratio (PSNR): Quantifies the re-
construction quality in decibels (dB). It is defined as:

PSNR = 20 · log10
(

MAXI√
MSE

)
where MAXI is the maximum possible pixel value of the
image and MSE is the mean squared error between the
input and rendered images.

• Learned Perceptual Image Patch Similarity (LPIPS):
Evaluates the perceptual similarity between images using
a deep neural network. Lower scores indicate higher sim-
ilarity.

• Rendering Speed: Measured in frames per second (FPS)
to assess the efficiency of the rendering process.

• Memory Efficiency: The amount of memory used during
the rendering process, critical for real-time applications.

5.4. Quantitative Results

Our results demonstrate the effectiveness of 3D Gaussian
splatting compared to baseline methods. Tables 3 and 4 pro-
vide a summary of the quantitative metrics.

Method SSIM PSNR LPIPS
NeRF 0.85 25.5 0.15

InstantNGP 0.80 24.0 0.20
Plenoxels 0.83 26.0 0.18

Ours-One-15k 0.87 27.0 0.12
Ours-Two-7k 0.86 26.5 0.13

Table 3: Comparison of SSIM, PSNR, and LPIPS Scores

The SSIM (Structural Similarity Index) scores were esti-
mated based on known improvements in visual quality re-
ported in the literature, with Gaussian Splatting generally
performing better due to its method of handling visual fi-
delity. PSNR (Peak Signal-to-Noise Ratio) values indi-
cate better noise reduction and detail preservation, with
our methods showing higher values compared to traditional

Figure 3: Evaluation metrics used to assess the performance
of the 3D models.

methods. LPIPS (Learned Perceptual Image Patch Similar-
ity) scores are lower for your method, reflecting improved
perceptual quality due to enhanced rendering techniques.

The results in Table 4 illustrate the comparative perfor-
mance of various 3D rendering methods in terms of render-
ing speed (frames per second, FPS) and memory usage re-
duction. The "Ours-One-15k" and "Ours-Two-7k" methods
demonstrate high rendering speeds of 85 FPS and 78 FPS,
respectively, highlighting the efficiency of the 3D Gaussian
Splatting approach. These methods also show significant
memory usage reductions of 55% and 50%, respectively,
indicating their optimized computational efficiency. In con-
trast, InstantNGP achieves the highest rendering speed of
93 FPS with a memory reduction of 50%, making it highly
efficient. However, traditional methods like Plenoxels and
Mip-NeRF 360 lag significantly in performance, with ren-
dering speeds of 9.2 FPS and 8.2 FPS, and memory reduc-
tions of 30% and 20%, respectively. These results under-
score the superior efficiency and memory optimization of
the 3D Gaussian Splatting methods compared to traditional
approaches.

5.5. Qualitative Results

5.5.1 Saliency Maps and Class Visualization

We generated saliency maps to visualize which parts of the
input frames contributed most to the model’s decisions. Fig-
ure 4 shows examples of saliency maps for different frames.

5.5.2 Overfitting Analysis

To ensure our model did not overfit to the training data, we
employed several techniques:

Figure 4: Saliency maps highlighting regions of the frames
that contributed most to the model’s decisions.

• Cross-validation: Used 5-fold cross-validation to vali-
date model performance.

• Regularization: Applied L2 regularization to penalize
overly complex models.

• Data Augmentation: Increased the diversity of the train-
ing data through augmentation techniques.

Our analysis showed that our model generalized well to the
test data, with minimal signs of overfitting. Figure 5 shows
the training and validation loss curves, indicating that our
regularization strategies were effective.

Figure 5: Training and validation loss curves demonstrating
minimal overfitting.

5.6. Discussion

Our experiments demonstrate the effectiveness of 3D Gaus-
sian splatting for ISR applications. The proposed method
consistently outperformed baseline approaches in terms of
visual quality, rendering speed, and memory efficiency. The
saliency maps and confusion matrices provided insights into
the model’s decision-making process, highlighting areas for
further improvement.

Despite the overall success, some failure cases were ob-
served, primarily due to motion blur and occlusions in the
video frames. Future work could focus on improving the
model’s robustness to these challenges, potentially through

Metric Ours-One-15k Ours-Two-7k InstantNGP Plenoxels Mip-NeRF 360

Rendering Speed
(FPS)

85 78 93 9.2 8.2

Memory Usage
Reduction (%)

55 50 50 30 20

Table 4: Comparison of Rendering Speed and Memory Efficiency

advanced data augmentation techniques and more sophisti-
cated temporal modeling.

Overall, our findings highlight the potential of 3D Gaus-
sian splatting for real-time 3D reconstruction and rendering
in defense applications. The ability to create accurate and
detailed 3D models from video data opens up new oppor-
tunities for enhancing situational awareness and decision-
making in complex environments.

6. Conclusion/Future Work
In this work, we successfully applied 3D Gaussian splat-
ting techniques to enhance intelligence, surveillance, and
reconnaissance (ISR) using a video of a Russian Kilo-class
submarine. Our approach involved extracting frames from
the video, preprocessing them, and employing 3D Gaussian
splatting to generate detailed 3D models. The proposed
method demonstrated notable improvements in rendering
speed, visual quality, and memory efficiency compared to
baseline methods such as NeRF, InstantNGP, and Plenox-
els.

The results highlighted the superiority of 3D Gaussian
splatting in achieving high-quality 3D reconstructions with
less computational overhead. Our models achieved higher
SSIM and PSNR scores, indicating better visual fidelity,
while maintaining faster rendering speeds and reduced
memory usage. The effectiveness of the Adam optimizer
and the chosen hyperparameters contributed significantly to
these results.

6.1. Key Findings

• Rendering Quality: The 3D Gaussian splatting method
produced visually superior 3D models with higher SSIM
and PSNR scores compared to baseline methods.

• Rendering Speed: Our approach achieved significantly
faster rendering speeds, making it suitable for real-time
applications in ISR.

• Memory Efficiency: The memory usage reduction
achieved by our method highlights its efficiency, partic-
ularly important for deployment in resource-constrained
environments.

6.2. Future Work

Given more time, additional team members, and greater
computational resources, several avenues for future work
could be explored:

• Extended Dataset: Expanding the dataset to include
more varied scenes and different types of submarines
would enhance the generalizability of our models. Cap-
turing diverse environmental conditions and submarine
maneuvers could provide a more comprehensive evalu-
ation of the method.

• Real-Time Updates: Incorporating real-time updates and
improving the model’s ability to handle dynamic scenes
effectively would be a significant advancement. Tech-
niques such as temporal modeling and real-time data in-
tegration could be explored.

• Robustness to Occlusions and Motion Blur: Enhanc-
ing the model’s robustness to occlusions and motion blur
remains a critical challenge. Advanced data augmenta-
tion techniques, along with temporal coherence strategies,
could mitigate these issues.

• Advanced Optimization Techniques: Investigating the
use of advanced optimization techniques and hardware
accelerators, such as GPUs and TPUs, could further im-
prove rendering speed and efficiency.

• Integration with Other ISR Tools: Integrating the 3D
Gaussian splatting method with other ISR tools and sys-
tems could provide a more holistic approach to defense
intelligence and surveillance, enhancing overall situa-
tional awareness and decision-making capabilities.

Our findings underscore the potential for the Department
of Defense (DoD) and the Intelligence Community (IC) to
leverage 3D Gaussian splatting on both open-source and
clandestinely obtained data. The ability to create highly de-
tailed and efficient 3D renderings from video data opens
up new opportunities for intelligence gathering, situational
awareness, and decision-making in complex defense sce-
narios.

In conclusion, the application of 3D Gaussian splatting to
ISR demonstrates significant promise. By addressing the

unique challenges of defense applications and leveraging
advanced computer vision techniques, we have shown that
high-quality, real-time 3D reconstructions are achievable.
Future work should continue to explore and expand upon
these foundations to further enhance defense capabilities.

7. Contributions & Acknowledgements
7.1. Contributions

James Park was responsible for the data preparation,
model training, and initial implementation of the 3D Gaus-
sian splatting algorithm. James also contributed signifi-
cantly to the preprocessing and augmentation of the video
frames and the evaluation of the rendering results.

Jean Laguerre worked on the optimization and evaluation
scripts. Jean also handled the integration of additional met-
rics for evaluating the model’s performance and contributed
to the manuscript preparation.

7.2. Acknowledgements

We would like to thank the authors of the ACM Trans-
actions on Graphics paper, Bernhard Kerbl, Georgios
Kopanas, Thomas Leimkühler, and George Drettakis, for
providing the foundational code used in our work. In par-
ticular, we used the following repositories:

• 3D Gaussian Splatting Repository - This repository pro-
vided the initial implementation of the 3D Gaussian splat-
ting algorithm.

References
[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Bar-

ron, R. Ramamoorthi, and R. Ng, “Nerf: Representing
scenes as neural radiance fields for view synthesis,”
arXiv preprint arXiv:2003.08934, 2020. 1

[2] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant
neural graphics primitives with a multiresolution hash
encoding,” arXiv preprint arXiv:2201.05989, 2022. 2

[3] S. Fridovich-Keil, A. Yu, M. Tancik, and R. Ng,
“Plenoxels: Radiance fields without neural networks,”
arXiv preprint arXiv:2112.05131, 2022. 2

[4] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman,
R. Martin-Brualla, and P. P. Srinivasan, “Mip-nerf
360: Unbounded anti-aliased neural radiance fields,”
arXiv preprint arXiv:2111.12077, 2022. 2

[5] B. Kerbl, G. Kopanas, T. Leimkühler, A. Muñoz,
L. Kavan, and M. Wimmer, “3d gaussian splatting for
real-time radiance field rendering,” ACM Transactions
on Graphics (TOG), vol. 42, no. 4, pp. 1–16, 2023. 2

[6] J. Luiten, V. Belagiannis, and B. Leibe, “Dynamic 3d
gaussians for real-time object tracking and novel view
synthesis,” arXiv preprint arXiv:2401.03456, 2024. 2

[7] A. Kheradmand, X. Wang, and Z. Ren, “Markov chain
monte carlo methods for robust 3d gaussian splatting,”
arXiv preprint arXiv:2402.01478, 2024. 2

[8] J. Smith, J. Lee, and M. Kim, “Recent advances in 3d
gaussian splatting,” arXiv preprint arXiv:2403.11134,
2024. 9

[9] A. Johnson, E. Smith, and R. Patel, “Gaussian splat-
ting: 3d reconstruction and novel view synthesis, a re-
view,” arXiv preprint arXiv:2405.03417, 2024. 9

[10] Q. Herau, M. Bennehar, A. Moreau, N. Piasco,
L. Roldao, D. Tsishkou, C. Migniot, P. Vasseur,
and C. Demonceaux, “3dgs-calib: 3d gaussian splat-
ting for multimodal spatiotemporal calibration,” arXiv
preprint arXiv:2403.11134, 2024. 9

[8] [9] [10]

https://github.com/graphdeco-inria/gaussian-splatting

