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Abstract

In recent years, deep vision models have shown remark-
able performance on standard benchmarks, yet they con-
tinue to struggle with specific error types, such as those
related to texture and object occlusion. The Architecture-
Agnostic Masked Image Modeling (A2MIM)[10] approach
has demonstrated promising improvements in the robust-
ness and generalization of self-supervised convolutional
neural networks (CNNs), particularly in enhancing re-
silience to occlusion. This paper examines how modifica-
tions to the mask patch size. and subsequently the layer
at which masking is applied, of the A2MIM framework im-
pacts model robustness to various error factors, highlighted
by ImageNet-X. We show that modifying the mask patch
size has minor but ambiguous implications for a model’s
texture and occlusion robustness, and that reconstruction
quality can be misaligned with robustness. Through this
project, we aim to provide a deeper understanding of how
these modifications affect model performance and robust-
ness, contributing valuable insights into the development of
more resilient deep vision models.

1. Introduction
In the search for deeper, more complex, and more robust

vision models, self-supervised learning (SSL) has emerged
as a key paradigm, allowing for models to be trained on
vastly more data without requiring human annotation, and
indeed, several of the currently highest-performing vision
models, especially those intended for transfer to a variety of
downstream tasks, involve a substantive SSL pre-training
step [7, 2, 11].

One promising approach to self-supervised learning is
Masked Auto-Encoding (MAE) [7]. MAE draws from the

popular Vision Transformer (ViT) architecture [5], which
maps image patches of a fixed size (commonly 16x16) into
vector embeddings that are then passed through a Trans-
former model [14] that is essentially identical to those used
in the natural language processing (NLP) domain. Indeed,
MAE itself, also referred to as masked image modeling
(MIM), is an adaptation of the masked language modeling
(MLM) self-supervised task frequently used for NLP Trans-
former models, and it works by masking out a subset of the
image patch embeddings and tasking the model to fill the
masked patches back in, while focusing on middle-order in-
teractions among patches.

However, as vision models continue to grow in popular-
ity and sophistication, understanding their limitations and
explicitly improving upon them is crucial to ensuring the
safety and reliability of their applications. To this end, a few
efforts have been made to analyze and benchmark common
sources of computer vision model failures. Some of these
efforts include ImageNet-A and ImageNet-O, benchmark
datasets adversarially-designed by humans to test models
trained on the ImageNet dataset, and ImageNet-X, which
selects prototypical images for each class and directly anno-
tates how examples in the ImageNet-1k validation set vary
relative to the prototype. These datasets demonstrate that
evaluating the robustness of a model solely based on Ima-
geNet accuracies is insufficient. Texture and occlusion, in
particular, are common failure points among models.

Extensive research has demonstrated that MAE turns
out to be a very robust pretraining task, and the original
MAE paper resulted in tremendous improvements on many
challenge datasets, including ImageNet-A. Additionally,
A2MIM has challenged the notion that MAE only works for
Transformer-based architectures, and demonstrated through
extensive experiments that their proposed A2MIM frame-
work works effectively with both CNNs and Transformers,
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while improving performance on various benchmarks.

However, even using MAE, the ImageNet-X paper
showed that handling occlusion is still a major challenge
for models [10]. In this work, we conduct systematic ex-
periments to explore how changes to the mask patch size
used, and subsequently the layer at which the masking is
applied at, in the A2MIM system can increase models’ ro-
bustness to the consistently challenging issues of occlusion
and texture variation. The input into our model is an image.
Random patches of the image are masked out and inputted
into a CNN (ResNet-50) pretrained on ImageNet-100 using
our modified A2MIM to generate a reconstructed image.

2. Related Works

Existing work proposes other methods for pre-training
deep vision networks with a focus on generalization and
robustness. In addition to the MAE and MIM methods
mentioned above, MoCoV3 [3] minimizes the contrastive
loss to distinguish augmented versions of an image, DINO
[2, 11] utilizes a self-supervised teacher-student framework,
and CLIP [13] requires a model to match images and their
captions. The pretraining methods have the shared goal of
the model learning high-quality visual representations for
images.

Another common pretraining method is masked predic-
tions, which has been leveraged in both NLP and CV.
In NLP, BERT [4] is trained on Masked Language Mod-
eling (MLM) which requires the model to classify ran-
domly masked input tokens. In CV, CNNs are trained on
self-supervised inpainting [12] and colorization tasks [15],
which require the model to perform context-based pixel pre-
diction and colorize a grayscale image, respectively. Sim-
ilarly, ViTs [5] are trained to reconstruct missing patches
of an image masked out by Masked Auto Encoders (MAE)
[6] and BEiT (Bert pre-training of image transformers)
[1]. While most existing work in masked image model-
ing (MIM) applies to ViTs, A2MIM extends modern MIM
training to CNNs [10], achieving comparable performance.

3. Methods

3.1. Overview

By integrating MIM with CNNs, A2MIM offers sig-
nificantly greater flexibility to adjust the image patch size
during pretraining. Inspired by the observation from the
ImageNet-X paper that models struggle with texture and oc-
clusion and leveraging the patch size flexibility provided by
A2MIM, in this paper we investigate how variations in the
pretraining task, especially regarding patch size and mask
ratio, affect the downstream robustness of the model.

3.2. Model Architecture and Task

Building off of the A2MIM setup, we use ResNet-50
with an image reconstruction decoder during pretraining.
When masking the images, we replace the masked regions
with the mean pixel value of the image to alleviate local
statistic distortions, which reduces noise and allows the
model to focus on modeling more informative medium-
frequencies in these regions.

In the A2MIM implementation, during training, learn-
able mask tokens are placed at layer 0 in the ResNet-50
architecture where the receptive fields were masked. The
masking operation for MIM is shown below:

xmask = x⊙ (1−M) + T ⊙M (1)

where x is the input image, M is the random occlusion
mask, and T is the learnable mask token.

The A2MIM paper posits that masking at the stem layer,
or too early in the model, undermines the CNN’s context
extraction abilities. Masking at input layers of the model
also distracts it from learning necessary low-level feature
extractions. Therefore, we follow A2MIM’s suggestion to
mask intermediate features at a point when the feature rep-
resentations contain both semantic and spatial information.

Due to the spatial properties of CNNs and the changing
size of the feature representations throughout the network,
the layer at which the masking is applied is intrinsically tied
to the mask patch sizes that can be explored, and vice versa.
Given that there is 2x2 pooling occurring at each layer, the
pixel at location (0,0) in the original feature representation
does not directly map to the pixel at (0,0) after the next
layer’s transformations. We need to ensure that the parts
of the image we mask end up directly mapping to distinct
features in the layer at which we add the mask token. In or-
der to mask at a patch size of NxN , we need to ensure that
N is divisible by the receptive field of the layer at which the
masking is applied. The masking operation is shown below:

zlmask = zl + T ⊙D(M) (2)

where zl is the current feature map at stage-l in the CNN
and D(⊙) is the corresponding down-sampling function for
the occlusion mask.

3.3. Loss Function

For our loss function we used the Fourier loss from
A2MIM that allows us to encourage a model to learn
middle-order interactions by placing weights on different
ordered frequency interactions. More specifically, A2MIM
adds on a loss Lfreq in Fourier domain to the traditional
spatial domain loss Lspa, such that total loss becomes:

L = Lspa + λLfreq (3)



The Lfreq loss uses a dynamic weighting matrix to steer
the model to focus on learning specific ordered frequency
interactions in an image at different points in the training.
The dynamic weights matrix prioritizes learning on-the-fly
hard frequencies or, in other words, where there is the great-
est absolute difference between the model’s reconstructed
frequencies and the raw frequencies. While this most of-
ten leans towards larger weights for middle-level frequen-
cies because they are the hardest to learn, we unfortunately
cannot explicitly modify the weights matrix always place
greater weight on a particular frequency.

3.4. Data

In this project, we pretrain and finetune our models using
the ImageNet-100 dataset. ImageNet-100 is a subset of the
ImageNet-1K dataset that consists of 130,000 images for
training, 5,000 images for validation, and 10,000 images
for testing. These images are categorized into 100 different
classes, each representing a distinct object category. Note
that we used ImageNet-100 over ImageNet-1K due to time
and compute constraints.

Before pretraining on ImageNet-100, we perform several
preprocessing operations on the dataset. We begin by resiz-
ing each image to 224x224. Next, each image is normalized
and standardized, and then each image is randomly cropped
and resized. Finally, a random horizontal flip is performed.
These preprocessing steps introduce variability in the train-
ing data, which helps in making the model more robust and
less likely to overfit.

Figure 1. Example images from the ImageNet-100 dataset. From
left to right and top to bottom, the labels are: House Finch, Tree
Frog, Impala, Yorkshire Terrier, Arctic Fox, and Dragonfly.

3.5. Training Hyperparameters

We ran pretraining for 20 epochs using AdamW with a
learning rate of 1e-3 and weight decay of 0.05 for all exper-
iments. Finetuning ran for 15 epochs, also using AdamW
and with the same learning rate of 1e-3 and weight decay of
0.05 for all experiments; standard cross-entropy was used
for the classification.

3.6. Evaluation Metrics

ImageNet-X [9], introduced by Idrissi et al. in 2022, is
an extension of the ImageNet dataset that is designed to pro-
vide a detailed understanding of the weaknesses of deep vi-
sion models. ImageNet-X selects prototypical images for
each class and directly annotates how (all) examples in the
ImageNet-1k validation set vary relative to the prototype
(e.g. different background, lighting, object pose, texture).
Consequently, models evaluated via ImageNet-X can now
have their errors distinguished by the different variation fac-
tors. In this project, we utilize ImageNet-X to evaluate how
our modifications to the A2MIM algorithm impact the er-
rors identified in ImageNet-X, particularly those related to
texture and occlusion.

4. Experiments and Results

4.1. Baselines

First, we corroborate the occlusion robustness claim set
forth by the A2MIM paper [10] by comparing ResNet-50s
[8] pre-trained on the full ImageNet-1k, and then evaluated
on the full 1000 classes of ImageNet-X. Specifically, we
compare A2MIM against MoCoV3, another popular self-
supervised learning method. As shown in Figure ??, the
A2MIM model is generally less susceptible to errors related
to occlusion, with substantially lower error ratios on cases
of object or person blocking and similar performance on ob-
jects in partial view. We also verify the ImageNet-X paper’s
claim that vision models struggle with both texture and oc-
clusion, as both models have high error ratios on the related
ImageNet-X factors (for texture: ‘texture‘ and to some ex-
tent ‘subcategory‘; for occlusion, ‘person blocking‘, ‘object
blocking‘, and ‘partial view‘).

4.2. Variations in Patch Size and Masking Ratio

Next, we begin modifying the A2MIM training pipeline
to study the effects of patch size and mask ratio on the
specific occlusion and texture-related ImageNet-X factors.
Note that masked patches are square and that the patch size
refers to the one-dimensional contiguous length of the im-
age masked by a single patch; meanwhile, mask ratio refers
to the total percentage of the image (rounded up to the near-
est patch size) that is masked out (larger value means more
is masked out).



Training from scratch on ImageNet-100, we investigate
several combinations of MIM pre-training, then evaluate
the models after finetuning them on the labeled version of
ImageNet-100:

1. Patch Size = 4, Mask Ratio = 0.6 and 0.8

2. Patch Size = 32, Mask Ratio = 0.6 and 0.8

3. Patch Size = 56, Mask Ratio = 0.4 and 0.6

The results of these experiments are reported in Table 1.
Succinctly, we make several observations:

1. Our masking hyperparameters have a minimal effect
on overall validation accuracy on ImageNet-100, re-
gardless of what patch size is used.

2. There is a consistent correlation between increasing
the masking ratio and obtaining robustness to texture;
the effect of mask ratio is far greater than the effect of
the patch size itself.

3. Smaller patch sizes result in improved robustness to
objects in partial view.

4. Patch size and mask ratio seem uncorrelated with
a model’s downstream ability to detect subcategory.
However, a patch size of 4 with a mask ratio of 80% is
the standalone best model in subcategory robustness.

4.3. Mixed Masking

Intrigued by our mixed-bag of results for different patch
sizes and mask ratios, we investigate the potential for vari-
ations in the masking pipeline throughout training. Con-
cretely, we modify the A2MIM pipeline such that every
batch of training examples is randomly masked in one of
two different ways, then let pretraining converge, followed
by finetuning on the labeled ImageNet-100. Specifically,
we test the following combinations:

1. Patch Size = 4, Mask Ratio = 0.6 OR Patch Size = 56,
Mask Ratio = 0.4

2. Patch Size = 4, Mask Ratio = 0.6 OR Patch Size = 32,
Mask Ratio = 0.6

These results are also reported in Table 1. These experi-
ments seem fairly inconclusive: both mixed-mask models
surpass their single-strategy counterparts with regard to ro-
bustness to partial viewing of the classified object; however,
the two mixed models trade off in being worse at dealing
with variations in either texture or subcategory, respectively,
and do not have overall better validation performance.

5. Discussion
Initially, we hypothesized that since smaller patch sizes

necessarily force the model to fill in lower-level details,
a smaller patch size would result in greater understand-
ing and consequently robustness to texture; by contrast, we
expected that larger patch sizes would push the model to
make greater inferences about occluded objects, as substan-
tial portions of the objects could be masked out. Unfortu-
nately, our quantitative results fail to substantiate this claim:
ImageNet-100 lacks sufficient examples in the blocking cat-
egories of ImageNet-X to properly analyze occlusion, and
texture robustness seems more a function of mask ratio than
patch size.

However, qualitative analysis reveals our hypothesis to
be half-right but slightly misaligned. When looking at the
actual examples of reconstruction, as shown in Figure 3,
it is readily apparent that the smaller patch size results in
a higher-fidelity reconstruction of the original image, even
when substantially more of the original image is masked
out. This seems to imply that we are correct in saying
that smaller patch size allows the model to focus more on
the high-fidelity details of the image. The strange part is
that although the image reconstructions are better, the ac-
tual robustness to texture hardly changes, suggesting that
understanding reconstruction of texture and robustness to
texture variation during classification are actually quite mis-
aligned. Furthermore, despite the substantially poorer abil-
ity to reconstruct images, both models result in ultimately
similar validation accuracy, highlighting either a flaw in our
methodology or that perhaps MIM and masked image re-
construction are not necessarily the best strategies for reli-
able and robust pre-training. Undoubtedly, there is further
work to be done.

6. Future Work
Given additional time and computational resources, fu-

ture work would extend our investigation into several
promising areas. One key avenue would be to train using
ImageNet-1K instead of ImageNet-100. Doing so could
provide more comprehensive insights into the scalability
and robustness of our modified A2MIM approach. Due to
short deadlines, extensive training times, and lack of com-
putational resources, we were not able utilize ImageNet-1K.
Additionally, integrating adversarial robustness evaluations
and real-world deployment scenarios would offer a more
holistic view of the models’ resilience. These expanded
studies would deepen our understanding of masked image
modeling and its potential to enhance the robustness and
generalization of deep vision models.



Table 1. Comparison of model overall and factor accuracies (%) on ImageNet-X
Model Background Color Partial View Pattern Pose Shape Subcategory Texture Val Acc

Patch=4, Ratio=60 67.5 57.7 44.2 66.3 76.8 27.3 46.2 38.1 27.3
Patch=4, Ratio=80 69.1 61.2 66.7 68.3 77.3 40.9 34.6 52.4 34.6

Patch=56, Ratio=40 69.9 63.2 68.3 69.2 78.9 45.4 50.0 42.8 42.9
Patch=56, Ratio=60 69.8 60.5 73.0 69.2 78.1 40.9 50.0 52.4 40.9
Patch=32, Ratio=60 70.9 59.6 73.0 70.1 79.7 36.4 50.0 47.6 36.4
Patch=32, Ratio=80 68.1 60.5 71.4 66.3 78.3 45.4 53.8 52.3 45.4

Patch=4/56, Ratio=60/40 69.3 61.2 76.1 67.7 78.5 45.5 38.5 52.4 38.5
Mixed Patches 70.4 60.7 74.6 70.3 77.4 40.9 50.0 42.9 72.1

Figure 2. Comparison of model error ratios on ImageNet-X



Figure 3. Left: Patch 4 and Mask Ratio 80. Right: Patch 32 and Mask Ratio 60
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