
A Conditional Generative Image Model

He Nan Li
lihenan@stanford.edu

Lucas Lu
jiayulu@stanford.edu

Abstract

Conditional diffusion models (CDM) have transformed
the fields of image and video synthesis, but their com-
plex mechanisms and high computational requirements of-
ten make them less accessible. Our project aims to demys-
tify CDMs, offering a clear and concise explanation with in-
tuitive visualizations. We will explore the core architecture
of U-Net, breaking down its components, and elucidating
the noise estimation process. Furthermore, we will demon-
strate the practical implementation of CDMs by training a
PyTorch model on the MNIST and CIFAR-10 [3] datasets.

Our approach aims to bridge the gap between theoret-
ical understanding and practical application, promoting
a deeper comprehension of CDMs and encouraging their
wider use in research and development.

1. Introduction

This study proposes the creation of a diffusion model
that combines Denoising Diffusion Probabilistic Models
(DDPMs) with conditional image generation capabilities.
The model will be built using PyTorch and trained on the
MNIST and CIFAR-10 datasets. Once trained, the model
will allow users to generate new, class-conditional im-
ages from pure noise by selecting a desired class from the
dataset.

The main objective of this research is to explore the prac-
tical trade-offs involved in developing generative models,
with a specific focus on:

• The effectiveness of the simpler loss functions pro-
posed by DDPM.

• The impact of architectural variations within the U-Net
framework on performance.

• The effect of different noise generation schedules on
the forward and reverse diffusion processes.

• The effect of conditioning mechanisms in controlling
the semantic content of generated images.

• The influence of dataset complexity on model perfor-
mance, comparing results between the relatively sim-
ple MNIST dataset and the more complex CIFAR-10
dataset.

With unconditional generation, there is no input to the
algorithm; the model generates a novel image that shares
characteristics with the training data. In contrast, with con-
ditional generation, the input to the algorithm is a valid class
choice. For example, in the MNIST dataset, we can instruct
the model to generate an image of a digit between 0 and 9,
resulting in a novel image from the specified class.

Within the DDPM framework, the U-Net serves as the
neural network to predict the noise at each timestep. The in-
put to the U-Net is an image at time t, time embedding and
contextual embedding. The U-Net outputs ε with the same
input image feature dimension as the input image. This ε
represents the estimated noise to be subtracted from the cur-
rent image at t to produce an image at t− 1, bringing it one
step closer to a novel image.

2. Related Work
Our project builds on the foundational work of several

seminal contributions in the field of generative modeling.
Firstly, the concept of diffusion models was introduced

in ”Deep Unsupervised Learning using Nonequilibrium
Thermodynamics” [8], which utilized iterative forward and
reverse processes to transform images into pure noise and
then gradually denoise them back into new samples. This
transformation is modeled as a Markov chain, where each
step depends solely on the previous one.

Secondly, ”Denoising Diffusion Probabilistic Models”
(DDPMs) [1] on this concept by introducing a more ef-
ficient training procedure and demonstrating its effective-
ness in generating high-quality images. The authors also
proposed a simplified loss function based on mean squared
error (MSE) to measure the discrepancy between the true
noise added during diffusion and the noise predicted by the
neural network.

Building on these advancements, ”Improved Denois-
ing Diffusion Probabilistic Models”[5] further refined the
DDPM framework by incorporating learnable covariance

1



and a more flexible noise scheduling mechanism. These
modifications resulted in improved sample quality and
faster convergence during training.

The neural network architecture used in DDPMs to pre-
dict the noise to be removed at each step is typically based
on the U-Net architecture, as proposed in ”U-Net: Convolu-
tional Networks for Biomedical Image Segmentation” [6].
This architecture features a ”U” shape, with down-sampling
and up-sampling layers connected by residual connections,
allowing it to capture both local and global image features
while maintaining the output feature dimensions. The U-
Net’s ability to preserve spatial information makes it par-
ticularly well-suited for image generation tasks in diffusion
models.

3. Method
Our initial inspiration and starter code are based on [10].

From this source, we incorporated a new noise schedule and
a contextual embedding as classifier-free guidance.

3.1. Denoising Diffusion Probabilistic Models
(DDPM)

DDPM has a forward diffusion process:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

where, at time t, it generates a random noise (unit Gaus-
sian distribution) from the beta schedule and directly adds it
to the image at time t to produce the image at t+1. This gen-
erated random noise is then used as the ground truth value
for supervised training with the U-Net model described be-
low

It also has a reverse diffusion process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

where, at time t, it uses the U-Net with learned param-
eters to estimate a noise (calculated from β) and subtract it
from the image at t to obtain hopefully a less noisy image
at time t−1. To sample a generated image from pure noise,
we need to recursively apply this reverse diffusion process
until reaching t = 0.

The DDPM component is strictly not a neural network;
rather, it includes a neural network, specifically the U-Net.

3.2. U-Net

The U-Net (figure 1), named for its characteristic ”U”
shape in model diagrams, operates by progressively down
sampling the feature map resolution of an input image, fol-
lowed by up sampling to restore the original resolution.

The residual blocks contain convolutional layers that ex-
tract image features while maintaining the feature dimen-
sions. The self-attention blocks use the same structure from

Figure 1. U-Net Architecture

the Transformer paper [12] to understand spatial context
within the feature map. The yellow convolutional layers
downsample the feature map to produce a lower resolution,
and transposed convolutional layers are used to upsample
to a higher resolution. Crucially, skip connections are em-
ployed at each resolution level to act as residual connec-
tions.

Three inputs: the image (x), time schedule embedding
(t), and contextual embedding (c), are fed into the down
sampling pathway. However, not all inputs are necessar-
ily required in every block. For instance, the self-attention
mechanisms do not utilize the time schedule or the contex-
tual embedding.

We use the derived loss function from the original
DDPM paper, which is simplified to the following:

L(θ) = E
[∥∥ε− εθ(√ᾱtx0 +

√
1− ᾱtε, t)

∥∥2]
in which α is derived from β, and ε is the parameter to

the unit Gaussian distribution. Essentially we are building
a neural network to learn the best ε to denoise at each time
step t.

3.2.1 Residual Block

In the residual block (figure 2), the feature map, contextual
embedding, and time embedding are integrated. To achieve
this, the contextual and time embeddings are each processed
through an activation layer followed by a linear layer, en-
suring their output dimensions align with that of the feature
map after a single convolution layer.

Subsequently, the combined output of the three com-
ponents undergoes another convolution layer incorporating
dropout, with the residual connections added on top. The
inclusion of dropout mitigates the risk of over fitting on a

2



Figure 2. Residual Block Architecture

limited set of neurons or features, while the residual con-
nections enhances flexibility and facilitates deeper neural
networks.

It is worth noting that the contextual embedding and fea-
ture map are multiplied rather than added, resulting in dif-
ferent outcomes. In the experiments, this multiplication
leads to better-generated images.

3.2.2 Attention Block

The attention blocks (figure 3) uses the same structure as
described in the Transformer paper [11]. They are applied
at lower resolution layers. As discussed in the lecture, the
self-attention layer within these blocks is a crucial factor in
enhancing image generation quality. The attention blocks
allow for communication between distant regions of the im-
age feature map, facilitating the construction of a global
context. This integration of global information significantly
improves the quality of generated images compared to our
project milestone.

Figure 3. Attention Block Architecture

4. Dataset and Features
The MNIST database of handwritten digits (0 to 9) com-

prises a training set of 60,000 28x28 examples and a test set
of 10,000 examples. We primarily used MNIST to facilitate
quick iterations development.

The CIFAR-10 dataset consists of 60,000 32x32 color
images divided into 10 classes, with 6,000 images per class.
It includes 50,000 training images and 10,000 test images.

Since these labeled images are widely available in the
public domain, we did not collect our own image set. How-
ever, the ”style” of a generated image is highly dependent
on the training dataset.

In the U-Net, we followed the original paper and selected
64 as the feature dimension for the first convolutional layer.

5. Experiments
5.1. Hyperparameters

Table 1 describes the hyper parameters used throughout
the experiments. ”Total Timesteps” refers to the terminol-
ogy used in the original DDPM paper. In this context, a
real image from the dataset is considered to be at time 0 and
pure noise is considered to be at time 1000. The other pa-
rameters are fairly standard starter values. We experimented
with AdamW [4] (which includes decay) to extend training
duration while still observing marginal improvements.

5.2. Unconditional Generation

As a baseline, we tested the unconditional generation of
the images, where newly generated images can belong to

3



Hyperparameter Value
Batch Size 64
Total Timesteps 1000
Learning Rate 5 · 10−5

First CONV Output Channels 64
Optimizer AdamW

Table 1. Hyperparameters used throughout the experiments

any class. Figure 4 shows generated images from training
on MNIST dataset for a few epoch. Although these im-
ages are not recognizable as handwritten digits, some curves
are discernible, making them significantly better than pure
noise.

Figure 5 shows unconditionally generated images from
training on CIFAR10 dataset for 10 epoch. Similarly, while
the images are not yet clearly recognizable, they are much
better than pure noise.

Figure 4. The top row sampled 8 generated images from the model
after training for 4 epoch. The bottom row are sampled from the
MNIST dataset representing the ground truth.

Figure 5. Unconditional generated images from training on CI-
FAR10 for 10 epoch.

5.3. Noise Schedule

We improved upon the original DDPM implementation
by using a better noise (β) schedule. In the original paper,
β is incremented linearly. As suggested from [5], we can
use a cosine schedule to scale up beta which is much slower
than linear schedule. For the total time step T , at some time
step t, we generate the next β is generated as follows

βt+1 = 1−
cos
(
π
2
(t+1)/T+0.008

1.008

)2
cos
(
π
2
t/T+0.008

1.008

)2
As a result, shown in figure 6, the cosine noise sched-

ule adds noise much slower than the linear noise schedule
shown in figure 7. In the linear schedule, for more than half
of the timesteps, the images are close to pure noise and have
lost most of their features, making the U-Net learn a lot of
”useless” information.

Figure 6. Cosine noise schedule.

The cosine schedule enables the U-Net to learn more
meaningful data. As expected, when generating new im-
ages using the cosine noise schedule, the generation occurs
more gradually (figure 8), whereas with linear noise sched-
ule, most of the generation happens at the last steps (figure
9).

4



Figure 7. Linear noise schedule.

Figure 8. Unconditional generated images based on cosine beta
schedule. We can recognize the gradual generation of the image
features.

5.4. Conditional Generation

To facilitate conditional generation, class information
needs to be transformed into contextual embedding and ap-
plied to various layers of the neural network. The classes
(usually in integers) are first converted into one-hot encod-

Figure 9. Unconditional generated images based on linear beta
schedule. For most of the time steps during the generation, it’s
mostly noise.

ing, then processed through two fully connected linear lay-
ers with activation to generate the contextual embedding (c).
This embedding is then added to each residual block in the
U-Net, similar to the time embedding.

As suggested by [5], for a certain activation layer (aL) in
the U-Net, in addition to the time embedding t, the contex-
tual and time embeddings are combined as aL+1 = c·aL+t
to produce the next layer.

Figure 10 showed examples of conditional generation of
digit 0 through 7 after training on MNIST dataset for 10
epoch.

Figure 11 showed examples of conditional generation
of first 8 classes (airplane, automobile, bird, cat, deer,
dog, frog, horse) after training on CIFAR10 dataset for 60
epochs. Arguably, features resembling the class are recog-
nizable in some examples.

5.5. Result

Figure 12 shows the loss curve on the U-Net while train-
ing on CIFAR-10 dataset for 20 epoch. During training, the
model is not overfitted suggesting the model is not complex
enough, or the training data set is limiting.

The Inception Score [7] can be used to assess the quality
of generated images. As a baseline, we calculated the In-
ception Score for both pure noise and the CIFAR-10 dataset.
Pure noise represents an untrained model, and its Inception
Score serves as the lower bound for performance. We ex-
pect any trained model to outperform pure noise. On the
other hand, the Inception Score of CIFAR-10 serves as an
upper bound for a generative model’s performance.

We found the Inception Score on pure noise to be close
to 1 and the Inception Score on CIFAR-10 is close to 10

5



Figure 10. Conditional generated images after training on MNIST
dataset.

Figure 11. Conditional generated images after training on CI-
FAR10 dataset.

(See table 2). Our model scored 2.6 on the inception score,
which is slightly better than pure noise but not high enough
to convincingly resemble new images.

Similarly, as a reference we computed the Fréchet incep-
tion distance (FID) by comparing our generated images and
real images. The result yield 2.6 FID score for our model
on CIFAR-10, which isn’t very high compared to the origi-
nal DDPM paper. One limiting factor may be that we didn’t
generate enough novel images as they are slow to generate.

6. Conclusion and Future Work

6.1. Conclusion

The U-Net structure performs well by down sampling
and up sampling while maintaining output dimension. The

Figure 12. Loss curve training on CIFAR10 dataset for 20 epoch.

Data Set IS
Pure Noise 1.2150± 0.0113
Our Model 2.6435± 0.1593
CIFAR-10 9.9603± 0.7447

Table 2. Inception score on pure noise, CIFAR-10 data set and
our model.

residual connections allowed us to construct deep neu-
ral networks without worrying about diminishing gradient
problem.

The cosine noise schedule performed better than the lin-
ear noise schedule, as the cosine schedule removes noise
more gradually while retaining more features.

With contextual embedding, we were able to change the
neural network with fairly minimal effort to enable condi-
tional generation.

The overall performance is not on par compared to the
original papers with the following possible reasons: insuffi-
cient training duration, insufficient data, and the model be-
ing too large and complex.

6.2. Future Work

To further improve, we may need more data to overfit the
neural network, given its many residual and self-attention
blocks. The image set we are training on has only 60,000
examples. We can preprocess the dataset to generate more
data by cropping, applying jitter, or blocking out some ar-
eas.

To sample a new image, we need to iterate 1000 times
through the neural network, which is very time consuming.
We can improve it by applying Denoising Diffusion Implicit
Models [9].

We can experiment with learnable covariance as opposed
to fixed covariance schedule. Also, as [2] suggested, a score

6



based diffusion with varying weight conditional guidance
could improve the generation.

7. Contributions and Acknowledgements
He Nan spearheaded the development of the U-Net, At-

tention Block, and Residual Block components. Lucas con-
tributed by implementing classifier-free guidance on top of
the existing model and setting up the Google Cloud Plat-
form (GCP) environment with Docker and Jupyter server.
Collaboratively, they refined the model, progressing from
basic convolution layers to a sophisticated diffusion model.

Our starter code is inspired from [10], from which we
implemented a full U-Net, changed noise scheduling, and
added a new contextual embedding.

References
[1] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion proba-

bilistic models. Advances in neural information processing
systems, 33:6840–6851, 2020.

[2] K. Kreis, R. Gao, and A. Vahdat. Denoising diffusion-based
generative modeling: Foundations and applications. CVPR,
2022.

[3] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-10 (Canadian
Institute for Advanced Research), 2009.

[4] I. Loshchilov and F. Hutter. Decoupled weight decay regu-
larization. arXiv:1711.05101, 2017.

[5] A. Q. Nichol and P. Dhariwal. Improved denoising diffu-
sion probabilistic models. In International conference on
machine learning, pages 8162–8171. PMLR, 2021.

[6] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Med-
ical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Ger-
many, October 5-9, 2015, proceedings, part III 18, pages
234–241. Springer, 2015.

[7] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans.
arXiv:1606.03498, 2016.

[8] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and
S. Ganguli. Deep unsupervised learning using nonequilib-
rium thermodynamics. In International conference on ma-
chine learning, pages 2256–2265. PMLR, 2015.

[9] J. Song, C. Meng, and S. Ermon. Denoising diffusion im-
plicit models, 2022.

[10] N. W. Varuna Jayasiri. labml.ai annotated paper implemen-
tations, 2020.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. Advances in neural information processing sys-
tems, 30, 2017.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all
you need, 2023.

7

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1606.03498

