
A Novel Sign Language Translation Model: Gloss-Free Video-to-Sequence
Translation Using Transformer Encoder and LLM Decoder

Mac Ya
School of Engineering

Computer Science
maaac@stanford.edu

Evy Shen
School of Humanities and Science

Symbolic Systems
evyshen@stanford.edu

Jeff Liu
School of Engineering

Computer Science
jeffliu0@stanford.edu

Abstract

We developed a gloss-free model to predict English text
sequences for American Sign Language (ASL) videos. Our
approach employs DINOv2, a Vision Transformer (ViT),
for robust video feature extraction. These features are ad-
justed and normalized via linear projection for better train-
ing stability. To capture temporal dependencies between
video frames, we use an LSTM decoder. For text gen-
eration, we leverage the BART tokenizer, a powerful pre-
trained language model, to process ground-truth captions.
We experimented with combining both sentence-level and
word-level ASL videos in the training dataset. This de-
sign allows our model to encode visual information from
videos and generate corresponding textual descriptions.
Our training datasets were: the WLASL Dataset, a collec-
tion of 11980 ASL videos representing 2000 English words
as well as the How2Sign Dataset, consisting of more than
80 hours of parallel corpora of sign videos,including their
respective speech, English transcripts, and depth informa-
tion. Our metrics for testing were primarily Cross-entropy
loss and BLEU, a standard metric for translation perfor-
mance. Our best-performing model given sign video rep-
resentations achieved a BLEU score of 11.35%, compared
to 8.03% in another published paper’s model trained and
tested on How2Sign. We found that mixing the training
dataset with word-level data and sentence-level did not im-
prove the model performance and increased the variance of
the dataset.

1. Introduction

Communication for deaf and hard-of-hearing communi-
ties with the rest of society is difficult for those who are un-
familiar with Sign Languages. Isolated Sign Recognition,
which is the identification of isolated signs, has been ex-
tensively studied, but Sign Language Translation (SLT), the
translation of continuous signs, still remains a challenging

and growing field of study for computational sign language
research [19]. There are over 300 sign languages glob-
ally, each consisting of manual articulations as well as non-
manual elements, such as facial expressions, body poses, or
mouth motions. As sign language does not have one-to-one
mapping from one word to one movement and contains both
spatial and visual elements, this poses unique challenges for
deep learning models to segment sign movements and gen-
eralize semantic meaning.

With each of us having experienced language barriers,
we were motivated to pursue making SLT as mainstream
as the prevalent and advanced translation services for spo-
ken languages. As a long-time bottleneck for research on
SLT has been the lack of a parallel corpus of sign videos,
real-time alignments of sign videos with their spoken trans-
lations, the advent of new datasets providing these neces-
sary parallel corpora of sign videos and their aligned spoken
transcriptions has opened up opportunities for research.

Historically, the highest performing sign-to-text models
have involved gloss intermediaries [1]. Glosses are direct
English transcriptions of Sign Language, containing seman-
tic information and have one-to-one mappings with sign
movements. Gloss provides value in helping the model
learn the location of semantic boundaries in continuous sign
language videos and understand the sign language video
globally [21]. However, gloss-labeled datasets are labor-
intensive to create and sparse, meaning models that are
trained on those datasets are limited to the vocabulary and
domain in which they were trained on. As such, gloss-free
models are a growing field of exploration, and we were mo-
tivated to explore the potential of leveraging different ar-
chitectures to facilitate a high translation performance for a
gloss-free model.

Commonly, SLT model architecture involves transform-
ers, the standard for sequence to sequence tasks, for visual
feature extraction[15, 1]. Video inputs are typically fed
into a Visual transformer (ViT) to extract visual features.
Many gloss-free models competitive with gloss-based mod-
els replicate the benefits that gloss provides through utiliz-
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ing knowledge obtained from pre-trained language models
such as BART [9] and novel attention mechanisms. This
insight motivated us to explore the potential of leveraging
Visual Transformer and BART to facilitate the conversion
of sign videos to spoken English text.

We explored different models, including DINOv2 and
BART for text generation, with fine-tuned parameters to
find the best-performing model for accuracy in English text
prediction. The input to our model is videos from the
How2Sign [6] and WLASL [10] datasets. The output is En-
glish text. By utilizing DINOv2 for feature extraction and
BART for processing ground-truth captions and extracted
features, we aimed to output a predicted English translation.
Our approach involved inputting a mix of sentence-length
(How2Sign) and word-length (WLASL) ASL videos along
with the sentence-level English sequence and word-level
Gloss sequence in the training dataset and investigating var-
ious structures involving ViT and BART, hoping to increase
performance compared to previously published models.

To our knowledge, no paper has previously attempted
this specific combination of DINOv2 for visual feature ex-
traction and BART for spoken text generation in the context
of Gloss-free ASL to English translation. Additionally, no
prior research has mixed sentence-length and word-length
ASL videos in the training dataset. Since sign language
datasets are sparse at large, the conceptual benefit of this
approach lies in creating a more robust and versatile model
that can handle varying lengths of input data, from indi-
vidual words to complete sentences. This comprehensive
training strategy aims to improve the model’s ability to gen-
eralize across different types of ASL input.

Our model outperformed several existing models,
including the first model trained on the How2Sign
dataset[15]. This demonstrates the potential of our com-
bined use of DINOv2 and BART, as well as our innovative
approach to mixing different lengths of ASL video data in
training, ultimately setting a new benchmark in ASL to En-
glish translation tasks.

2. Related Works

2.1. Gloss-Based Transformer Approach

Camgoz et al. [1] introduced the Sign Language Recog-
nition Transformer (SLRT). This state-of-the-art encoder
transformer model is trained using a Connectionist Tem-
poral Classification (CTC) loss to predict sign gloss se-
quences. The SLRT model extracts spatial embeddings
from sign videos and learns spatio-temporal representa-
tions, which are subsequently fed into the Sign Language
Translation Transformer (SLTT), an autoregressive trans-
former decoder model that predicts one word at a time to
generate corresponding spoken language sentences.

The evaluation of their approach on the PHOENIX14T1

[7] dataset revealed significant improvements in both sign
language recognition and translation. The proposed Sign
Language Transformers outperformed existing models in
translating sign videos to spoken language as well as gloss
to spoken language. Notably, their translation networks
achieved more than double the performance in certain sce-
narios, evidenced by BLEU-4 [13] Scores increasing from
9.58 to 21.80. Additionally, they established new baseline
translation results using transformer networks for various
text-to-text sign language translation tasks, setting a new
standard for future gloss-free SLT research in this domain.

2.2. Gloss-Free Approaches

Gloss-based models provide better performance [20] be-
cause gloss provides supervision in alignment information
for the model to focus on important local areas. However,
gloss-free models aim to replicate the benefits that gloss
brings through the use of knowledge from pre-trained lan-
guage models.

Yin et al.’s [21] novel gloss attention SLT network
(GASLT) exemplifies this approach. Their model uses
BERT to transfer knowledge of sentence-to-sentence simi-
larity from the natural language model to an attention mech-
anism, helping it understand sign language videos at the
sentence level. By leveraging BERT, Yin et al. were able to
capture the similarity relationships between sign language
videos by inputting natural language sentences into sen-
tence BERT to calculate cosine similarity. This informa-
tion was then used to aggregate all video features output by
the encoder into an embedding vector representing the en-
tire sign language video. The proposed GASLT model sig-
nificantly outperformed existing gloss-free methods. More
recent (2024) gloss-free approaches proposed the use of
pre-trained LLM models for the translation task. Wong et
al. [19] proposed an innovative pseudo-gloss mechanism
within a novel framework for sign language translation.
This framework leverages large-scale pre-trained vision
and language models, incorporating lightweight adapters to
achieve gloss-free translation. The pretraining strategy en-
ables the encoder to learn sign representations from auto-
matically extracted pseudo-glosses, eliminating the need for
gloss order information or annotations.

3. Methodology
3.1. Design Rationale and Motivation

Motivated by the significant advancements reported by
Camgoz et al. [1] and Wong et al. [19], we aim to de-
velop a new model that leverages the power of the attention
mechanism in transformer models and the advantages that
large language models (LLMs) have in handling the unique
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Figure 1: Proposed Custom SLT Model architecture, illustrating the various components and their interactions.

rules of glosses, as highlighted by Wong et al. Additionally,
we aim to create our model using a gloss-free approach for
its scalability and generality. Gloss-based models are typ-
ically limited to the specific sign language they were built
for and cannot be easily adapted to other languages due to
the limitations of Gloss-Spoken translators, which restricts
their general applicability.

With these motivations and the various advantages dis-
cussed in prior works, this paper introduces a novel archi-
tecture for Sign Language Translation (SLT) that integrates
multiple deep learning components to address the unique
challenges of translating sign language videos to text. Our
model [1] uses a Vision Transformer (ViT) encoder to ex-
tract features, which are then processed through an LSTM
layer. This combination allows for the capturing of ex-
tensive feature information while retaining spatial-temporal
features. Additionally, we employ a language model de-
coder to better manage the differences in order and gram-
matical rules between glosses and spoken language.

3.2. Overall Model Architecture

Our architecture [1] consists of an Encoder-Decoder
model with DINOv2 (ViT) for image encoding, with an
LSTM layer attached to the encoder for further processing
and BART Decoder (LLM) for English text generation.

Note: packages used in implementation are listed in Ap-
pendix 8.1.

3.2.1 Temporal Downsampling

To aid in the efficiency of our translation model while
preserving temporal information, which must process se-
quences comprising hundreds of frames, we employed tem-
poral downsampling after specific layers within our en-
coder, which reduced the temporal dimension from T ∗ to
T∗

3 . Initially, inputs had 24 frames per second. After down-
sampling, it was 8 frames per second.

3.2.2 DINOv2 - Vision Transformer (ViT)

The Vision Transformer (ViT) [2] serves as the encoder for
extracting powerful features from video frames. Leveraging
its pre-training on large-scale image datasets, ViT excels in
capturing intricate visual details crucial for understanding
sign language videos.

In this study, we specifically employ DINOv2
(facebook/dinov2-small), a self-supervised
method applied on ViT developed by Meta, known for its
robust feature extraction 2 across various visual tasks. The
DINO (Distillation with No Labels) model facilitates the
learning of high-quality visual features without the need
for labeled data, making it highly effective for extracting
spatial features from video frames, aligning with our
needs to preserve critical spatial-temporal features of sign

2DINOv2 is proven to have strong semantic segmentation and depth
estimation abilities.
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Figure 2: Vision Transformer (ViT) Architecture. Image is
adapted from Dosovitskiy et al. [5]

language videos. Wong et al. [19] demonstrated in their
paper that an adapted ViT model, trained with DINOv2,
outperforms a ResNet18 spatial backbone in sign language
recognition tasks. Their findings revealed that the adapted
ViT model, when applied with LoRA (Low-Rank Adap-
tation), achieved superior performance with fewer than
three hundred thousand trainable parameters, a significant
reduction from the 11 million parameters required by the
ResNet18 model.

Given these advantages, we opted to integrate DINOv2
as our ViT encoder, benefiting from its efficient and effec-
tive feature extraction capabilities. After inputting the nor-
malized, cropped, and resized images into DINOv2, we will
apply a linear projection and layer normalization to the fea-
ture vectors produced by the ViT.

3.2.3 Linear Projection and Normalization

After DINOv2, to adjust the feature embeddings to a desired
size, we apply a linear projection followed by layer normal-
ization. This step helps in stabilizing the training process
and ensures the features are suitable for further processing.

E′ = LayerNorm(WlinearE+ blinear)

The formula for layer normalization is:

LayerNorm(xi) =
xi − µ√
σ2 + ϵ

· γ + β (1)

Where:

• xi is the input vector.

• µ is the mean of the input vector.

• σ2 is the variance of the input vector.

• ϵ is a small constant added for numerical stability.

• γ and β are learnable parameters for scaling and shift-
ing.

The output of the LayerNorm() will then be passed to
an LSTM layer to retain it spatial-temporal feature.

3.2.4 Temporal Aggregation (LSTM)

We capture temporal dependencies between frames using a
Long Short-Term Memory (LSTM) network [3.2.4], which
is crucial for video data where the sequence of frames con-
tains temporal information as mentioned.

Figure 3: A Sample LSTM Cell Flow Chart. Image adapted
from Olah’s Blog.

The processed feature vectors are then fed into the
sBART Decoder to generate English sequences in accor-
dance with the feature vectors.

3.2.5 BART Decoder for Text Generation

For text generation, we leverage facebook/bart-base
(BART) [9] [4], a powerful pre-trained large language
model (LLM), to generate coherent and contextually ap-
propriate text based on the encoded features from the
video frames with the attention mechanism applied. The
model employs a standard Transformer-based neural ma-
chine translation architecture, generalizing BERT (due to
its bidirectional encoder) and GPT (with its left-to-right
decoder), and is particularly effective for tasks such as
dialogue, question answering, and summarization, often
achieving state-of-the-art results in these areas [12] [14].
Additionally, this framework allows BART to excel in nat-
ural language generation and understanding tasks with the
ability to handle the differences in the order and grammat-
ical rules between glosses and spoken language [9]. Con-
sequently, we utilized BART Decoder as a backbone in our
architecture.

The decoder in BART operates autoregressively, mean-
ing it generates one token at a time while considering the
previously generated tokens. This left-to-right generation is
crucial for tasks like text generation and translation, where
the sequential order of tokens is significant. The 12 layers
in the decoder includes:
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Figure 4: BART Decoder Architecture. With Encoder on
the left and Decoder on the right.

• Self-Attention Mechanism: Restricted to only con-
sider previous tokens to maintain causality. As men-
tioned in related works, attention is important to lever-
age in gloss-free models to create global understand-
ing of the sign language video and attend semantically
similar frames together.

• Cross-Attention Mechanism: This mechanism al-
lows the decoder to attend to the encoder’s outputs,
effectively integrating the encoded input context with
the generated sequence.

• Feed-Forward Neural Networks: These are used to
transform the attended information before passing it to
the next layer.

• Layer Normalization and Residual Connections:
As in the encoder, these ensure stable and efficient
training.

We integrate the high-quality encoded sign features from
the Vision Transformer (ViT) encoder into the BART de-
coder with a linear layer, ensuring compatibility. The BART
decoder is then employed to generate text conditionally
based on these encoded features. With multiple layers, the
model builds hierarchical representations of the input data,
where lower layers capture basic syntactic information and
higher layers model more abstract semantic relationships.

3.2.6 BART Tokenizer

The decision to use the BartTokenizer was made intention-
ally to leverage its advanced preprocessing capabilities, en-
suring compatibility and efficiency in handling both the in-
put sign language data and the generated text output. The
BartTokenizer handles the tokenization of input sign lan-
guage data, providing several key features that make it an
ideal choice for our SLT task:

• Bidirectional Processing:
The BartTokenizer supports bidirectional tokenization,
crucially understanding the context in both forward
and backward directions and aligns with our need to
capture the details of sign language inputs, which may
not always follow a linear structure.

• Seq2Seq Batch Preparation:
The prepare seq2seq batch method of BartTo-
kenizer efficiently prepare batches of source texts (the
encoded sign language features) and labels (the ex-
pected translations), ensuring that both are appropri-
ately tokenized and padded. This method supports
padding as well as truncation strategies, ensuring that
all sequences in a batch are of uniform length, which is
essential for efficient batch processing in deep learning
model.

3.2.7 Loss Calculation

We use cross-entropy loss to train the model, which is stan-
dard for sequence-to-sequence tasks. The loss is calculated
as follows:

L = −
N∑
t=1

yt log ŷt

where yt is the true token and ŷt is the predicted proba-
bility for the token at position t.

4. Dataset and Features

4.1. Dataset

We aggregate data from two datasets (sample video im-
ages shown in Figure 5):

WLASL Dataset: This dataset, presented at WACV
2020, is a collection of ASL videos representing 2000 En-
glish words. There are 11980 videos. Each video is pro-
cessed to extract frames, which are then saved as .npy files.
To facilitate efficient retrieval, we create a dictionary map-
ping each word to its corresponding video paths.

How2Sign Dataset: This dataset provides 4099 videos
of complete ASL sentences and is a multimodal and mul-
tiview American Sign Language (ASL) dataset. It consists
of more than 80 hours of parallel corpora of sign videos,
including their respective speech, English transcripts, and
depth information. The How2Sign dataset is divided into
sentence segments, with frames extracted from each sen-
tence and saved as .npy files.

4.2. Data Preprocessing

To preprocess our video dataset, we implemented a se-
ries of steps to ensure consistency and suitability for subse-
quent machine learning tasks. Initially, we defined a custom
dataset class, VideoDataset, using PyTorch, which fa-
cilitated the handling of video data stored in .pt files and
their associated labels from a CSV file. The dataset class
was designed to dynamically load video frames and their
corresponding labels upon request.
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Figure 5: Images sampled from WLASL (top) and
How2Sign (bottom) datasets.

4.2.1 Data Loading and Labeling

The VideoDataset class initializes by reading the CSV
file containing the labels, structured with a video id and a
label for each video. The video frames are then accessed
from the specified directory, ensuring each video’s path is
correctly constructed and the data is loaded efficiently. Our
preprocessing pipeline ensures a structured and consistent
format for video data, making it suitable for complex tasks
such as video captioning and classification. By padding the
frames and tokenizing captions, we prepared the dataset to
be processed efficiently by the model, ensuring that each
input in the batch maintains a uniform shape and structure.
This preprocessing approach aims to enhance the model’s
performance and generalization capabilities by providing
standardized input data.

4.2.2 Padding and Tokenization

Given the varying lengths of video frames, we employed a
custom collate function, collate fn, to process and col-
late the batches of data uniformly. The collate function per-
formed the following steps:

• Padding: To standardize the number of frames across
all videos in a batch, frames were padded to a fixed
length (max frames). This padding involved ap-
pending zero tensors to videos with fewer frames
than max frames. Conversely, videos exceeding
max frames were truncated.

• Attention Masks: Attention masks were created for

the frames to distinguish between actual frames and
padded frames. These masks contained ones for valid
frames and zeros for padded frames, aiding the model
in focusing only on relevant data.

• Tokenization: The captions associated with each
video were tokenized using the BERT tokenizer. The
tokenization process converted the text into fixed-
length sequences (max len), with padding and trun-
cation applied as needed. This ensured all captions had
uniform length, facilitating batch processing.

The final output of the preprocessing pipeline included
padded frames, tokenized captions, and attention masks, all
formatted for direct input into a neural network model.

4.2.3 Normalization

Data was normalized to ensure consistent input values
across all videos. After preprocessing, the image dimen-
sions were standardized to 224 x 224 pixels.

4.2.4 Dataset Splitting

Data was aggregated into 70% for training, 15% for vali-
dation, and 15% for testing. This split ensures a balanced
distribution of data for model training and evaluation.

4.2.5 Time-Series Data Discretization

The time-series data in the videos is discretized by extract-
ing frames at consistent intervals, allowing the model to
process temporal information effectively. Each video input
was discretized to 8 frames per second for 45 frames.

4.2.6 Examples from the Dataset

Examples from the dataset include images, video frames,
and corresponding tokenized captions. These examples il-
lustrate the data format and the preprocessing steps applied
to prepare the data for model training.

4.2.7 Feature Extraction

In this setup, the features are extracted using the DinoV2
Vision Transformer (ViT) model and further processed us-
ing an LSTM for temporal aggregation.

5. Experiments and Results
5.1. Hyperparameters

The hyperparameters we experimented with are:
For the last three hyperparameters we found the

best combination possible given computational limitations.
Note, max frames is the most amount of frames allowed per
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Parameter Value

Learning Rate 1e-6

Optimizer Adam

Batch Size 3

Max Frames 48

Max Sequence Length 50

Table 1: Hyperparameters

video, and max sequence length is the longest caption the
model takes.

5.2. Metrics

We primarily use Cross-entropy Loss and BLEU to as-
sess the performance of our models.

Using BLEU for our model is beneficial because it pro-
vides a standardized way to evaluate the quality of gener-
ated text by comparing it to reference texts. It measures
n-gram precision, capturing how closely the model’s output
matches human-provided references, which is essential for
assessing fluency and accuracy in text generation tasks.

5.3. Results and Interpretation

In this section, we present our results, highlighting
the spoken language translations generated by our best-
performing model given sign video representations (see Ta-
ble 1). Note that Phoenix14T is a word-level dataset and
hence models tend to perform better.

Models Dataset BLEU

NSLT (Camgoz et al. 2018) Phoenix14T 9.00

TSPNet (Li et al., 2020) Phoenix14T 13.41

CSGCR (Zhao et al., 2023) Phoenix14T 15.18

SLTIV (Tarres et al., 2023) How2Sign 8.03

Our Model (Mixed-data) How2Sign 8.92

Our Model (Single-data) How2Sign 11.35

Table 2: Model Performance Comparison(Gloss-free)

To interpret this performance, our best performing
model and dataset setup gave a BLEU score of 11.35%.
This, according to Google Cloud definitions, means
the translation is ”hard to get the gist”, which suggests
that the model could sometimes generate wrong choices
of words or grammatical error that led to changes in

meaning of the sentences. After analyzing the How2Sign
dataset, we observed that there are sentences with nested
and parallel grammatical structure such as the following

So if you’re doing a nap and you’re the attackee, you
know you’re going to get hit and act like you got punched.

and sentences with low-frequency words such as
The aileron is the control surface in the wing that is con-
trolled by lateral movement right and left of the stick.

These complex structures and rare words likely con-
tributed to the model’s difficulty in generating accurate
translations, highlighting areas for potential improvement
in handling the ASL and its unique, specialized vocabulary.

5.4. Results of Aggregated-dataset Training

As mentioned in previous sections, our model was
trained on two different data setups. Not only did we train
the model on the How2Sign dataset, but also a mixture of
the How2Sign dataset and the WLASL dataset. We wanted
to see if the introduction of word-level videos can help
the model learn to divide the input video into semantically
meaningful segmants and hence improve understanding. As
the testing suggests, mixing the datasets did not improve
model performance (8.92 vs 11.35).

Figure 6: Training Loss Figure 7: Validation Loss

Figure 8: Losses for Single-dataset training

Figure 9: Training Loss Figure 10: Validation Loss

Figure 11: Losses for Mixed-dataset training

We believe that the introduction of word-level videos in-
creased the variance of the dataset, to which a sequence
to sequence model is sensitive. Moreover, due to the dif-
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ference in length between word-level videos and sentence-
level videos, the encoder, constructed with Dino ViT and
LSTM, might face challenges during training. As we can
see, mixing the word-level video (WLASL) and sentence-
level videos (How2Sign) introduces great variance during
training, resulting in higher validation loss. The single
dataset training has smoother curves and much lower val-
idaton and testing loss.

5.5. Analysis on the Model

The DINO ViT model structure was greatly beneficial
to extraction of visual features. To visualize the effects of
the DINO encoder, we generated the following graphs to
illustrate.

Figure 12: DINO ViT Fea-
tures

Figure 13: Original Video

Figure 14: Effects of DINO ViT Encoder

As shown in Figure 14, the DINO model is very effec-
tive in terms of semantic segmentation and depth recogni-
tion. However, dividing the input image into multiple small
patches to feed into Transformer, which is an essential de-
sign of DINO, causes the model to lose small details such as
the fingers and the facial expressions, while having robust
understanding of the main object of the image. We presume
that this could be improved by having higher image defi-
nition and smaller patch sizes. Unfortunately, this is not
possible for most advanced research teams due to computa-
tional resource limitation.

6. Conclusion / Future Work

In this paper, we have presented a novel approach to
address the challenging problem of Sign Translation in a
gloss-free setting. Our method demonstrates performance
improvements over existing techniques on the How2Sign
dataset. We introduced a strategy that learns from both
word-level sign features and sentence level sign features,
thereby allowing our sign encoder to be effectively pre-
trained without the use of manually annotated glosses. We
investigated that the improvement this brings is limited and
future work is needed.

Our analysis indicates that while our model performs
well on standard datasets, it still faces challenges with com-
plex grammatical structures and low-frequency words.

For future work, we aim to explore more sophisticated
preprocessing techniques and advanced model architectures
to better capture the nuances of sign language. Additionally,
increasing the training data with more diverse and com-
prehensive sign language datasets could help improve the
model’s generalization capabilities. Further research will
also focus on refining the temporal aggregation of visual
features to enhance the performance of the sign encoder,
ensuring a more robust and accurate translation system.

7. Contributions and Acknowledgements

8. Appendices

8.1. Python Packages Used in Implementation

List of Python packages used in the implementation:

Library Reference

numpy [2]

pandas [18]

scikit-learn [8]

ffmpeg-python [22]

tqdm [4]

torch [16]

torchvision [17]

opencv-python [3]

pytorch-lightning [11]

Table 3: List of Python libraries used and their references
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