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Abstract

Using concepts from statistical physics, we study signal
propagation in deep neural networks with random weight
and bias initialization, without the use of any architectural
tricks to maintain gradient flow such as batch normaliza-
tion or residual connections. First, we present a theoretical
mean-field framework to study the depth scales of a fully-
connected neural network as a function of the architecture.
We provide an order-chaos phase transition and show that
information can only propagate when the network archi-
tecture is in the ordered phase. Unfortunately, the mean-
field literature has been largely contextualized to the tanh
activation function due to its nice properties; we prove in
Theorem 1 that it does not generalize to the sigmoid activa-
tion function, which exhibits significantly lower trainability.
However, we empirically verify that it does generalize to
functions like arctan and softsign, and surprisingly, ReLU,
which is unbounded.

Next, we take a detour into dynamical isometry, a con-
cept from random spectral matrix theory that demonstrates
why orthogonal initialization is preferred to Gaussian ini-
tialization. We then present an extension of the mean-field
framework to analyze depth scales of convolutional layers.
As expected, the depth scales remain largely the same, but
convolutional neural networks exhibit better much better
performance on test sets. We empirically verify our the-
oretical predictions, investigating the independence of the
depth scale to the choice of dataset and the learning with
varying degrees dynamical isometry. Together, these results
paint a fairly complete theoretical prediction of the effect
of architecture and initialization on training deep vanilla
neural networks with empirical verification to merit.

1. Introduction
Deep neural networks have exhibited tremendous suc-

cess in recent years. However, the deeper the network, the
harder it is for information about the dataset to be preserved
as it propagates through each layer. For instance, deep neu-
ral networks often encounter problems with vanishing or ex-

ploding gradients, leading to an inability to properly update
weights and biases. In order to maintain gradient flow in
deep neural networks, techniques such as batch normaliza-
tion [5], layer normalization [1], gradient clipping [10], and
residual connections [4] help explicitly maintain gradient
flow throughout deep neural networks.

However, inspired by mean field theory from statisti-
cal physics, it has been shown that specific initialization
schemes for the weights and biases can implicitly maintain
gradient flow. Such initialization renders even the deep-
est neural networks trainable without any other changes to
architecture [12, 13]. Drawing on the theory of dynami-
cal isometry, this mean field theory has been extended to
more modern architectures, such as convolutional layers
and transformers [15, 2]. Surprisingly, these works find an
order-to-chaos phase transition as a function of the weight
variance and the depth; there is a sharp phase boundary
on one side of which the model is able to learn with very
high accuracy and the other side of which the model does
no better than random. The mean field theory allows us to
approximate the phase boundary with a “depth scale” that
intuitively tells us how far information can be propagated
through the network.

In particular, Schoenholz et al. [13] shows that fully-
connected neural networks become more trainable when the
initial weights and biases are sampled from a Gaussian dis-
tribution with mean zero and variance within a certain depth
scale. Additionally, Pennington et al. [11] takes inspira-
tion from random matrix theory to show that orthogonal
initialization schemes are able to learn faster than Gaus-
sian initialization schemes. Xiao et al. and Cowsik et al.
[15, 2] then combine these two results to create initializa-
tion schemes for convolutional neural networks and trans-
formers, respectively.

Clearly, the mean-field framework has been used to ex-
plained the learning dynamics of many different architec-
tures. However, in our paper, we seek to test its robustness.
For instance, although the analysis of Schoenholz et al. is
general enough to fit a fully-connected network with any ac-
tivation function, their experiments focus almost excluively
on the tanh activation function. Therefore, we test if their
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theoretical framework can extend to other activation func-
tions that are commonly used in practice, such as sigmoid
and ReLU, which are not centered. On face from what has
been shown thus far in the literature, it’s not at all obvious
if the mean field theory generalizes upon relaxing the as-
sumptions of having a bounded, mean 0 activation function.
Additionally, we attempt to obtain experimental results on
different datasets, testing on CIFAR-10 [8] in addition to
MNIST [3], verifying empirically that the framework is in-
dependent of the dataset.

We also explore the differences in Gaussian and orthog-
onal initialization, and use that to motivate our exploration
of convolutional layers, a more complicated and modern ar-
chitecture that is actually used in practice. In particular,
the work of Xiao et al. [15] only demonstrates the viabil-
ity of the framework on convolution-only architecture. We
attempt to unify the fully-connected framework [13] with
the convolutional framework to produce an initialization
scheme for an architecture that alternates between convo-
lutional and fully-connected layers. Though they present a
theoretical result about dynamical isometry that motivates
their Delta-Orthogonal initialization scheme for convolu-
tional kernels, they don’t provide empirical results compar-
ing iid Gaussian weights; to make the theory more robust,
we examine these learning dynamics.

2. Related Work
Currently, to solve the problem of vanishing and ex-

ploding gradients, the most common techniques are batch
normalization [5], layer normalization [1], residual connec-
tions [4] and gradient clipping [10]. Both batch and layer
normalization attempt to renormalize the data after each
layer to be (roughly) distributed like a standard Gaussian to
maintain gradient flow. Residual connections add the input
of each layer to the output of a subsequent layer to facilitate
gradient flow, and gradient clipping, as the name suggests,
simply limits gradient values to be within a specified range.
Although these work well in practice, they all serve as a
somewhat artificial solution to the problem of vanishing and
exploding gradients, and require additional computational
capacity, which often serves as a limiting factor. Because of
this, initialization techniques which directly enable back-
propagation without additional computational cost, includ-
ing the ones explored in this paper, are often preferred.

Mean field theory is an enormously successful analysis
technique from statistical physics that approximates the dy-
namics of complex systems of interacting particles with a
more analytically tractable system [7]. In a common ex-
ample, the Ising model of interacting spins, the more an-
alytically tractable system is one where the inter-spin in-
teractions are neglected and are absorbed into an external
applied magnetic field instead.

Poole et al. [12] provides a modern foundation for a

mean field theory of deep neural networks, though the idea
dates back to the 1980s [14]. They models the propagation
of each input in a deep neural network as the motion of a
particle throughout time, as it interacts with other particles.
Following the standard physical mean field approach, they
obtain an iterative map for the variance of a single input af-
ter each layer and another for the correlation between two
inputs after each layer. After showing that these iterative
maps each converge to a fixed point, they provides a crite-
rion for the order-chaos phase transition which they conjec-
ture renders deep neural networks trainable.

This is picked up by Schoenholz et al. [13], which uses
it to study the depth scales of fully-connected neural net-
works. This paper explores gradient backpropagation in ad-
dition to the forward propagation analyzed in [12], and finds
critical exponents to theoretically predict depth scales. Ad-
ditionally, this paper empirically analyzes the tanh activa-
tion function by training a fully-connected neural net using
Stochastic Gradient Descent (SGD) and RMSProp on the
MNIST [3] and CIFAR10 [8] datasets. They produce depth
scale and trainability plots which closely match their theo-
retical predictions. Unfortunately, although the theoretical
formulation is meant to be generalized to all bounded acti-
vation functions, the authors of this paper do not empirically
examine any functions other than tanh. Although the au-
thors do make an attempt at investigating more complicated
architectures by showing that dropout inhibits trainability,
they were not able to generalize their findings to more com-
monly used architectures. Since there is no publicly avail-
able code provided by the authors of this paper, we used the
(unofficial) implementation given in [9] as a starting point.

The paper by Pennington et al. [11] attempts to expand
the mean field formalism to other common initialization
techniques. They draw on the concept of dynamical isom-
etry from spectral random matrix theory, this being that the
spectrum of the Jacobian concentrates about 1. With dy-
namical isometry, they show that initializing weights as an
orthogonal matrix (as opposed to having entries be iid Gaus-
sian), improves the trainability of a deep neural network.
In particular, with orthogonal initialization, the number of
epochs necessary for the network to converge scales sub-
linearly with depth instead of linearly. Interestingly, the
authors show that in contrast to sigmoidal networks such
as tanh, sigmoid, etc., the ReLU activation function is un-
able to achieve dynamical isometry, meaning that it benefits
less from the orthogonal initialization. This matches their
empirical results when they train on CIFAR10 using SGD,
SGD with Momentum, Adam and RMSProp. In this paper,
more activation functions than simply tanh are explored,
but this paper still only focuses on the most basic deep neu-
ral networks with only linear layers.

However, Xiao et al. [15] is able to generalize this frame-
work to convolutional layers. Building off both the mean
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field formalism for information propagation, and the idea
of achieving dynamical isometry using orthogonal initial-
ization, the authors are able to train a vanilla CNN with
10,000 layers using Delta-Orthogonal Initialization. They
find a similar order-chaos phase transition, as in the fully-
connected case, which determines the trainability of the net-
work at various depths. However, they demonstrate that
convolution layers with iid weights cannot achieve dynam-
ical isometry, which again motivates orthogonal initializa-
tion. Empirically, the authors are able to achieve testing
accuracies of 99% and 82% on MNIST and CIFAR10, re-
spectively. Most importantly, this paper, unlike the previous
ones, is able to extend the mean-field formalism to an ar-
chitecture that is commonly used in practice. For the imple-
mentation of Delta-Orthogonal Initialization, we referred to
[6] along with the authors’ official implementation. In fact,
a recent paper by Cowsik et al. [2] is able to further extend
the mean field theory framework to another modern archi-
tecture of transformers, and another of Yang and Schoen-
holz [16] applies the framework to residual networks.

3. Theoretical Results and Formulation
3.1. Fully-Connected Layers

For fully-connected layers, we review the mean-field for-
mulation from Poole et al. and Schoenholz et al. [12, 13].
Consider a deep fully-connected neural network with depth
D and width Nl at each layer l. Let W 1, ...,WD denote
the weight matrices, b1, ..., bD denote the bias vectors, and
φ denote the activation function. Suppose that the initial
weights and biases are sampled from Gaussian distributions
with mean zero, and variance σ2

w/Nl and σ2
b , respectively.

The factor of 1/Nl in the weight variance is to ensure that
the input to an individual neuron of the l + 1 layer remains
O(1), independent of the width Nl. Inputs are propagated
through the network by the pair of equations

zl = W lyl + bl yl+1 = φ(zl) (1)

with y0 denoting the input to the first layer. Since the
weights and biases are random variables, zli and yli are ran-
dom variables as well. Here, we assume the “mean-field
approximation” by supposing that the zli are Gaussian with
mean ⟨zli⟩ and variance ⟨(zli − ⟨zli⟩)2⟩. Let y0 be some ar-
bitrary input, then since the weights and biases are iid with
mean zero, the first two moments are given by

⟨zli⟩ = 0 ⟨zlizlj⟩ = qlδij (2)

where δij denotes the Kronecker delta, and ql is the variance
of the zl. As derived in Poole et al., this is given by

ql = σ2
w

∫
Dzφ(

√
ql−1z) + σ2

b (3)

where Dz ≡ 1√
2π

exp
(
− z2

2

)
denotes the standard Gaus-

sian measure. The initial condition is q0 = 1
N0

∥y0∥22 and
q1 = σ2

wq
0 + σ2

b . If φ is bounded, then for any σ2
w and σ2

b ,
3 has a well-defined fixed point, q∗ = liml→∞ ql.

Now suppose that there is a pair of arbitrary inputs x0

and y0, then again since the weights and biases are iid with
mean zero, the covariance at each layer is given by

⟨zli,xzli,y⟩ = qlxyδij (4)

where again, as derived in Poole et al., qlxy is described by
the recurrence

qlxy = σ2
w

∫
Dz1Dz2φ(u1)φ(u2) + σ2

b (5)

u1 =

√
ql−1
xx z1 (6)

u2 =

√
ql−1
yy

[
cl−1
xy z1 +

√
1− (cl−1

xy )2z2

]
(7)

where clxy = qlxy/
√
qlxxq

l
yy is the correlation between two

inputs at layer l. Again Dz1 and Dz2 denote the standard
Gaussian measure, and note that u1 and u2 are correlated
approximations for the zl−1 with the correct covariance ma-
trix. Examining (5), it is clear that c∗ = liml→∞ clxy = 1 is
a fixed point. To determine whether the c∗ = 1 fixed point
is stable or not, Poole et al. computes the susceptibility

χ1 ≡
∂clxy

∂cl−1
xy

= σ2
w

∫
Dz[φ′(

√
q∗z)]2 (8)

and deduces that c∗ = 1 is stable if χ1 < 1 and unstable oth-
erwise. This gives the critical line χ1 = 1 which separates
the ordered phase, where c∗ = 1 we achieve correlation of
inputs in the limit, and the chaotic phase where inputs are
decorrelated in the limit.

We can continue by examining the dynamics of ql, clxy
near the fixed points. Indeed, continuing with our mean-
field inspired analysis, we conjecture that there exists some
critical exponents ξq, ξc such that near the critical point,

|ql − q∗| ≈ exp
(
− l

ξq

)
and |clxy − c∗| ≈ exp

(
− l

ξc

)
.

These depth scales are derived in detail in Schoenholz et
al. [13]; note that we use the assumption of being near the
fixed point with a Taylor expansion and keeping terms up to
lowest order only. We find that

ξ−1
q = − log

(
χ1 + σ2

w

∫
Dzφ′′(

√
q∗z)ϕ(

√
q∗z)

)
(9)

ξ−1
c = − log

(
σ2
w

∫
Dz1Dz2φ

′′(u∗
1)ϕ(u

∗
2)

)
(10)

where naturally, u∗
1, u

∗
2 are equivalent to u1, u2 from before

with ql−1
xx = q∗ = ql−1

yy and cl−1
xy = c∗. Fitting the expo-

nential approximations with these depth scales sees a good
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match with empirical measurements for the variance and
correlation. In our experiments, we use this framework to
examine the trainability of various fully-connected layers,
including those integrated into other architecture.

3.2. Dynamical Isometry

Now that we have a condition for trainability, a natu-
ral next question is to consider the speed of convergence.
Again analyzing fully-connected layers with the same setup
as the previous section, [11] considers the input-output Ja-
cobian matrix

J =
∂yD

∂z0
=

D∏
l=1

AlW l (11)

where Al is a diagonal matrix with random entries Al
ij =

δijφ
′(zli) and W l is a random weight matrix. First, note

that, recall that the order to chaos phase transition occurs
when χ1 = 1, and we can express

χ1 =
1

N
⟨Tr(AW )TAW ⟩ = σ2

w

∫
Dz[φ′(

√
q∗z)]2 (12)

where A and W are the corresponding random matrices to
Al and W l for when the weight variance is set to the fixed
point q∗. Through this interpretation, [11] χD

1 becomes the
mean squared singular value of J , so our task reduces to
computing the spectral density (probability density of sin-
gular values) of J . Intuitively, the more tightly concentrated
the spectral density is about 1, the “sharper” the phase tran-
sition at χ1 = 1 is, rendering the neural network easier to
train.

The term perfect dynamical isometry is used to describe
a random matrix with spectral density ρ(λ) = δ(λ − 1),
so we can equivalently state that more dynamical isometry
that a neural network architecture has, the easier it will be to
train. Interestingly, [11] proves that ReLU cannot achieve
perfect dynamical isometry, and nor can architectures with
weight matrices sampled iid from a Gaussian, but sigmoidal
activation functions (eg. tanh and sigmoid) with orthogonal
initialization can.

3.3. Convolutional Layers

To this point, we have considered only vanilla feedfor-
ward fully-connected neural networks, but we hope to ex-
tend the mean-field theory to more modern architectures.
For the vision tasks considered herein, a common archi-
tectural choice is convolutional neural networks; hence we
extend our analysis to include convolutional kernels with
inspiration from Xiao et al. [15]. Consider a CNN with
D layers, each applying 1D convolutions along two differ-
ent dimensions, with periodic boundary conditions, and us-
ing kernel size 2k + 1, spatial size n and c channels. Let

φ denote the activation function, ωl ∈ R(2k+1)×c×c de-
note the weight tensor, and bl ∈ Rc denote the biases, for
l = 1, ..., D. If hl

j(α) denotes the pre-activation at layer l,
channel j, and spatial location α ∈ {1, ..., n}, then inputs
are propagated through the network by the equation

hl+1
j (α) =

∑
channels i

kernel index β

φ(hl
i(α+ β))ωl+1

ij (β) + bl+1
j (13)

where β ∈ Z such that |β| ≤ k. As in the fully-connected
case, suppose that the weights and biases are sampled
from Gaussian distributions with mean zero, and variance
σ2
w/(c(2k + 1)) and σ2

b , respectively. As before, we make
the “mean-field approximation” by supposing that hl

j are
Gaussian with mean zero with covariance ⟨hl

j(α)h
l
j(α

′)⟩,
where the average is taken over the weights and biases. [15]
shows that the covariance matrix at each layer l + 1 can be
expressed as

Σl+1 = A ⋆ C(Σl) (14)

with the following definitions

A =
1

2k + 1
I2k+1 (15)

[C(Σ)]α,α′ = σ2
wEh∼N (0,Σ)[φ(hα)φ(hα′)] + σ2

b (16)

[A ⋆ B]α,α′ =
1

2k + 1

∑
kernel indexβ

Bα+β,α′+β (17)

Then, similar to the fully-connected case, 14 has a fixed
point (ie a point Σ∗ = A ⋆ C(Σ∗)) given by

Σ∗
αα′ = q∗(δαα′ + (1− δαα′)c∗) (18)

where c∗ is the fixed point defined in the fully-connected
case.

To analyze the dynamics near the fixed point Σ∗, we
again compute the susceptibility by finding partial deriva-
tives, similar to how χ1 was computed in the fully-
connected case. As shown in [15], the Jacobian of the C-
map in 16, evaluated at the fixed point Σ∗, decomposes
into a diagonal eigenspace with eigenvalue χq∗ and an off-
diagonal eigenspace with eigenvalue χc∗ , where

χq∗ = σ2
wEh∼N (0,Σ∗)[φ

′′(h1)φ(h1) + φ′(h1)
2] (19)

χc∗ = σ2
wEh∼N (0,Σ∗)[φ

′(h1)φ
′(h2)], h1 ̸= h2 (20)

Essentially, small perturbations in q∗ and c∗ affect Σ∗ inde-
pendently. This is formalized in [15] by moving to a Fourier
basis, and showing that |Σl −Σ∗| can be separated into two
independently evolving Fourier modes. From this, one can
quickly conclude that, exactly like the fully-connected case,
the fixed point Σ∗ is stable if and only if χq∗ < 1 and
χc∗ < 1, meaning that χ1 = 1 still represents the crit-
ical line between the ordered and chaotic phases, and the
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desired condition for neither exploding nor vanishing gra-
dients. Again using the approximation of dropping higher
order Taylor coefficients near the fixed point, we find that
the depth scales of the different Fourier modes and the fixed
point c∗ are given by

ξ−1
α,α′ = − log(χc∗λα,α′) (21)

ξ−1
c∗ = − logχc∗ (22)

where λα,α′ are the eigenvalues of A. As in the fully-
connected scenario, empirical measurements for trainability
seem to match these theoretical depth scales.

However, as exhibited in the discussion regarding dy-
namical isometry, the condition χ1 = 1 is not always a
sufficient condition for trainability of deep networks. In
particular, we again desire the singular values of the input-
output Jacobian matrix J to be close to 1. Noting that con-
volution is still a linear operator, we are able to adopt the
analysis given in [11] and explained in the previous sec-
tion. In particular, by again writing J in the same form
as 11, we note that both Al and W l should be close to or-
thogonal for l = 1, ..., D, in order to achieve dynamical
isometry. For Al, this can be done by choosing the appro-
priate value of q∗ and appropriate activation function. How-
ever, for W l, [15] shows that if the weights are initialized as
iid Gaussian, then its singular value distribution converges
to the Marcenko-Pastur distribution, meaning that it cannot
achieve dynamical isometry. Therefore, it is again neces-
sary to utilize orthogonal initialization.

Since there are multiple depth scales, one for each
Fourier mode, we need to find a variance vector such that
the depth scale ξα,α′ diverges for all modes. Indeed, [15]
shows that there exists one such vector which makes all
eigenvalues λα,α′ equal to 1, meaning that information can
propagate along all Fourier modes. Combining this vari-
ance vector with orthogonal initialization yields the Delta-
Orthogonal initialization scheme [15]. We employ this in
our CNN architecture to empirically validate the theoretical
hypothesis that deep convolutional networks become more
trainable at the appropriate depth scale, and learn in fewer
epochs using orthogonal initialization.

4. Empirical Results
In this section, we seek to empirically verify the theoreti-

cal results of the previous section that predict the trainability
and learning dynamics of deep neural networks.

4.1. Dataset, Hyperparameters, and Architectures

For all of our results, we train on the MNIST and CI-
FAR10 datasets with Stochastic Gradient Descent (SGD)
and a negative log likelihood loss function. For the
MNIST dataset, we normalize the data to be in the inter-
val [−0.5, 0.5] for activation functions whose range is in

[−1, 1], including ReLU, and we normalize the data to be in
the interval [0.25, 0.75] for activation functions in the range
[0, 1], to avoid unnecessary issues with vanishing gradients.
We use the following default hyperparameters: a learning
rate of 1× 10−3, a batch size of 256, 180 steps per epoch.

For our architecture, we used a constant width of 300,
as in [13], for each fully-connected network, with depth D
layers in total. For convolutional layers, we follow the lead
of [15] and first increase the number of channels to 256 with
a 3×3×256 convolutional layer. From there, we apply two
3 × 3 × 256 convolutional layers with stride of 2 to down-
sample the image to 7× 7 for MNIST, 8× 8 for CIFAR-10.
We conclude by applying D 3× 3× 256 convolutional lay-
ers with stride 1. At the end, we applied an average pooling
layer. For both architectures, we append a projection matrix
at the end to output unnormalized logits for each class.

In terms of code, we used the existing codebases from
[9] and [6] for the implementation of the fully-connected
depth scale plots, including the Delta-Orthogonal initializa-
tion for CNNs. However, [9] only used the MNIST dataset
and the tanh activation function, so we extended this code
to CIFAR10 and other activation functions. We also imple-
mented code to run various experiments on training and test
sets, analyze the fixed points c∗ and q∗ as an intermediate
result for generating the ξc plots, and to plot convergence
rate for Gaussian and orthogonal initializations. The convo-
lutional architecture, and integration of convolutional and
fully-connected layers, was largely our code.

4.2. Different Activation Functions

Figure 1. Empirical trainability of neural networks as a function
of weight variance σ2

w and depth, with multiple of depth scale
(4.5ξc), theoretical prediction, overlaid on top. Top Left: arctan,
Top Right: softsign, Bottom Left: ReLU, Bottom Right: sigmoid.

First, to make the mean field framework more robust to
different architectures, we explored various activation func-
tions on the MNIST dataset in one epoch. Previous works
focus heavily on the tanh activation function, and in fact

5



the theoretical analysis of [13] seems to only be valid for
bounded, mean zero activation functions.

As a baseline, we attempted to reproduce the results for
tanh found in [13], using σ2

b = 0.05 and plot it in the left
side of Figure 2. We also worked with similar activation
functions that are also bounded and symmetric around zero
keeping the σ2

b the same, such as arctan and softsign, which
is given by f(x) = x

|x|+1 . Due to the similarity of these
three functions, it is not a surprise that they produced similar
results, with nearly identical weight and bias variances and
depth scales, as seen in the top of Figure 1.

Next, as a preliminary test, we analyzed the sigmoid non-
linearity φ(x) = 1

1+e−x , since it is closely related to the

tanh activation function via φ(x) = tanh(x/2)+1
2 . How-

ever, notice that φ(x) ∈ [0, 1], so it is symmetric around
0.5, whereas tanh(x) ∈ [−1, 1], so it is symmetric around
0. Thus, despite the two activation functions having the
same functional form, we hypothesized the depth scales and
learning dynamics of sigmoid to be distinct from those of
tanh, with the nonzero mean of sigmoid worsening gradi-
ent flow. Indeed, in our empirical experiments, we found
that sigmoid performed much worse than tanh, barely bet-
ter than 10% on MNIST, which demonstrates that it is more
or less guessing. Indeed, we have that

Theorem 1 For the sigmoid activation function φ(x) =
1

1+e−x , if χ1 = 1, then σ2
w ≳ 100, for any σ2

b ∈ [0,∞).

The full proof of Theorem 1 is given in the appendix. In
order to enable the model to train, we set σ2

b = 0.09 (in-
stead of exactly zero). As demonstrated in the bottom right
of Figure 1, sigmoid ended up performing very poorly on
MNIST near ξc, because the predictions of the theory yield
absurdly high weight variance for training a neural network.

From an intuitive perspective, this is expected, since if
the weight variance σ2

w is too high, it essentially becomes
random noise. This can lead to numerically unstable gra-
dients and poor convergence. Clearly, the case of sigmoid
demonstrates that the mean-field framework does not ex-
tend to all bounded activation functions, like [13] claims.
Although the depth scales still exist for activation functions
like sigmoid, which are not mean zero, the resulting weight
and bias variances are simply unfeasible for any neural net-
work to learn from.

Finally, although [13] only claims that their framework
works on bounded activation functions, we also investigated
ReLU, which is unbounded. The analysis of [13] requires
boundedness to show the existence of a fixed point, since
otherwise the integral may diverge. However, although this
is a sufficient condition, it is not always necessary. Our em-
pirical fixed point analysis demonstrated the existence of
q∗ and c∗ for ReLU. Setting σ2

b = 2.01 × 10−5, we pro-
duced the depth scale plot in the bottom left of Figure 1.

Although ReLU did not perform as well as tanh, the mean-
field framework still extended quite well, enabling us to find
a viable initialization scheme for information propogation
through many layers.

4.3. Generalization to Different Datasets

Figure 2. Empirical trainability after 5 epochs of neural networks
with tanh activation as a function of weight variance σ2

w and
depth, with multiple of depth scale (4.5ξc), theoretical prediction,
overlaid on top. Left: MNIST, Right: CIFAR-10.

An important feature of the theoretical analysis of Sec-
tion 3 is that it predicts trainability purely as a function of
the architecture and is independent of the choice of dataset.
However, the analysis of [13] focuses almost exclusively on
the fairly simple MNIST task. Thus, we show in Figure
2 that the depth scale generalizes to the more complicated
CIFAR-10 task as well, as predicted by the theoretical anal-
ysis. This empirical verification of the theoretical prediction
finding makes the results far more compelling and general-
izable across tasks.

4.4. Dynamics of Orthogonal Initialization

Figure 3. Learning dynamics with respect to dynamical isometry
on CIFAR-10. Left: fully-connected, Right: convolutional. Red
curves have Gaussian initialization and blue have orthogonal ini-
tialization; dotted lines denote test accuracy and solid lines denote
training accuracy. Smoothed with 10 epoch moving average.

As explained in Section 3, we expect to see that within
the ordered phase, the greater a degree of dynamical isom-
etry a neural network arhchitecture exhibits, the more
quickly it will converge. However, [11] only empirically
tests this in the context of fully-connected networks on the
MNIST task, and [15] only theorizes about this. Thus, to
inform our future architectural choices, we test Gaussian
and orthogonal initialization for both fully connected and
convolutional architectures (which is detailed in the next
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subsection). In Figure 3 we test the effect of orthogonal
initialization with a depth of 40, σ2

w = 2, and σ2
b = 0.05

and the tanh activation function (which is squarely in the
ordered phase, so is trainable). The test accuracy of orthog-
onal initialization quickly exceeds Gaussian initialization
across both architectures, matching the predictions of the
theory. Thus, we henceforth use orthogonal initialization
for both our fully-connected and convolutional layers, as it
improves the dynamical isometry of the architecture.

4.5. Convolutional Layers

Figure 4. Trainability of CNN with tanh activation for 5 epochs
on CIFAR-10, with multiple of depth scale (4.5ξc) overlaid on top.

We showed in Section 3 that the mean-field theory ex-
tends to convolutional neural networks with kernel ma-
trix weights sampled according to σ2

w, and in Figure 4 we
demonstrate agreement between theory and practice. Being
an architecture that is better for complicated vision tasks
such as CIFAR-10, we see the performance within the or-
dered phase in Figure 4 far exceeds the performance within
the ordered phase in the right side of Figure 2.

5. Discussion and Conclusion
In this paper, we developed a mean-field theory of in-

formation propagation through deep neural networks, and
showed that there exists a stark phase transition between or-
der (where deep neural networks are trainable) and chaos
(where the vanishing/exploding gradient problem renders
learning impossible). The nature of the heatmaps presented
in this paper reveal something entirely nontrivial. Consider
the aforementioned depth scale ξc(A) that is a function
of the architecture A alone and outputs a tuple (σ2

w, D).
This depth scale is such that such that a neural network
achieves good accuracy at (σ2

w, D) but fails to be able to
learn at (σ2

w, D+ ε). If the network is deeper than the max-
imum depth scale, our mean field theory explains that inputs
will be uncorrelated after propagating through the network,
which corresponds to inability to learn. However, a naive
guess may predict that there no phase transition between
order and chaos, but rather that there is a smooth gradient
where neural networks get gradually harder to train as the
depth increases. However, we show that the naive picture is
the exception, rather than the rule, and is satisfied only by

special activation functions such as sigmoid (see this “naive
picture” in the bottom right of Figure 1). Rather, there is
surprisingly a “cliff” with shape ξc(A), such that falling off
the cliff makes it impossible to train the neural network.

It is worth remarking that the effort herein is a theoretical
study on trainability of deep neural networks rather than a
one on optimizing accuracy on the test set. Due to computa-
tional constraints, the neural networks in the heatmaps were
not able to be trained until convergence, hence for instance
the poor performance on CIFAR in Figure 2. Within the
ordered regime, neural networks are trainable and gradient
flow is possible, and from there, architectural optimizations
can be performed to provide the best generalization to the
test set. See for instance that in Figure 3, when the neural
networks are trained until convergence, they achieve much
higher accuracy than what is displayed in the plots for the
corresponding points.

In the same vein, for the purposes of fair comparison,
when generating the heatmaps we did not try any more ad-
vanced techniques that are known to improve the perfor-
mance of deep vision models such as dropout, learning rate
decay, etc. The convolutional architecture that we tested
with was clearly far from optimal; we immediately down-
sampled the images for ease of computation, aggressively
pooled, and used a simple linear projection layer at the end.
Not downsampling or pooling all at once, having a larger
MLP to compute the logits, or a variety of other things could
help improve the architecture. Our results should be taken
as a theoretical prediction of the depth scales for trainability
of neural networks, with astounding agreement with empir-
ical experiments, rather than an attempt to design a model
with the best performance on MNIST or CIFAR-10.

Revisiting our initial goal of training deep neural net-
works without explicit architectural techniques to ensure
gradient flow, we have indeed shown trainability in a cer-
tain regime. However, as an important intermediate result,
we also observed the importance of dynamical isometry,
which motivates initializing with orthogonal weight matri-
ces rather than iid Gaussian and using sigmoidal activation
functions (because ReLU, for instance, cannot achieve dy-
namical isometry). Indeed, with orthogonal initialization,
hyperparameter tuning, and some more compute, we can
surprisingly achieve quite good performance with even ex-
tremely deep vanilla neural networks without running into
challenges with vanishing or exploding gradients. Notably,
[15] trains a 10,000 layer convolutional neural network us-
ing these techniques and achieves 80% accuracy on the test
set; more reasonably sized networks achieve nearly 90%
which is comparable to the state of the art for sigmoidal
networks. Thus, maybe the first instinct when training deep
neural networks should not be to add batch normalization
between each layer, but rather to try to sample weight matri-
ces in the ordered region and achieve dynamical isometry!
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6. Appendix
Proof of Theorem 1. We analyze the following two equa-

tions given in [12] and [13]:

q∗ = σ2
w

∫
Dz(φ(

√
q∗z))2 + σ2

b (23)

χ1 = σ2
w

∫
Dz(φ′(

√
q∗z))2 (24)

Let k =
√
q∗, and first assume that k can take any value

in [0,∞). Noting that φ′(x) = φ(x)(1− φ(x)), then

(φ′(kz))2 = [φ(x)(1− φ(x))]2 = φ(x)2 − 2φ(x)3 + φ(x)4

so if χ1 = 1 then 24 becomes

1

σ2
w

=

∫
Dz[φ(kz)2 − 2φ(kz)3 + φ(kz)4] (25)

To minimize σ2
w, we would like to maximize the integral

over all k ∈ [0,∞). We claim that this occurs precisely
when k = 0. Indeed, define

Φ(x) ≡ φ(x)2 − 2φ(x)3 + φ(x)4 (26)

and compute

Φ′(x) = 2φ(x)− 6φ(x)2 + 4φ(x)3

= 2φ(x)(1− 2φ(x))(1− φ(x))

Notice that since φ(x) ∈ (0, 1), then if Φ′(x) = 0, it must
be the case that 1 − 2φ(x) = 0, or φ(x) = 1

2 , yielding
x = 0. The second derivative test shows that this is indeed
a maximum, since Φ′′(0) = −1 < 0. Since the Gaus-
sian measure Dz is always positive, then the right hand side
of 25 is clearly maximized when k = 0: if k ̸= 0, then
Φ(kz) < Φ(0) for all z ̸= 0. This gives a preliminary
bound for σw: if k = 0, then

1

σw
=

1

16

∫
Dz =

1

16
=⇒ σw = 16 (27)

in view of the known fact that the integral of the Gaussian
measure Dz is equal to 1. However, it turns out that this is
not achievable, since it requires q∗ = 0. This would reduce
23 to

0 = σ2
w

∫
Dz(φ(0))2 + σ2

b =
σ2
w

4
+ σ2

b

which implies σ2
w = σ2

b = 0 since variances are necessarily
nonnegative. But if σ2

w = 0 and χ1 = 1, then by 24, we
cannot have q∗ = 0.

This means that the preliminary bound in 27 can actu-
ally be improved. Again notice that since φ(x) ∈ (0, 1)
and it is monotonically increasing, then by computation,

Φ′(x) < 0 for x > 0, and Φ′(x) > 0 for x < 0. In partic-
ular, this means that Φ(x) is strictly decreasing for x > 0
and strictly increasing for x < 0, so that if |x1| < |x2| then
Φ(x1) > Φ(x2). This shows that for all z, it must be the
case that Φ(k1z) ≥ Φ(k2z) if |k1| < |k2|, with equality
only occurring when z = 0. Again since the Gaussian mea-
sure Dz is positive, then the right-hand side of 25 is larger
for smaller k (recall that k =

√
q∗ is nonnegative). There-

fore, to minimize σ2
w, we would like to minimize k =

√
q∗

as well, meaning that we should minimize q∗. Examining
23, it is clear that the integral on the right-hand side is non-
negative, meaning that q∗ increases with respect to σ2

b . To
minimize q∗, we should therefore let σ2

b = 0. This yields a
system of two equations

q∗ = σ2
w

∫
Dz(φ(

√
q∗z))2

1 = σ2
w

∫
Dz(φ′(

√
q∗z))2 = χ1

with two unknowns q∗ and σ2
w. Numerical computation

gives σw ≈ 103.05 (as shown in Figure 5), which proves
the bound σ2

w ≳ 100.

Figure 5. Susceptibility of sigmoid as a function of weight variance
with σ2

b = 0. Recall that the phase transition from order to chaos
occurs at χ1 = 1, plotted in gray.
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