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Abstract

This study compares the multiple popular Convolutional
Neural Network architectures in their performance in de-
tecting Alzheimer’s disease from MRI images and investi-
gates the impact of data augmentation on the model per-
formance in this specific task. We compared the perfor-
mance of Vanilla CNN, ResNet-101, and DenseNet-121,
both with and without data augmentation. Our dataset,
sourced from Kaggle, includes 6,000+ MRI images classi-
fied into four stages of Alzheimer’s. The results indicate
that DenseNet-121 without data augmentation achieved the
highest performance with an accuracy of 99.53% and an F1
score of 0.995. We attempted data augmentation to prevent
overfitting, but it decreased the accuracy of all the mod-
els. We discussed the architectures and training methodolo-
gies of these models, including the specific data augmen-
tation techniques applied. This study highlights the effec-
tiveness of using CNNs for Alzheimer’s detection through
MRI imaging. Future work could explore increased dataset
size, multimodal data integration, and CNN and conven-
tional machine learning methods hybrid models in the field
of Alzheimer’s detection.

1. Introduction

Alzheimer is the most common type of dementia around
the world, with early detection being critical in delaying the
worsening of symptoms and improving patients’ quality of
life drastically. Research indicates that Alzheimer’s may
initiate at least two decades before symptomatic presenta-
tion, with subtle brain changes occurring. While current
therapies aim to slow disease progression, early detection
holds promise for enhancing patient quality of life and en-
abling effective management during the critical stages of
decision-making incapacity.

Early research in using deep learning for Alzheimer’s
detection using MRI images shows promising results [14].
The significance of deep learning in Alzheimer’s detection
lies in its ability to analyze vast amounts of medical imaging
data accurately and efficiently. Deep learning models can
identify subtle Alzheimer-related patterns and biomarkers,

enabling timely intervention and symptom management.
Moreover, deep learning models offer objective and consis-
tent evaluations, reducing variability across healthcare prac-
titioners and institutions.

Research has shown significant improvement of using
data augmentation to improve the accuracy of Alzheimer’s
detection. MRI segmentation techniques, allowing detailed
analysis of tissue structures, is starting to gain popularity
and a pivotal role in accurate diagnosis for many other dis-
eases as well [17].

1.1. The Problem

The fundamental problem is Alzheimer’s detection,
namely using MRI imaging to classify the extent to which
someone has Alzheimer’s dementia: no dementia, very
mildly demented, mildly demented, and moderately de-
mented. There have been multiple papers on using CNN
in Alzheimer’s detection but not across the same datasets.
This paper compares the performance of 3 types of CNNs
and evaluates their performances.

Another aspect of the project we want to explore is to
explore the impact of data augmentation on model accu-
racies. Researchers have studied numerous deep learning
models in Alzheimer’s detection but given the recent pa-
per published on the significance of data augmentation in
Alzheimer’s detection, we want to investigate to what ex-
tent data augmentation improves Alzheimer’s detection of
different model types.

The input to our algorithm is a MRI scans of brain im-
ages. We then use different CNN models to output a pre-
dicted diagnosis for the Alzheimer stage the patient is in,
out of the four classes no dementia, very mildly demented,
mildly demented, and moderately demented.

1.2. Overview of Results

Our experiments indicate that DenseNet without data
augmentation reaches the best performance in both F1 and
accuracy. We have also observed that data augmentation
decreases the performance for all the models.
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2. Related Work
There have been numerous papers published in the past

decades that showcase the efficacy of deep learning and
CNN in the medical field, specifically in Alzheimer’s de-
tection. The methods used in different CNN papers can be
categorized into the following three groups: various CNN
approaches, conventional learning approaches, and ensem-
ble learning approaches.

2.1. Conventional Learning Approaches

Support Vector Machines (SVMs) has been a popular
method, and an early popular choice, in conventional ma-
chine learning for Alzheimer’s disease (AD) detection using
MRI images. These methods have provided a solid founda-
tion for classification tasks due to their clear principles and
relatively good performance.

Suk et al. employed a linear SVM classifier for AD
classification, demonstrating its effectiveness in this do-
main. Suk and Shen (2013)[16], Suk et al. (2015)[4] uti-
lized multi-kernel SVMs to integrate features from multi-
modal inputs, enhancing the classifier’s flexibility and per-
formance. Suk et al. (2014)[15] used a linear SVM in a
hierarchical classifier setup, working alongside Deep Boltz-
mann Machines (DBM) for feature representation. Shi et al.
combined stacked deep polynomial networks (DPN) as fea-
ture extractors with a linear kernel SVM, highlighting a hy-
brid approach that leverages deep learning and conventional
machine learning [13].

2.2. Ensemble Learning Approaches

Ensemble learning refers to the technique that combines
the predictions of multiple base models to produce a single,
improved predictive model, and a popular ensemble learn-
ing algorithm using traditional machine learning methods
is Random Forest. Lebedev et al. (2014)[8] tested Ran-
dom Forest on the ADNI and AddNeuroMed datasets with
MRI images and demographic data. Bi et al. (2020)[1] pro-
posed a Random Forest architecture to handle multimodal
data and detect brain abnormalities and pathogenic genes.

2.3. Convolutional Neural Networks

CNNs are the current state-of-the-art architecture in var-
ious medical field tasks such as detection, classification,
and segmentation, including in Alzheimer’s. There is a
wide variety of architectures used by different scholars in
Alzheimer’s detection.

LeNet, one of the earliest CNN architectures, has been
adapted for AD prediction with reasonable sensitivity and
specificity as according to Yang and Liu in 2020 [18]. VGG
uses small convolutional filters in a deep network structure,
achieving high accuracy in AD detection, especially with
transfer learning from ImageNet as accomplished by Jain

et al [7]. ResNet addresses the vanishing gradient problem
in deep networks with shortcut connections, enabling the
training of very deep networks, and has been applied in 3D
form for AD and MCI detection with successful outcomes
[3]. DenseNet connects all layers directly, mitigating van-
ishing gradient issues and making full use of features, which
is beneficial for small datasets, and has been used in various
forms to achieve high accuracy in AD detection [5].

3. Methods
We built 6 individual models with three different ar-

chitectures and each with and without data augmentation,
namely Vanilla CNN, CNN with data augmentation, Vanilla
Residual Neural Networks (ResNet), ResNet with data
augmentation, Densely Connected Convolutional Networks
(DenseNet), and DenseNet with data augmentation.

We will evaluate the accuracy, F1 score and training cost
of the models and discuss the strengths and weaknesses of
each model in this paper. Below is an overview of how each
model architecture works and how data augmentation works
in combination with each model architecture.

3.1. Model Architecture

3.1.1 Vanilla CNN

CNNs are specifically designed for image processing tasks
and have demonstrated remarkable success in various com-
puter vision applications, including image classification,
object detection, and segmentation. In the context of
Alzheimer’s detection, CNNs can effectively analyze brain
MRI images and extract relevant features indicative of
Alzheimer’s pathology, such as structural abnormalities or
subtle changes in brain tissue. CNN is currently the archi-
tecture of choice in MRI image classification due to its ex-
traordinary capability to achieve high accuracy. Even very
simple training yields promising results, which is one of the
key reasons why we are taking vanilla CNN as the baseline
model.

The specific architecture of our Vainilla CNN is as fol-
lows. We utilize a simple convolutional neural network
(CNN) with the following architecture: two convolutional
layers, and two linear layers with dropout between them.
Each layer is separated with ReLU activation. For this ar-
chitecture, we reused the code from assignment 2 of CS
231N, with some slight modifications to fit our problem.

3.1.2 ResNet

ResNet is a type of CNN architecture that introduced the
concept of residual learning, which helps mitigate the van-
ishing gradient problem commonly encountered in deep
neural networks. ResNet’s architecture allows for the train-
ing of significantly deeper networks by introducing skip
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Figure 1. Vanilla CNN Architecture

connections, enabling the network to learn residual map-
pings. In Alzheimer’s detection, ResNet’s ability to han-
dle deeper architectures may allow for better representation
learning from complex MRI images, potentially leading to
improved detection accuracy.

The specific ResNet architecture we have chosen is
ResNet-101. ResNet-101 is a deep convolutional neural
network designed for image classification, consisting of
101 layers including convolutional layers, batch normaliza-
tion, ReLU activations, and fully connected layers [3]. The
key innovation in ResNet-101 is the use of residual blocks,
which include skip connections that help mitigate the van-
ishing gradient problem by allowing gradients to flow more
easily through the network. This architecture enables effec-
tive training of very deep networks. It is commonly used
for clinical data classification.

In our implementation using PyTorch TorchVision [11]
[9] and other existing code libraries [10] [6], we customized
the ResNet-101 model by adjusting the final fully connected
layer to match the number of classes in our classification
task. The model was trained using the Adam optimizer
and cross-entropy loss. During training, the model with the
highest validation accuracy is saved as the best model to

prevent overfitting and using a sub-optimal model for final
testing. Data preprocessing and loading were handled using
PyTorch’s DataLoader, ensuring efficient batch processing.

3.1.3 DenseNet

DenseNet has a dense connectivity pattern, where each
layer receives input from all preceding layers and passes its
output to all subsequent layers [5]. This design ensures effi-
cient feature reuse and a good gradient flow. DenseNet’s
ability to capture detailed and diverse features makes it
particularly well-suited for medical imaging tasks. For
Alzheimer’s detection using MRI images, DenseNet is an
excellent choice because its architecture allows for param-
eter efficiency, reducing the risk of overfitting even with
smaller datasets, which is often the case in medical imag-
ing, especially true in the case of our chosen dataset. Stud-
ies have shown that DenseNet performs exceptionally well
in medical imaging applications, making it a robust and re-
liable model for detecting Alzheimer’s disease [9].

Our chosen DenseNet architecture is DenseNet 121,
which includes 121 layers. We chose DenseNet 121 in-
stead of other DenseNet variants because it strikes an op-
timal balance between depth, computational efficiency, and
performance. While deeper networks like DenseNet-169,
DenseNet-201, or DenseNet-264 offer potentially higher
accuracy, they also come with increased computational
costs and a higher risk of overfitting, especially when deal-
ing with smaller medical datasets. Similarly to our ResNet
implementation, our DenseNet model is customized based
on the Densenet 121 architecture from the PyTorch model
library and trained using Adam optimizer and cross-entropy
loss[11].

3.2. Data Augmentation

To enhance the robustness and generalization of the con-
volutional neural network, we implemented data augmen-
tation to enlarge our training dataset. Specifically, we aug-
mented the data through random rotations of up to 90 de-
grees, random horizontal and vertical flips with a probabil-
ity of 0.5 each and the application of Gaussian blur with
a kernel size of 5 with a probability of 0.3. Additionally,
a random resized crop operation was performed, with the
scale of the crop ranging between 80% and 100% of the
original image size, ensuring the output size remained con-
sistent at 176x176 pixels.

3.3. Cross Entropy Loss

The cross-entropy loss for a single data point is given by:

L = −
C∑
i=1

yi log(ŷi)
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where C is the number of classes, yi is the true label (one-
hot encoded), ŷi is the predicted probability for class i. We
used cross entropy loss in the gradient descent of all our
models.

4. Dataset
We are using a dataset from Kaggle for Alzheimer’s im-

ages with 4 classes [2].
The images are split into train, validation, and test sets.

The train set contains 5120 images, with 50 moderately de-
mented, 716 mildly demented, 1803 very mildly demented,
and 2551 non-demented. The validation set contains 640
images, with 7 moderately demented, 96 mildly demented,
204 very mildly demented, and 333 non-demented. The test
set contains 640 images, with 7 moderately demented, 84
mildly demented, 233 very mildly demented, and 316 non-
demented.

We chose this dataset because it is well-documented and
maintained. It has a sufficiently large dataset size. It has
4 classes, which is very essential since a key aspect in
Alzheimer’s detection is early diagnosis as early diagnosis
has direct correlations with better treatment options for the
patients.

We applied standard score normalization to all data. We
normalized pixels across the mean and the variance of pixel
values across all images. For 3 of the 6 models, we applied
data augmentation, and specifically we applied random ro-
tation, random horizontal flip, random vertical flip, and ran-
dom resized crop. For image data, we directly utilized the
pixel values as features after preprocessing and augmenta-
tion.

Here are some examples from our dataset:

Figure 2. Moderated Demented MRI Brain Image

5. Experiments
For all six models, we performed hyper-parameter tun-

ing on the learning rate since the model convergence can
be sensitive on the learning rate. We initially used Adam
optimizer for all the models because it combines momen-
tum and Root Mean Square Propagation, which allows for
faster convergence. It is also easy to use out-of-box and
does not require much parameter tuning. While training on

Figure 3. Non Demented MRI Brain Image

the vanilla CNN model with data augmentation, we realized
that model training’s loss remains stagnant after significant
epochs. Upon switching to SGD optimizer and some pa-
rameter tuning, we were able to train the model to conver-
gence. We used the batch size of 64 because it provides a
good balance of training speed and model performance.

5.1. Evaluation Methods

We will evaluate the models with F1 scores as the north-
star metric, confusion matrix and examples of common er-
rors. We used the scikit-learn’s metrics library to perform
the evaluations [12].

5.1.1 F1 Scores

We’re choosing the F1 score as our northstar metric because
it provides a balanced assessment for the model’s perfor-
mance, evaluating the impact of both false positives and
false negatives. It is particularly useful when there is an
imbalance between the classes in the dataset, which is the
case in our dataset, since most scans in the dataset, as well
as in the real world, would be for patients without dementia.
The number of scans of patients will serious dementia are
significantly smaller.

Since we are conducting multi-class classification, we
would compute the F1 score for each class individually and
then average them. Our dataset has four classes (no demen-
tia, very mildly demented, mildly demented, and moder-
ately demented), for class i:

F1 Scorei =
2× Precisioni ×Recalli
Precisioni +Recalli

where Precision is the ratio of true positives to the total
predicted positives for class i, and Recall is the ratio of true
positives to the total actual positives for class i.

The overall F1 score for the model can be calculated as
the weighted average of the F1 scores for each class, where
the weights are proportional to the number of instances of
each class in the dataset.
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5.1.2 Confusion Matrix

We’re choosing to evaluate the models with a confusion ma-
trix because a confusion matrix provides a detailed break-
down of the model’s predictions, showing the number of
true positives, true negatives, false positives, and false neg-
atives for each class. It is critical for doctors to understand
the strengths and weaknesses of each model when evalu-
ating the model output, and therefore the confusion matrix
would be a helpful tool.

5.2. Results and Discussion

The overall comparison of model performance is shown
in Table 1. Our best performing model is DenseNet without
data augmentation with an accuracy of 99.53% and an F1
score of 0.995.

5.2.1 Vanilla CNN

A graph of the training and validatoin accuracy during the
training can be viewed below in Figure 4. The model
achieved 98.28% accuracy on our test set, with an F1 score
of 0.983.

Figure 4. Training and validation accuracy

The confusion matrix of Vanilla CNN is shown in Figure
5. We can observe that the model has the tendency to label
non-demented or mild-demented as very-mildly-demented.
These errors are more common likely because it is the tran-
sition stage between mildly demented and non-demented,
and the boundary of the distinction is not as clear to our
model.

5.2.2 Vanilla CNN with Data Augmentation

A graph of the training and validatoin accuracy during the
training can be viewed below in Figure 6. It achieved an
accuracy of 97.81% on our test set and an F1 score of 0.978.

We see a 0.47% decrease in accuracy after data augmen-
tation. This decrease is small in magnitude but nevertheless
the same pattern appears across all our model architectures.
We believe the following reasons could contribute to this

Figure 5. Vanilla CNN Confusion Matrix

pattern: 1) Increase in data complexity: the data augmen-
tation techniques we employ increase the complexity of the
data, which can make the learning process harder for the
models. Further research is needed to see if the augmented
models generalize better in another dataset. 2) Overfitting
reduction: data augmentation usually helps to reduce over-
fitting by making the model more robust to variations of
the training data. The small drop in the accuracy could in-
dicate that the model is now less overfitted to the training
data and better at generalizing. 3) Wrong data augmentation
techniques: data augmentations, when implemented wrong,
could introduce distortions that the models find difficult to
learn from. This could be the case for our data augmenta-
tion techniques. We experimented with a couple of different
techniques and all led to a decrease in prediction accuracy.
This could just mean we haven’t found the right data aug-
mentation techniques for our data.

Figure 6. CNN with DA Training and validation accuracy

The confusion matrix of Vanilla CNN with data augmen-
tation is shown in Figure 7. In comparison to the confusion
matrix of Vanilla CNN without data augmentation, there
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Model Type Accuracy F1
Vanilla CNN 98.28% 0.983
Vanilla CNN with DA 97.81% 0.978
ResNet 99.38% 0.994
ResNet with DA 98.12% 0.981
DenseNet 99.53% 0.995
DenseNet with DA 97.97% 0.98

Table 1. A Comparison of Model Performances

Figure 7. Vanilla CNN with DA Confusion Matrix

is a slight increase in errors for the VeryMildDemented
and NonDemented classes after augmentation, while the
MildDemented and ModerateDemented classes remain un-
affected. There is a drop of 3 correct predictions overall af-
ter augmentation. This suggests that the data augmentation
did not improve the model’s ability to distinguish the sub-
tle differences between the VeryMildDemented and Non-
Demented classes, which we implemented data augmenta-
tion to accomplish. See the previous paragraph for possible
reasons.

5.2.3 ResNet

A graph of the training and validation accuracy during the
training can be viewed below in Figure 8. It achieved an ac-
curacy of 99.38% on our test set and an F1 score of 0.994.
The confusion matrix is as shown in Figure 9. Accord-
ing to the confusion matrix, the model has a slight bias to-
wards non-demented, which is likely due to the larger sam-
ple size of the non-demented train data. It also confuses
one NonDemented example as a VeryMildDemented exam-
ple, as well as one VeryMildDemented example as a Mild-
Demented example. Since the overall accuracies are quite
high, these are more likely outliers in the training data that

lie very close to the decision boundaries of different classes.

Figure 8. ResNet Training and validation accuracy

Figure 9. ResNet Confusion Matrix

5.2.4 ResNet with Data Augmentation

A graph of the training and validatoin accuracy during the
training can be viewed below in Figure 10. It achieved an
accuracy of 98.12% on our test set and an F1 score of 0.981.
The confusion matrix is as shown in Figure 11.
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In comparison to ResNet without data augmentation, the
accuracy and F1 scores of ResNet with data augmentation
decreased, which can be due to reasons outlined in the
Vanilla CNN with Data Augmentation section. From Fig-
ure 10, we can see the steady increase and eventual plateau
of the training accuracy, which suggests the model is effec-
tively learning from the augmented data. On the other hand,
the validation accuracy is generally higher than the train-
ing accuracy, which is somewhat unusual and can suggest
that the model is learning to generalize beyond the training
data. At the same time, there are high fluctuations in the
validation accuracies, meaning the training has a high sen-
sitivity to validation data variability. This could mean we
need to further tune the augmentation parameters and add
additional regulations.

Figure 10. ResNet with DA Training and validation accuracy

Figure 11. ResNet with DA Confusion Matrix

5.2.5 DenseNet

Based on the comparison of model performances chart,
DenseNet without data augmentation reached the highest
accuracy at 99.53% and the highest F1 score of 0.995.
Therefore, DenseNet is our state-of-the-art model.

A graph of the training and validatoin accuracy during
the training can be viewed below in Figure 12. The confu-
sion matrix is as shown in Figure 13.

Other models tend to struggle to optimize training and
validation accuracy but DenseNet reached an almost perfect
train and validation accuracy. We believe a key aspect in
DenseNet’s extraordinary performance is the relative small
size of our dataset. By connecting each layer to every other
layer, DenseNet requires fewer parameters compared to tra-
ditional deep networks, which helps in preventing overfit-
ting. This is crucial when working with relatively small
datasets.

Figure 12. DenseNet Training and validation accuracy

5.2.6 DenseNet with Data Augmentation

A graph of the training and validatoin accuracy during the
training can be viewed below in Figure 14. It achieved an
accuracy of 97.97% on our test set and an F1 score of 0.98.
The confusion matrix is as shown in Figure 15.

Similar to Resnet with data augmentation, the curve for
training accuracy is quite smooth and converges to an op-
timum in the end, while the curve for validation accuracy
has high fluctuations and generally stays above the training
accuracy after the initial epochs. This can be explained by
the additional variation in training data introduced by data
augmentation. One interesting difference between the two
is that ResNet’s training accuracy converges to around 0.8,
and DenseNet’s training accuracy converges to beyond 0.9.
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Figure 13. DenseNet Confusion Matrix

This suggests that ResNet is slightly underfitting the train-
ing data or it is well-regulated to avoid overfitting. In the
context of data augmentation, this suggests that DenseNet is
more effective in learning the variations introduced by data
augmentation, which ultimately manifests in higher accu-
racy on the test set.

Figure 14. DenseNet with DA Training and validation accuracy

6. Conclusions
This paper compared the performance of various CNNs

in detecting Alzheimer’s disease through MRI images, ad-
ditionally focusing on the impact of data augmentation
on model accuracy. We evaluated three primary architec-
tures: Vanilla CNN, ResNet-101, and DenseNet-121, both
with and without data augmentation. Our findings indicate
that DenseNet-121 without data augmentation achieved the
highest performance with an accuracy of 99.53% and an F1

Figure 15. DenseNet with DA Confusion Matrix

score of 0.995. This superior performance is likely due to
DenseNet’s dense connectivity pattern, which allows for ef-
ficient feature reuse and good gradient flow, making it par-
ticularly effective for small datasets such as the one used in
our paper.

While data augmentation generally aims to improve
model robustness and accuracy by artificially increasing the
diversity of the training data, it decreases the accuracy of
all our models in predicting the test dataset. This decline is
likely due to these models’ inherent capacity to learn from
the available data without additional manipulations, where
the added variability introduced by augmentation could po-
tentially confuse the training process.

For future work, several areas could be explored to fur-
ther improve the performance of Alzheimer’s detection us-
ing CNNs. Increasing the dataset size could provide more
training data, especially for classes with fewer examples,
potentially improving model accuracy. Incorporating mul-
timodal data, such as combining MRI scans with genetic
or demographic information, could also improve the mod-
els’ performance and be an interesting interdisciplinary area
of study. Furthermore, exploring more advanced architec-
tures or hybrid models that combine deep learning with tra-
ditional machine learning techniques might also have the
potential to improve performance in Alzheimer’s detection.
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Figure 16. Average Class Images for DenseNet
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