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Abstract

This project aims to tackle the challenge of generating
high-quality 3D animal shapes. The SDFusion model is de-
signed to generate new 3D shapes with rich emergent abil-
ities. This project utilizes the original model architecture
from SDFusion and applies the model to a smaller dataset
of 3D animals instead of furniture. The training has three
components: VQ-VAE training, diffusion process training,
and the decoding phase. These decoded shapes are the out-
put of the model. Training experiments are run with differ-
ent configurations, and we identified key impact factors of
model performance and constraints. The VQ-VAE model
achieves good representations of animal shapes, and the
diffusion model starts to recognize animal feet despite chal-
lenges like vanishing gradient and noise scheduling. This
model targets applications in computer graphics, virtual en-
vironments, biological research, and science education.

1. Introduction

In current practice, creating detailed 3D models of ani-
mals is often constrained by the need for extensive manual
labor or the requirement of detailed 3D annotations. This
limitation is highlighted in works such as [12], where the
focus has been on developing methods that, while innova-
tive, remain reliant on substantial manual input and are thus
limited to a relatively narrow range of animal species and
creative applications.

This project aims to address these challenges and gen-
erate animal shapes by using a novel framework, the SD-
Fusion model proposed by [3], designed to generate high-
quality 3D animal shapes. The SDFusion model generates
new 3D shapes, which are not mere replicas of the input data
but are new instances created based on the learned features
and patterns from the training data.
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During the VQ-VAE training phase, the SDFusion model
encodes 3D animal shapes into a latent space, capturing
the essential features and patterns of the shapes in the ani-
mal training dataset. This latent space representation allows
the model to understand the intricate details and variations
found in different animal shapes.

The diffusion process introduces noise to the latent rep-
resentations and employs a denoising process to gradually
refine these representations. This approach enables the
model to generate new variations of the animal shapes by
exploring the latent space in a controlled manner. By ma-
nipulating the latent space and introducing noise, the model
is capable of creating a wide variety of animal shapes, in-
cluding novel ones that were not present in the original
training set.

During the decoding phase, the refined latent represen-
tations are decoded back into 3D animal shapes using the
decoder part of the VQ-VAE. The output of this model is
high-quality 3D animal shapes that can be used in various
applications.

This innovative approach targets several applications
in computer graphics, virtual environments, biological re-
search, and science education. By automating the genera-
tion of 3D animal shapes, the SDFusion model significantly
reduces the need for manual labor and detailed annotations,
thereby expanding the range of species and creative possi-
bilities that can be explored and utilized in these fields.

2. Related Work

Diffusion models have recently gained prominence as a
leading class of generative models, known for their high-
quality samples. These models have demonstrated remark-
able performance in various domains such as image synthe-
sis [4], super-resolution [9], image editing [2], and text-to-
image generation [1]. While diffusion models have been
extensively explored for 2D data, their application to 3D



data is still in its early stages. Notable efforts include the
adaptation of diffusion models to point clouds [6], which
highlights the potential for further research in this area.

SDFusion [3] applies diffusion models on Signed Dif-
ference Field representations [7] and introduces a pioneer-
ing framework designed to simplify the process of 3D fur-
niture generation for non-expert users. The approach sup-
ports interactive generation by accommodating various in-
put modalities, such as images, text, partially observed
shapes, and their combinations. This flexibility allows users
to easily provide input and adjust the influence of each type.
Central to their method is an encoder-decoder structure that
compresses 3D shapes into a compact latent representa-
tion, which is then used to train a diffusion model. The
model incorporates task-specific encoders with dropout and
a cross-attention mechanism to handle multi-modal inputs
effectively. Due to its adaptable design, the model excels
in several tasks, outperforming previous methods in shape
completion, image-based 3D reconstruction, and text-to-3D
generation. Their framework can seamlessly integrate these
tasks, enabling users to generate shapes using a combina-
tion of incomplete shapes, images, and textual descriptions,
while providing control over the relative importance of each
input.

There has also been previous work in generating datasets
for 3D meshes from 2D images. MagicPony [10] proposed
a framework to learn articulated 3D animal shapes from
single-view images in the wild, demonstrating the potential
of 3D animal generation from a single image.

Our project leverages the SDF representation and
diffusion-based generative modeling techniques from SD-
Fusion paper to enable the generation of high-quality 3D an-
imal shapes. We modify the implementation by fine-tuning
the pre-trained SDFusion model on the Animal3D dataset
[11] and adapting it to the animal domain.

3. Methods
3.1. 3D Shape Representation using SDF

We follow a systematic approach involving several key
steps to preprocess 3D meshes using Signed Distance Fields
(SDF) and create HDFS5 files for subsequent training. SDF
is a representation where each point in a 3D space stores
the distance to the nearest surface of the shape, with the
sign indicating whether the point is inside (negative) or out-
side (positive) the surface. This method offers several ad-
vantages over traditional point cloud representations, as it
provides a continuous field that can represent surfaces more
accurately and handle complex geometries effectively. Us-
ing SDF allows for better interpolation and integration with
various machine learning models, especially in tasks requir-
ing high-resolution shape representation.

Firstly, we modify the provided script to process the 3D

mesh data from the animal dataset. The script begins by nor-
malizing the meshes using the trimesh library to ensure con-
sistent scaling and centering. Next, we generate SDF values
for the 3D shapes, representing the distance from each point
in a volumetric grid to the nearest surface of the mesh. This
process involves sampling the 3D space and interpolating
the SDF values to create a high-resolution representation of
the shape. To manage computational complexity and stor-
age, the resolution of the SDF grid is reduced, compressing
the 3D data into a more compact form.

The SDF values and associated parameters are then
saved into HDFS5 files for efficient storage and retrieval.
These files contain the original point cloud, sampled SDF
values, normalization parameters, and the SDF parameters.
This structured and compressed format facilitates efficient
data handling and is suitable for subsequent modeling tasks
such as shape synthesis and texture mapping.

3.2. VQVAE for dimensional reduction

We then use a 3D-variant of the Vector Quantised-
Variational AutoEncoder (VQ-VAE) [€¢] to encode the SDF
into a lower-dimensional latent space, making it feasi-
ble to apply diffusion models in subsequent steps. This
enables the application of diffusion models in a lower-
dimensional space. Specifically, the 3D VQ-VAE includes
an encoder Ey to encode the 3D shape into the latent space
and a decoder D, to decode the latent vectors back to
3D space. Given an input shape represented by the SDF
X € RP*DPXD e have:

2= Ey(X)
X' =D, (VQ(2))

where z € R4%4Xd ig the latent vector, the latent dimen-
sion d is smaller than the 3D shape dimension D, and VQ
is the quantization step mapping the latent variable z to the
nearest element in the codebook Z. The encoder Ey, de-
coder D, and codebook Z are optimized jointly. We pre-
train the VQ-VAE using reconstruction loss, commitment
loss, and the VQ objective using the Animal dataset as de-
scribed in section 4.

3.3. 3D Difussion model for SDF

A diffusion model is then trained over the latent space to
manage the generative process, providing a method to tran-
sition from a noise distribution to a structured 3D output.

Using the trained encoder g, we can encode any given
SDF into a compact and low-dimensional latent variable
z = E4(X). This allows us to train a diffusion model on
this latent space. Essentially, a diffusion model learns to
sample from a target distribution by reversing a progressive
noise addition process. Starting with a sample z, we pro-
duce z; fort € {1,...,T} by gradually introducing Gaus-
sian noise following a specific variance schedule. For the



denoising step, we employ a time-conditional 3D UNet €.
The training of this denoising 3D UNet is guided by the
simplified objective proposed by [5]

Lsimple(g) = H':‘:z,eNN(O,l),t [HE - GG(Ztvt)||2] :

During inference, we generate Z by iteratively denoising
a variable initially sampled from the standard normal dis-
tribution N (0,1). We then use the trained decoder D to
convert the denoised code 2 back into a 3D SDF shape rep-
resentation X = D, (2).

4. Dataset and Features

Our approach will leverage the Animal3D dataset [1 1],
which provides 3D scans, meshes, and annotations for 40
common quadruped species. This dataset is particularly
valuable because it includes a wide range of diverse poses
and anatomical features, allowing us to develop and test our
models on realistic and varied animal shapes. The dataset’s
comprehensive coverage of different species and postures
makes it an excellent resource for creating robust and gen-
eralizable models.

Additionally, the dataset statistics shown in Table 1 show
the breakdown of the training and testing sets across all
species. The training set includes an average of 76.62 sam-
ples per species with a standard deviation of 107.44, totaling
3065 samples. The test set, on the other hand, includes an
average of 8.00 samples per species with a standard devia-
tion of 11.98, totaling 320 samples. This distribution pro-
vides a substantial amount of data for training while main-
taining a reasonable test set size for evaluating model per-
formance.

By utilizing the Animal3D dataset, we aim to enhance
our 3D shape synthesis and modeling capabilities, ulti-
mately contributing to more accurate and flexible 3D rep-
resentations of quadruped animals. The rich variety of the
dataset ensures that our models can learn from a broad spec-
trum of shapes and poses, improving their ability to general-
ize to unseen data. However, the dataset is very small com-
pared to the variety of data used in the original SDFusion

paper.

Dataset | Average | Standard Deviation | Total
Train 76.62 107.44 3065
Test 8.00 11.98 320

Table 1. Training and Testing Data Size for Each Species

5. Results

During data preprocessing phase, we normalized the 3D
mesh data, calculated the Signed Distance Functions (SDF)

for each mesh, and converted these into formats suitable
for neural network processing. Following this, the data
was stored in HDF?5 files, ensuring efficient access during
training. Building on this foundation, we proceed to train
the Vector Quantized Variational AutoEncoder (VQ-VAE)
model. This training phase was focused on enabling the
VQ-VAE to accurately reconstruct animal shapes from the
processed data inputs.

5.1. VQVAE Results

We trained the VQ-VAE network to extract lower di-
mensional feature representation of the 3D models for 9000
steps based on the checkpoint provided by the SDFusion
paper with batch size 2. The reconstructed mesh (Figure 1)
from one batch of the testing dataset and ground truth mesh
Figure 2 demonstrate the VQ-VAE model’s success in cap-
turing and reproducing the complex geometries of various
animal forms. The reconstruction error achieved by the VQ-
VAE is 0.003941.

Figure 1. Reconstructed Mesh

Figure 2. Ground Truth Mesh

5.2. Diffusion Model Performance
5.2.1 Diffusion model trained from scratch

In one attempt, we train VQ-VAE and SDFusion from
scratch. While the VQ-VAE training yielded satisfactory
results, the performance of the diffusion model was sub-
optimal. We train the diffusion model for 7500 steps with
batch size 2. The generated shapes from the diffusion model
in Figure 3 do not resemble reasonable animal forms, indi-
cating that the model struggles to learn the distribution of
the latent space effectively.

5.2.2 Finetune Diffusion model pretrained on furni-
ture datasets

We suspect that the poor performance of the diffusion model
was due insufficient data. To address this, we used the
provided stable diffusion checkpoint trained on furniture
datasets and fine-tuned it further on comparatively smaller



Figure 3. Generated Mesh from Diffusion Model trained from
scratch

animal dataset. Additionally, we tested the original VQ-
VAE checkpoint on our dataset and compared the recon-
struction loss with our current model to rule out any issues
in the VQ-VAE model. The output of the fine-tuned diffu-
sion model, while still suboptimal, shows a noticable im-
provement compared to earlier iterations. Between steps
4000 and 6000, shapes resembling animals start to emerge,
indicating some level of pattern recognition Fig 4 and Fig
5. However, this trend dissipates as training progresses,
with the model eventually generating nonsensical shapes.
The loss also starts to rise back to 1 after 8000 steps and
stays high. We hypothesized that this issue arises due to
the aggressive denoising steps employed during the process
and inappropriate learning rate for UNet training due to re-
duced batch size. To address this, we adjust relevant hy-
perparameters during training. Specifically, we modify the
scheduler that controls the magnitude of the noise added to
the data and reduced the learning rate to better accommo-
date smaller batch size. These adjustments aim to refine the
model’s ability to consistently generate coherent and mean-
ingful outputs.

Figure 4. Generated Mesh from finetuned Diffusion Model at step
4500

5.2.3 Finetune diffusion model with modified hyperpa-
rameters

In training a 3D diffusion model, the Noise Scheduler plays
a crucial role in controlling the noise addition process dur-
ing the diffusion and denoising phases. While the original

Figure 5. Generated Mesh from finetuned Diffusion Model at step
5000

paper employs a linear scheduler, cosine scheduler appears
to perform better than a linear one.

Cosine Noise Scheduler Start defines the initial amount
of noise added to the latent variables at the beginning of
the diffusion process. We start with a small noise level to
ensure that the model begins its training from a relatively
clean and less noisy state, allowing it to learn the structure
of the 3D data effectively.

Cosine Noise Scheduler End determines the final amount
of noise added to the latent variables at the end of the dif-
fusion process. We gradually increasing the noise level to
this final value enables the model to learn to handle and de-
noise progressively noisier inputs, which is essential for the
model to generalize well and perform robust denoising dur-
ing inference.

Cosine Noise Scheduler Steps specifies the total number
of steps over which the noise level transitions from the start
value to the end value. The steps indicate the number of in-
crements in the noise level, following a cosine schedule. A
cosine schedule smoothly transitions the noise level, start-
ing slowly, accelerating in the middle, and then decelerating
towards the end. This smooth transition helps in stabilizing
the training process and ensures that the model gradually
adapts to increasing levels of noise, improving its denoising
capabilities.

Cosine Noise Scheduler with its Start, End, and Steps pa-
rameters orchestrates how noise is added during the training
of the 3D diffusion model. This controlled noise addition is
vital for teaching the model to effectively reverse the noise
process, leading to accurate generation and reconstruction
of 3D shapes from noisy inputs.

Our best SDFusion model is trained using the fol-
lowing hyperparameters shown in Table 2 : VQ-VAE is
trained from the provided checkpoint pretrained on furni-
ture datasets for 9000 steps. Diffusion model is trained from
the provided checkpoint for 25000 steps. The generated
output is shown in Figure 6 and Figure 7. The generated
shapes exhibit a somewhat recognizable structure, such as
four discernible legs, but they are crude and lack fine de-
tails.



In addition to unconditional generation, we evaluated the
diffusion model’s capabilities in shape completion. The
model was given partial shapes with missing parts and
tasked with generating the missing portions to complete the
shape. This task is particularly challenging as it requires
the model to understand and infer the context and struc-
ture of the partial input to produce coherent and realistic
completions. Both tasks were designed to comprehensively
evaluate the model’s versatility and effectiveness in gener-
ating high-quality 3D shapes under different scenarios. The
ground truth of one sample is given in Figure 8, and the gen-
erated outputs for completion are shown in Figure 9. We
can discern abstract shapes resembling heads and legs in
the generated outputs; however, they lack fine details and
exhibit discontinuities in the overall structure.

Figure 6. Generated Mesh from finetuned Diffusion Model at
training step 17500 with modified hyperparameters

Figure 7. Generated Mesh from finetuned Diffusion Model at test-
ing step 17500 with modified hyperparameters

Hyperparameter Value
Learning Rate 2e -5
Batch Size 2
Cosine Noise Scheduler Start | 1le — 4
Cosine Noise Scheduler End | 2e — 2
Cosine Noise Scheduler Steps le3

Table 2. Configuration and Hyperparameters for Training

Figure 8. Shape completion ground truth
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Figure 9. Shape completion using step 17000 checkpoint

5.2.4 Gradient Vanishing problem

However, we observe that the 3D diffusion model experi-
ences severe vanishing gradient problems and the violin plot
of gradients versus step size is shown in Figure 10. We ex-
amine our model to identify potential modifications. The in-
put data is normalized. For the activation function, we used
siLu as activation to prevent the vanishing gradient prob-
lem intentionally. Since the batch size is limited to 2 due to
GPU memory constraints, batch normalization is not pos-
sible. The original architecture already deployed residual
blocks. In addition to these modifications, we propose the
vanishing gradient problem could be due to several factors.

3D data is inherently high-dimensional. When model-
ing 3D shapes, especially in high resolutions, the number of
parameters increases significantly, this increased complex-
ity can exacerbate the vanishing gradient problem because



the gradient signal diminishes as it propagates through the
many layers required to process such data. To capture the
intricacies of 3D shapes, deep networks are required. The
deeper the network, the more likely it is to suffer from van-
ishing gradients. As gradients are backpropagated through
many layers, they can become exceedingly small, making
it difficult to update the weights effectively during training.
The complexity and high dimensionality of 3D data can lead
to unstable training dynamics. This instability can result in
vanishing gradients , making it challenging to find a stable
solution during the training process.

Violin Plot of Gradients by Steps
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Figure 10. Gradient Vanishing Plot

5.2.5 Training Curves

Figure 11 shows different loss components including em-
bedding loss, nagative log likelihood, reconstruction loss
and the total loss of the two VQ-VAE model (one trained
from scratch and the other trained from the provided check-
point) as training progresses. This plot illustrates the train-
ing dynamics of the VQ-VAE models and highlights the
benefits of using a pre-trained checkpoint for further train-
ing. Both models display fast convergent to local optimal.

Figure 12 shows different loss components including
simple loss and total loss of two diffusion models (one
trained from scratch and the other trained from the pro-
vided checkpoint) as training progresses. There are oc-
casional spikes in the loss values throughout the training,
which could be due to the stochastic nature of the training
process or specific challenging batches of data. Both mod-
els follow similar trends, with the checkpoint model gener-
ally showing slightly lower or comparable loss values com-
pared to the scratch model. This suggests that starting from
a checkpoint might offer a slight advantage in terms of sta-
bility and convergence.

5.3. Evaluation
5.3.1 VQVAE Model

To evaluate the performance of the VQVAE model on the
testing set, Intersection over Union (IoU) is used to describe

Loss vs. Steps for Two VQVAE Models
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Scratch - Embedding
Scratch - Negative Log Likelihood
Scratch - Reconstruction
—— Checkpoint - Total Loss
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Figure 11. Different Loss Curves Versus Training Steps for Two
VQVAE Model on Training Data

Loss vs. Steps for Two Diffusion Models
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Figure 12. Different Loss Curves Versus Training Steps for Two
Diffusion Model on Training Data

how much the model captures the original features from the
mesh. A line plot with standard error bars for the two mod-
els is displayed in Figure 13. The figure shows the consis-
tent result as the loss curve, indicating that training from
checkpoint achieves a better performance.

loU vs. Steps for Two Models with Standard Error Bars

loU

000 w0 w00
steps

Figure 13. IoU plot for VQVAE Model



5.3.2 Diffusion Model

We use Uni-Directional Hausdorff Distance(UHD) and the
Trimmed Mean Distance (TMD) to compare the similarity
between a generated shape and a ground truth shape.

UHD is a variation of the Hausdorff Distance that mea-
sures the maximum distance from a point in one shape to
the nearest point in another shape, but only in one direction.
Typically, this metric is used to assess how far the points of
a generated shape are from the points of a reference shape
(or vice versa), providing a sense of the worst-case discrep-
ancy in one direction. Given two sets of points A and B, the
unidirectional Hausdorff distance from A to B is defined as:

UHD(A — B) = maxmin ||a — b||
ac€A beB

In the context of evaluating shape generation quality, UHD
can reveal how well the generated shape covers the ground
truth shape. A high UHD value indicates that there are parts
of the generated shape that are far from the reference shape,
suggesting poor quality in those regions.

TMD is a metric used to measure the average distance
between points in two shapes after excluding a certain per-
centage of the most extreme values. This trimming process
reduces the influence of outliers or noise, providing a more
robust and representative measure of similarity between the
shapes.

Together, UHD and TMD provide complementary in-
sights into the quality of shape generation. UHD ensures
that significant deviations are minimized, while TMD gives
a robust measure of overall similarity, making them valu-
able tools in evaluating and improving the performance
of shape-generation algorithms. The evaluation result is
shown in Table 5.3.2. A better model should have smaller
UHD and larger TMD.

Metric Value
UHD | | 137.3643
TMD 1 | 0.02835

Table 3. Evaluation Results for Shape Generation Quality

6. Discussion

The experiments suggested several key factors in training
the VQVAE network and 3D diffusion network. Firstly, the
start and end of the noise scheduler of the diffusion model
impact training more than the scheduler type. An appropri-
ate learning rate reduced proportionally to the batch size is
the main impact factor for training a diffusion model. The
effect of inappropriate hyperparameters can be identified
early in the training stage with the help of learning curves.
While the VQVAE model will achieve the same level of
loss quickly regardless of whether training from scratch or

from existing checkpoints, these two approaches converge
to a different level of testing phase IoU. This suggests that
the VQVAE model will certainly benefit from a larger sam-
ple size, while the training loss does not fully capture this
benefit.

In the following sections, we will analyze the reasons be-
hind the unsatisfactory performance of the SDFusion model
on the animal dataset. The model’s inability to maintain
coherence in generated shapes indicates underlying issues.
By examining potential factors contributing to this subopti-
mal performance, we aim to identify key areas for improve-
ment and propose strategies to enhance the model’s ability
to generate accurate and meaningful representations of ani-
mal shapes.

6.1. Insufficient scale of the dataset

One possible reason for the unsatisfactory performance
of the SDFusion model in generating 3D animal shapes is
the lack of diversity and quantity in the animal mesh dataset
used for training. The dataset may not provide a broad
enough range of examples to enable the diffusion model
to learn a meaningful distribution in the latent space. In
contrast, the model in the original paper was trained on a
significantly larger dataset sourced from multiple domains,
which likely contributed to its superior performance. Con-
sequently, the results of our model are not directly compa-
rable to those of the original, highlighting the critical im-
portance of extensive and varied training data in achieving
high quality generative outputs.

MagicPony [10] proposed a framework to learn articu-
lated 3D animal shapes from single-view images in the wild,
demonstrating the potential of 3d animal generations from
a single image. One future direction is to utilize the tech-
niques introduced in MagicPony to generate 3D meshes as
a data augmentation step for 3D animal shape generation.
MagicPony’s approach, which effectively predicts the 3D
shape and viewpoint from single-view images, will enhance
the Animal3D dataset by providing articulated 3D meshes.
By incorporating these meshes, we expect to achieve supe-
rior performance in reconstructing 3D animal shapes from
limited input data.

6.2. Complexity of animal shape topology, distribu-
tion shift

Another factor contributing to the unsatisfactory per-
formance of the SDFusion model in generating 3D ani-
mal shapes is the intricate and varied geometries of animal
forms. These complex structures may pose significant chal-
lenges for the diffusion model to capture and generate co-
herent shapes.

Additionally, there is a domain shift from furniture to an-
imals. The SDF representation that works well with simpler
furniture shapes may not transfer effectively to the more



complex geometries of animals. To address these issues,
we can explore different representations in future work. For
example, we might consider using voxel grids, which offer
a more uniform approach to representing 3D space. Mesh-
based representations, which explicitly model the surfaces
of objects, could also provide a more accurate and detailed
way to generate intricate animal shapes. Exploring these
alternative representations may help improve the model’s
ability to generate coherent and realistic 3D animal shapes.

6.3. Time constraints and computational resources

The original SDFusion paper reported extensive training
times, with the VQ-VAE being trained for 7 days and the
diffusion model for 7-14 days on a single GPU with 32 to
48 GB memory. Given our limited time and computational
resources, reproducing these results from scratch proved
challenging. Our shorter training duration may have led to
an insufficient convergence of the models, which is likely
a key factor in the unsatisfactory performance observed.
The lack of prolonged and extensive training prevents the
models from fully learning the intricate patterns and distri-
butions necessary to generate coherent 3D animal shapes.
Future work should consider either securing additional
computational resources or optimizing the training process
to achieve better results within the given constraints.

The insights gained from this analysis will guide our
decision-making process and help us prioritize our efforts
in improving the quality of the generated 3D animal shapes.
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