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Abstract

Ocular diseases are a major cause of visual impair-
ment and blindness, necessitating early detection and ac-
curate diagnosis to improve treatment outcomes. How-
ever, the scarcity of comprehensive labeled datasets for
various ocular conditions poses a significant challenge for
training robust deep learning models. This study explores
the potential of generative models to address this limita-
tion by creating synthetic images to augment the limited
training datasets available for ocular diseases. We experi-
mented with four generative methods: Variational Autoen-
coders (VAEs), finetuning a pretrained StyleGAN, Small-
GAN, and Stable Diffusion. Our results demonstrate that
the StyleGAN2-ADA approach produced the highest quality
synthetic images, and showing resemblance to real fundus
photographs, despite challenges with vein detail and im-
age blurriness. VAE and SmallGAN showed potential but
were limited by dataset size and model complexity. Stable
Diffusion required extensive compute resources and did not
achieve the desired image detail. This study underscores
the potential of synthetic data augmentation to overcome
the limitations of small medical image datasets and improve
automated disease classification systems.

1. Introduction

Ocular diseases are a leading cause of visual impair-
ment and blindness worldwide. Early detection and accu-
rate diagnosis are crucial for preventing disease progression
and improving treatment outcomes. Traditional diagnostic
methods rely heavily on the expertise of ophthalmologists
and the quality of fundus photographs. However, the in-
creasing prevalence of ocular diseases necessitates the de-
velopment of automated and intelligent diagnostic systems
to assist clinicians and improve patient outcomes.

While tasks such as skin melanoma classification benefit
from abundant labeled training data, facilitating the devel-
opment of robust CNN models, the classification of various

ocular diseases suffers from a scarcity of comprehensive
labeled data. This limitation necessitates the exploration
of alternative methods to enhance training datasets and
improve model performance.

In this study, we focus on generating synthetic images of
ocular diseases to supplement the limited training dataset
available for these conditions. Specifically, we experi-
ment with four generative methods: Variational Autoen-
coders (VAEs), finetuning a pretrained StyleGAN, Small-
GAN, and Stable Diffusion. By leveraging these generative
approaches, our aim is to create a more robust and diverse
dataset that can support effective training of deep learn-
ing models. The synthetic images generated through these
methods are intended to supplement the existing dataset
and future work will investigate whether these augmented
datasets improve a classifier’s ability to accurately classify
various ocular diseases.

2. Related Works
2.1. Transfer Learning as a Baseline

In ”Fine-tuning pre-trained neural networks for medi-
cal image classification in small clinical datasets,” Spolaor
et al. explore the effectiveness of fine-tuning pre-trained
CNNs for medical image classification with limited data.
The study investigates eight fine-tuning strategies on VGG-
based networks initially trained on ImageNet, using the
ISIC and PH2 dermoscopic image datasets as test cases
[13]. Baseline models without fine-tuning achieved accu-
racies of 78.5% and 80.3% on the ISIC and PH2 datasets,
respectively, and fine-tuning improved these accuracies by
around 10%. The findings suggest that with appropriate
fine-tuning, pretrained CNNs can be effectively leveraged
for medical image classification tasks.

2.2. Synthetic Data Improves Classifier

In ”Adopting low-shot deep learning for the detection
of conjunctival melanoma using ocular surface images,”
Yoo et al. address the challenge of detecting conjuncti-
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val melanoma with limited labeled data (403 ocular surface
images). To enhance the dataset, they employed Cycle-
GAN and PGGAN to generate synthetic images, expand-
ing the training data to 2000 images through linear trans-
formations. The synthetic images were used to finetune
several pre-trained deep learning architectures and yielded
significant improvements in classification accuracy with the
GAN-augmented dataset [15].

2.3. Data Augmentation Methods

2.3.1 Variational Auto-Encoder (VAE)

In the original VAE paper, ”Auto-Encoding Variational
Bayes” [9], Kingma and Welling introduce the variational
auto-encoder, which allows efficient approximate posterior
inference and model parameter learning without expensive
iterative processes. This foundational work demonstrated
that VAEs could effectively model the probability distribu-
tion of training data in a latent space, setting the stage for
their use in image generation.

Han et al. enhanced the HP-VAE-GAN model by
incorporating the Convolutional Block Attention Module
(CBAM) into the encoder of the Patch-VAE component,
resulting in higher-quality synthetic images. Their study
showed that combining real and generated images signifi-
cantly improves classification accuracy compared to using
only real images [5]. Similarly, Gur et al. demonstrated the
effectiveness of HP-VAE-GAN in generating diverse, high-
quality video samples from minimal training data, high-
lighting its potential in overcoming mode collapse and out-
performing baseline models [4].

2.3.2 Stable Diffusion

In the paper, ”Denoising Diffusion Probabilistic Models”,
Ho et al.introduce diffusion probabilistic models, a novel
class of latent variable models that generate high-quality
images by progressively adding and then removing Gaus-
sian noise from data. This process, trained via variational
inference, achieved state-of-the-art results, including an
FID score of 3.17 on CIFAR-10 [6]. While the results of
diffusion are promising, these models may require a larger
amount of training data than other generative methods to
produce detailed synthetic images.

Interestingly, Bansal et al. found that the type of noise
does not matter at all for diffusion. In their paper, ”Cold
Diffusion: Inverting Arbitrary Image Transforms Without
Noise” [2], they introduce cold diffusion, which generalizes
diffusion models to use arbitrary image transformations (i.e.
blur, masking, downsampling) instead of Gaussian noise for
both the forward degradation and reverse restoration pro-
cesses. The success of cold diffusion without noise opens
up new possibilities for building diffusion models with dif-
ferent properties by using various degradation processes.

2.3.3 General Adversarial Networks (GANs)

In ”Generative Adversarial Nets” [3], Goodfellow et
al.introduce the framework for GANs, where a generative
model (G) and a discriminative model (D) are trained si-
multaneously in a minimax two-player game to produce re-
alistic synthetic images without the need for Markov chains
or inference during training. This paper set the foundation
for many variants of GANs, including two explored in this
paper, smallGAN and StyleGAN.

Noguchi and Harada’s ”Image Generation From Small
Datasets via Batch Statistics Adaptation” presents a method
for generating images from small datasets by adapting a pre-
trained generator’s scale and shift parameters while keep-
ing the convolutional kernel parameters fixed. This tech-
nique significantly reduces the number of trainable param-
eters, enabling the generator to learn from small datasets
without overfitting [11]. Experiments demonstrated that the
proposed method achieves higher quality and more diverse
image generation compared to fine-tuning the entire gener-
ator or only a subset of layers.

In another paper, ”A Style-Based Generator Architec-
ture for Generative Adversarial Networks”, Tero Karras et
al. propose an adaptive discriminator augmentation mecha-
nism that stabilizes GAN training in cases of limited train-
ing data [8]. The authors introduce an adaptive augmenta-
tion strategy for the discriminator that prevents overfitting,
a common issue when training GANs with small datasets
that leads to the discriminator becoming too confident in
distinguishing between real and fake images, which sub-
sequently provides poor feedback to the generator. The
adaptive discriminator augmentation has become a state-of-
the-art method for limited data scenarios and demonstrated
that high-quality GANs can be trained with much smaller
datasets than previously thought possible.

3. Methods
3.1. Variational Autoencoder (VAE)

We implemented a VAE from scratch in PyTorch to ad-
dress the challenge of limited labeled data in eye disease
classification. In general, VAE consists of two main com-
ponents: the encoder and the decoder. The encoder com-
presses the input images into a latent space, where it gen-
erates two sets of parameters: the mean and variance of a
Gaussian distribution. The decoder then takes samples from
the distribution to reconstruct the original images. During
training, the model minimizes the reconstruction error be-
tween the original and the reconstructed images while also
regularizing the latent space to follow a Gaussian distribu-
tion. In addition to reconstruction error, the loss function for
VAE typically includes Kullback-Leible (KL) divergence
loss as a regularization term. The KL divergence loss mea-
sures the difference between the learned probability distri-



bution and the predefined prior distribution.
The loss function for a Variational Autoencoder (VAE)

can be written as:

L(θ, ϕ;x, z) = Eqϕ(z|x)[log pθ(x|z)]− KL(qϕ(z|x)∥p(z))

where:

KL(qϕ(z|x)∥p(z)) =
∫

qϕ(z|x) log
qϕ(z|x)
p(z)

dz

Here: - x is the input data. - z is the latent variable. -
qϕ(z|x) is the approximate posterior distribution. - pθ(x|z)
is the likelihood of the data given the latent variable. - p(z)
is the prior distribution of the latent variable. - E denotes
the expectation. - KL denotes the KL divergence.

To apply the VAE to our fundus dataset, we followed
these steps:

1. Data Preparation: We preprocessed the images by
resizing them to 64x64 pixels and normalizing the
pixel values to a range of [-1, 1].

2. Model Architecture: The encoder includes two linear
layers activated by LeakyReLU functions, producing
the mean and variance of the latent space. Similarly,
the decoder uses two linear layers and LeakyReLU
activations to reconstruct the images, with a final
sigmoid activation to produce pixel values in the range
[0, 1].

3. Training: We trained the VAE by minimizing the
combination of reconstruction loss and KL divergence
loss. The Adam Optimizer, with a learning rate of
1× 10−3, was used to update the model parameters.

4. Cross Validation: We ran a hyper-parameter search
to find the optimal learning rate, hidden dimension,
and latent dimension which were 2048, 128, and
2× 10−3 respectively.

3.2. Stable Diffusion

We also experimented with using diffusion models to
generate synthetic data samples of fundus images. Diffu-
sion models work by gradually adding noise to a training
image and learning how to reverse that noise at each time
step. The final model should then be able to create similar
images from Gaussian noise by sampling the learned pa-
rameters. A diagram of this is shown below in Figure 1.

Figure 1. Simple diffusion image generation process diagram.

Figure 2. Diffusion training and sampling algorithms from original
paper.

More technically, a diffusion probabilistic model is a pa-
rameterized Markov chain trained using variational infer-
ence to produce samples matching the data after finite time
[6]. Ho et al. summarize the algorithm in the figure below.

For our experiment we used a Github respository [14]
that created a package compatible with colab and py-
torch, and was built based on Ho et al.’s original ten-
sorflow implementation. The code for this can be
found at https://github.com/lucidrains/denoising-diffusion-
pytorch. The package includes a Trainer class that allowed
us to pass in a data folder along with hyperparameters to
then train and sample the diffusion model.

3.3. SmallGAN

Another approach we tried fine-tuning a pre-trained gen-
erator by introducing scale and shift parameters to each hid-
den activation of the generator and updating only these pa-
rameters, enabling the model to be transferred to a small
dataset due to the low number of trainable parameters. This
approach was adapted from Noguchi and Harada’s ”Image
Generation From Small Datasets via Batch Statistics Adap-
tation” which was able to achieve promising results from
datasets containing roughly 100 images [11].

Closely following the approach proposed by the paper,
our implementation contained only a pre-trained generator
with no discriminator [10]. We then introduced trainable
scale and shift parameters into each of the hidden activa-
tions of the generator to transfer the model to our small
dataset. By used a pre-trained model with a smaller num-
ber of trainable parameters overfitting, a common issue with
GAN is reduced.

Instead of a discriminator, supervised learning is used in
this approach by directly passing a trainable latent vector z
through the generator such that the generated image is as
close as possible to the true image.

This is an intuitive approach for small datasets because
in a typical GAN, a separate discriminator is being trained
to determine given image x, is real or fake. This works well



Figure 3. SmallGAN training pipeline

for large datasets that densely fill the distribution but is a
very hard task with a small dataset that is better suited for a
distance-based supervised loss approach.

Our implementation forks Noguchi and Harada’s imple-
mentation, modifying the data preprocessing and hyperpa-
rameters to suit our dataset. Because we had roughly 300
images per disease class, which is close to the 100-image
dataset for which SmallGAN is optimized, we trained on
a single class (the Glaucoma class) instead of the whole
dataset.

3.4. Finetuned StyleGAN

We employed the StyleGAN2-ADA (Adaptive Discrim-
inator Augmentation) [7] implementation to generate syn-
thetic images of ocular diseases. The finetuning process
was performed on the pretrained ffhq.pkl model, which
was trained on the FFHQ dataset [12] at a resolution of
1024x1024 using the original StyleGAN2.

The ODIR dataset is used for finetuning. The images in
the dataset are preprocessed to be standardized 1024x1024
pixels and RGB format. The pretrained ffhq.pkl model is
then loaded as the base model for finetuning. To address the
issue of limited data, StyleGAN2-ADA implements adap-
tive discriminator augmentation (ADA) on top of the origi-
nal StyleGAN2 implementation, and involves adjusting the
augmentation probabilities based on the discriminator’s per-
formance during training. This technique helps prevent
overfitting and stabilizes the training process, allowing for
effective learning even with a small dataset. We set up the
generator and discriminator to require gradients for back-
propogation, and both models are set in training mode to
allow for proper gradient updates. We then feed the pre-
processed images into the training pipeline with an initial
batch size of 8, learning rate of 1e-4, and trained for 10
epochs. After training, the finetuned generator and discrim-
inator models are saved for image generation.

Figure 4. Dataset Class Sizes

4. Dataset and Features
For this study, we leverage the Ocular Disease Intelli-

gent Recognition (ODIR) dataset, a structured ophthalmic
database comprising data from 5,000 patients, collected by
Shanggong Medical Technology Co., Ltd. from various
hospitals and medical centers in China [1]. The dataset in-
cludes color fundus photographs of both left and right eyes,
along with diagnostic keywords provided by trained human
readers.

The ODIR dataset is designed to represent a real-life set
of patient information, with fundus images captured using
various cameras, such as Canon, Zeiss, and Kowa, leading
to varied image resolutions. This diversity in imaging con-
ditions presents a realistic challenge for developing robust
diagnostic models.

Patients in the ODIR dataset are classified into eight cat-
egories based on their ocular conditions:

1. Normal (N) - 2873 images

2. Diabetes (D) - 1608 images

3. Glaucoma (G) - 284 images

4. Cataract (C) - 293 images

5. Age-related Macular Degeneration (A) - 266 images

6. Hypertension (H) - 128 images

7. Pathological Myopia (M) - 232 images

8. Other diseases/abnormalities (O) - 708 images

The images in the dataset vary in size, angle, and zoom,
but most are 512x512. Below are examples from each class
(all left eyes):



Figure 5. N (left) and D (right)

Figure 6. G (left) and C (right)

Figure 7. A (left) and H (right)

Figure 8. M (left) and O (right)

5. Experiments, Results, and Discussion

5.1. Preliminary VAE

Through implementing two versions of our VAE in
which we experimented with activation functions and hy-
perparameters, we were able to drastically improve the syn-
thetic images we generated. On our initial dataset, which
was a set of 411 photographs of eyes with different diseases,
our VAE was not able to produce the quality of synthetic
images we needed to actually use them in training. Below
are the initial images that the two versions of our VAE pro-
duced.

We later learned that VAEs suffer when trained on small
datasets. This was one of the contributing factors that
caused us to switch our dataset to the medium-sized fun-
dus dataset described above. With the larger dataset, we
re-trained our VAE after conducting a new hyperparameter
search. We were able to get much higher quality results but

Figure 9. VAE version 1 (left) and 2 (right) synthetic eye images

Figure 10. VAE synthetic fundus photographs.

after a qualitative evaluation, we determined that the image
classes were not clearly distinguishable from one another.
We began training with a learning rate of 0.0001 and a batch
size of 32. We noticed consistent spikes in the loss curve as
it decreased meaning that our learning rate was likely too
high and causing the model to overfit to each batch. Addi-
tionally, we noticed that our GPU utilization was low. In
response, we tripled the batch size and doubled the learn-
ing rate to manifest a proportionally lower learned rate with
respect to the batch size. Figure 9 depicts the results pro-
duced by our VAE implementation trained on 6,484 fundus
photographs with a final learning rate of 0.0002 a latent di-
mension of 128, a hidden dimension of 2048, and a batch
size of 96. We trained for 3 epochs which took just over an
hour on an L4 GPU.

The images are blurry which is a common characteris-
tic of VAEs when undertrained. With more training data
and more compute and time for hyperparameter search-
ing, we likely could improve our VAE experiment results.
While VAE was worth trying, we now better understand
why GAN-based architectures are typically the strongest
choice for medical synthetic image generation.

5.2. Stable Diffusion

We executed the stable diffusion package for 1000 train-
ing steps where the Gaussian diffusion had 1000 time steps
and a sample time step of 250. We ran the training with a
batch size of 32, a learning rate of 8 × 10−5 and accumu-
lated the gradient every 2 steps. The output images were set
at 128x128. Below are four samples from this model.

This experiment took just over an hour to run and had
a final loss of 0.015, which was promising. As the im-
ages show, however, the diffusion process was unable to
learn the precise details of fundus images like the veins



Figure 11. Diffusion experiment samples.

and optic nerve head. We hypothesize that the lack of
color variety and the very subtle differences between im-
ages and classes necessitate many more training iterations
and higher-resolution output. We attempted these parame-
ters but quickly ran out of compute, and even at lower res-
olutions, with many iterations the training timeline became
days to weeks for a single GPU.

5.3. SmallGAN

After adapting the data preprocessing to suit our needs,
we started by making an initial selection of hyperparame-
ters based on the goal of leveraging our 300 image class
datasets even though the model was architected for under
100 image datasets. To accommodate this, we slightly in-
creased the batch size effectively lowering the effect of the
learning rate and increasing parallelization. The default im-
plementation began training the pre-trained GAN on top of
another checkpoint. We decided to drop this checkpoint and
extend our training to allow the model to learn a little more
complex provided by our 3x larger dataset.

As seen in Figure 12, our results show some promise,
clearly displaying distinct coloration of the fundus which is
a key variable in disease classification. Similar to the results
shown in Noguchi and Harada’s paper, the images are rather
blurry suggesting poor edge detection and undertraining.

5.4. StyleGAN

Through iterative experimentation with the StyleGAN2-
ADA model, we attempted to generate high-quality syn-
thetic images of ocular diseases. Our initial training setup
was characterized by a batch size of 8 and learning rate of
1e-4, running for 10 epochs. This configuration, however,
resulted in extremely large losses for both the generator and
discriminator, which was indicative of exploding gradients.
To address the issue, gradient clipping was applied, which
helped stabilize training.

Figure 12. SmallGAN trained on Glaucoma class dataset (284 im-
ages)

Furthermore, the discriminator loss initially dropped
rapidly while the generator loss remained large, which in-
dicated that the discriminator was learning too well. This
imbalance suggested that the generator struggled to pro-
duce realistic images while the discriminator easily distin-
guished between real and synthetic images. To combat this,
we adjusted our training strategy by training the discrimina-
tor more frequently than the generator (every other image),
to improve the discriminator’s ability to challenge the gen-
erator.

The adjusted training strategy improved the stability of
the training process and quality of the generated images.
Figure X shows the the progression of synthetic images
produced over epochs. Training the StyleGAN model for
10 epochs took approximately 3.5 hours on an NVIDIA
T4 GPU. Among the four generative methods explored,
StyleGAN2-ADA consistently produced synthetic images
that most closely resembled the real fundus images in terms
of structure and detail. This can be attributed to the adaptive
discriminator augmentation architecture, which stabililizes
GAN training even with limited data.

However, despite this, there was still a noticeable loss in
fidelity of certain details, such as vein structures, color ac-
curacy, and overall blurriness in the generated images. We
believe that further hyperparameter tuning and optimiza-
tions such as learning rate scheduling and Batch Size Ad-
justments could improve upon these shortcomings. Addi-
tionally, given more time, we believe extended training du-
ration could further improve results.



Figure 13. StyleGAN trained on full ODIR dataset (top) and Style-
GAN trained on Glaucoma (G) class only (bottom)

6. Conclusion and Future Work
In this study, we explored the potential of four generative

models - VAEs, finetuned StyleGAN, SmallGAN, and Sta-
ble Diffusion - for synthesizing fundus images to augment
the limited ODIR dataset for ocular disease classification.
While the VAE and diffusion models struggled to capture
fine diagnostic details, the StyleGAN and SmallGAN ap-
proaches showed promise in generating realistic and diverse
fundus images. The results of this study demonstrate the po-
tential of generative models, particularly GANs, for synthe-
sizing realistic fundus images to augment limited datasets.
However, further work is needed to generate higher reso-
lution images with finer diagnostic details. Potential im-
provements include modifying architectures, loss functions,
and training schemes to encourage the models to capture
subtle features of different ocular diseases. Experimenting
with additional techniques such as transfer learning, atten-
tion mechanisms, and class conditioning could also yield
benefits.

Once sufficiently realistic synthetic images can be pro-
duced, the next key step is to evaluate their impact on down-
stream disease classification performance. Controlled ex-
periments should assess whether augmenting real datasets
with increasing proportions of synthetic data boosts accu-
racy, sensitivity and specificity of ocular disease classifiers.
It will also be important to examine the failure modes and
biases of classifiers trained on hybrid real/synthetic data.

Finally, to maximize clinical utility, future research

should seek to generate synthetic images spanning the full
spectrum of disease presentations and severities observed in
clinical practice. Rarer conditions and imaging artifacts are
particularly critical to capture. Techniques for amplifying
the representation of uncommon pathologies and features in
the synthetic data could help develop more robust diagnos-
tic models for real-world deployment. Collaboration with
ophthalmologists will be essential to guide medically rele-
vant data augmentation.

Synthetic data augmentation is a promising approach to
alleviating the scarcity of labeled data, which currently lim-
its deep learning for ocular disease diagnosis. With fur-
ther research to refine image generation and validate clin-
ical utility, this technique could accelerate the development
of effective AI screening and diagnostic systems to preserve
vision and improve access to ophthalmic care worldwide.
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