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Abstract

Recent advances in two-photon microscopy technolo-
gies allow simultaneous recording of over 200,000 neurons.
While automatic segmentation algorithms designed to find
the cells in these recordings exist, they tend to greatly over-
estimate the number of cells. If the new two-photon imag-
ing technologies are to be fully utilized, researchers will no
longer be able to rely on manual sorting of true cell masks
versus non-cell masks in the outputs of these segmentation
algorithms. This paper presents a novel automated classi-
fier designed to distinguish between ’true cell masks’ and
’non-cell masks’ derived from the two largest automatic
segmentation algorithms for two-photon microscopy data.
Using datasets from the Allen Brain Observatory, which
have been manually annotated by neuroscience experts, this
study benchmarks the accuracy of existing segmentation al-
gorithms against human annotations and develops a spe-
cialized convolutional neural network (CNN) to enhance
the precision of neuronal segmentation. Initial results show
promising improvements in the accuracy of cell identifica-
tion, with a significant reduction in the number of non-cells
being classified as true cells. This advancement not only
improves the efficiency of two-photon imaging studies, but
also sets a precedent for future developments in automated
neuron segmentation.

1. Introduction

Mammalian brains, composed of billions of neurons, are
one of the most complex organic structures in the world.
Recent advances in two-photon microscopy now enable
more in-depth studies of the brain by allowing the simul-

taneous recording of activity from over 200,000 neurons
[4, 1]. However, to fully realize the potential of these ad-
vancements, effective methods for interpreting these vast
datasets must be developed.

One key task in understanding these datasets involves
segmenting the locations of cells in the recordings. Cur-
rent segmentation algorithms, designed for lower through-
put datasets, often overestimate cell counts, necessitating
manual post-processing to correct their errors [5, 7]. The
massive size of datasets from new two-photon microscopy
methods make this manual segmentation step infeasible.
Consequently, an automated method for sorting ’true cell
masks’ and ’non-cell masks’ is necessary for full utilization
of these exciting advancements in two-photon microscopy.

In this project, we developed a deep learning framework
that enhances existing brain imaging segmentation methods
by distinguishing true cells from non-cells. We developed
separate convolutional neural networks that are specialized
to operate on the two most popular existing cell segmenta-
tion algorithms, Suiet2p and Caiman. By leveraging exist-
ing human-annotated data to train and validate our model
[2], both of our models are able to sort true cell masks with
almost 90% precision. This development helps to unlock
the potential of recent advances in two-photon microscopy
by accelerating scientists’ workflow, providing them with
more time to achieve revolutionary discoveries.

2. Related Works

The two main existing two-photon imaging segmenta-
tion algorithms are Suite2p [7] and Caiman [4]. Both algo-
rithms rely on signal processing methods to analyze large (
> 10 TB) recordings in an efficient manner. However, these
algorithms still suffer from segmenting too many items,
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Figure 1. Example of an output from Suite2p automatic cell seg-
mentation algorithm (blue masks) compared to a human-annotated
database (red masks). Existing automatic cell segmentation algo-
rithms tend to greatly overestimate the number of cells in record-
ings.

achieving much lower precision scores than recall scores
[3, 7].

Many other algorithms have attempted to address the
precision shortcomings of Caiman and Suite2p, but they of-
ten suffer from comparatively lower recall [9], have been
tested mainly on synthetic data [8], or suffer from pro-
hibitively long run-times [5]. For this reason, scientists
continue to use Caiman and Suite2p and rely on manual
post-processing to sort the true cell masks from the non-cell
masks.

In the past, this manual curation step has been feasi-
ble for experiments because two-photon microscopy ex-
periments had relatively low throughput. As a result, no
automatic classifier for true cell masks versus non-cell
masks currently exists 1. However, due to recent advances
in two-photon microscopy techniques, manual curation is
completely infeasible. We propose a novel automatic cell
segmentation classifier based on convolutional neural net-
works.

3. Data
The Allen Brain Observatory is a database that catalogs

the functional responses of neurons in the mouse visual cor-
tex to various visual stimuli based on 2-photon fluorescence
imaging [2].

1The authors note that some individual labs may possess their own
methods for automatic mask sorting, but no widespread classifier for this
task currently exists.

The dataset includes eight different in vivo two-photon
recordings of the mouse visual cortex. Each dataset is man-
ually annotated by 3–4 independent labelers that were in-
structed to select active neurons in the recording [4]. For
this paper, these manual expert annotations will be treated
as the ground truth against which we will benchmark our
classifier.

We processed these recordings through two popular ex-
isting segmentation algorithms, Suite2p and Caiman. Each
of these signal-processing based algorithms produced a set
of segmentation masks for each recording. All segmen-
tation masks have the same dimensions as the recordings
from which they were generated (ranging from 200x200 to
800x800). For every pixel and mask, the segmentation al-
gorithms assign a value between 0 and 1 that signifies how
much each pixel contributes to each mask. For example, if
two cells overlap on one pixel, the algorithm may assign a
value of 0.5 to the masks for each cell. Similarly, if a pixel
lies near the edge of one cell but the center of another, the
algorithm may assign a value of 0.1 to the cell edge but 0.9
to the cell center. If the segmentation algorithm does not
find the pixel to be a part of any masks, the pixel will have
zero weight in all masks.

In order to label each mask as a ’true cell’ or ’non-cell’,
we compared the outputs of the algorithms to the human-
annotated masks. We first binarized the algorithm outputs
by setting each mask value to 1 if the algorithm output was
greater than 0.2, and 0 otherwise. This threshold was se-
lected to maximize matches between nearby cells without
accounting for low-weighted pixels. If the binarized algo-
rithm mask overlapped with a human-annotated mask by at
least 70% by the Jaccard index (intersection over union), it
was considered a ’true cell’. Otherwise, it was considered a
’non-cell’.

4. Methods

4.1. Data pre-processing

To perform the mask classification task, we developed
two convolutional neural networks trained on the human-
labeled datasets from [2] and the outputs from the Suite2p
and Caiman algorithms. We decided to train separate classi-
fiers for each of the segmentation algorithms because it was
thought that each algorithm would have nuanced patterns in
its outputs that a dedicated model would be able to learn. In
order to be able to input the data into our models, we had to
first pre-process the data.

We developed a data pre-processing pipeline to standard-
ize the inputs to our deep learning models. First, the area
around each mask was cropped to a 64x64 square, with the
mask centered in the frame. All other masks in the field of
view were removed during this cropping. The authors de-
cided to remove other masks from the field of view to sim-
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plify image processing and eliminate the variable of spatial
locality. Our objective is for the model to recognize cells
independent of their spatial location within the image, ac-
commodating the variable positioning of images captured
throughout the brain. An example of a few cell masks after
cropping and centering is included in Figure 2.

Figure 2. Example of Caiman masks after cropping and centering
the area around the mask to a 64x64 frame.

Because the non-cell masks greatly outnumbered the true
cell masks in some recordings (in one recording, there was
almost a 10:1 ratio of non-cell masks to cell masks), a set
of augmented data was introduced to the dataset. The aug-
mented data was produced by selecting a random mask, ap-
plying a 0°, 90°, 180°, or 270°degree rotation with equal
probability. Then, a horizontal and/or vertical flip was ap-
plied with 50% probability each. These data augmentations
were repeated until there were 10,000 true cell and non-
true cell masks in the Suite2p dataset and 5,000 true cell
and non-true cell masks in the Caiman dataset (the Caiman
dataset started with a lower number of masks, so fewer aug-
mented data points were needed to equilibrate the true and
non-true mask counts).

It should be noted that these augmented images are bio-
logically relevant because true cells can occur in any orien-
tation of the brain, and rotations and flips can easily occur

if a research orients a camera differently on any given day.
For this reason, the model should be trained on and be able
to accurately classify this augmented data.

Finally, the dataset was split into training, validation, and
testing sets, with 80% of data reserved for training, 15% re-
served for testing, and 5% reserved for validation. This split
was performed before the augmented data was introduced
to the dataset to ensure that the test set did not include any
augmented images.

4.2. Model architecture and hyperparameters

After data pre-processing, we were able to input the data
into our CNNs. We tested a few different model architec-
tures on each algorithm. We started with a simple two-layer
CNN with 3x3 filters and max pooling layer. To test deeper
networks, we also tested modified versions of Resnet18 and
Resnet50. We modified the ResNet models from their orig-
inal form in three small ways. First, because our input im-
ages have only one channel, we modified the first convolu-
tional layer to accept single channel images. Second, we
again modified the fist convolutional layer to use a smaller
filter size (5x5 instead of 7x7) and removed the max pooling
layer because our input images were significantly smaller
than the input images to the original ResNet (64x64 versus
224x224). Finally, a sigmoid layer was added to the end of
the model to convert the model output to a value between 0
and 1 that can be roughly interpreted as the likelihood of a
mask being a true cell.

Training was conducted using the Adam optimizer and
binary cross entropy loss function. Adam was chosen due
to its success on a variety of deep learning applications, and
the binary cross entropy loss function was chosen because
we have a binary classification task.

Hyperparameters and final model architecture were se-
lected by a random search over regularization strengths,
learning rates, batch size, and learning rate decay. First,
a crude random search was performed over a wide range of
the hyperparameters. These hyperparameters were used to
train each of the proposed model archiectures for 5 epochs.
After this first round of random search, the best-performing
hyperparameters (based on validation set F1 score) were se-
lected, and a finer random search was performed near their
values. The proposed model architectures were then trained
for 25 epochs on these hyperparameters. The set of hyper-
parameters and model architecture with the highest valida-
tion set F1 score on this final test was used to train the final
model. This procedure was repeated for the Suite2p and
Caiman models so that separate hyperparameters were de-
veloped for each model.

For our Caiman model, we found that the deeper ResNet
models tended to severely overfit the data, even with high
regularization strengths. The ResNet 50 architecture very
quickly achieved 100% prediction accuracy on the training
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set, while still predicting the validation set with less than
70% accuracy. As can be seen in Figure 3, the two-layer
CNN had a higher area under the curve (AUC) on the vali-
dation set than all other models. We believe this overfitting
on the larger models might have occurred because of the rel-
atively low amount of Caiman data. This data scarcity issue
could be addressed in future work by introducing more aug-
mented data into the dataset or by obtaining more human-
labelled datasets. The final learning rate and regularization
strengths used for training were 1.1x10−4 and 1.3x10−5,
respectively.

Figure 3. ROC curves for different Caiman model architectures
after hyperparameter tuning. The shallower models tended to
achieve better AUC than the deeper models for Caiman data.

Conversely, we observed that the Suite2p model perfor-
mance continued to increase as model depth increased, and
we decided to use the ResNet 50 architecture. The final
learning rate and regularization strengths used for Suite2p
training were 6.8x10−5 and 3.9x10−4, respectively.

4.3. Evaluation

Because the segmentation algorithms tend to overesti-
mate the number of cells compared to a human annotator
(often about 40-90% of identified masks are not true cells),
accuracy alone does not provide a good estimate of the qual-
ity of our classifiers (e.g. if 90% of the masks in a recording
are non-cells, then the model could achieve 90% accuracy
by predicting ’non-cell’ for every mask). Instead, we eval-
uated our classifier based on the precision and recall of the
classifier’s ability to categorize each mask as a true cell or
a non-cell. As mentioned above, the F1 score, a common
measure that combines precision and recall into a single
metric, was also used to evaluate model training.

After training, several qualitative measures, including
saliency maps and occlusion maps, were also used to eval-
uate training success. These qualitative measures also have

the benefit of providing additional insights into the key fea-
tures of the masks of the Suite2p and Caiman algorithms. A
better understanding of what discerns a true cell mask from
a non-cell mask in each algorithm could be used to guide
better algorithm development in the future.

5. Experiments
After completing training, our Caiman model achieved

76.6% accuracy on the Caiman test dataset. Our Suite2p
model achieved 93.3% accuracy on the Suite2p test dataset.
These accuracy scores were calculated using a threshold of
0.5 on the sigmoid output of the models. However, be-
cause removing false cells is much more important than
keeping all true cells (to prevent introducing false data that
can cause erroneous scientific conclusions into datasets), a
model that achieves high precision is preferred over a model
that achieves high recall. For this reason, we plotted ROC
curves and precision-recall curves for both models and se-
lected a threshold that would achieve good precision at the
expense of a slightly lower recall.

As one can see on the ROC curves in Figure 4, our
Caiman model achieved a moderately high area under the
curve, indicating successful training. The Suite2p model,
on the other hand, achieved almost perfect AUC, demon-
strating the benefit of having more training data and a
deeper network. Based on these ROC curves and precision-
recall curves, a nominal threshold of 0.8 was selected to
classify masks as true cells cells for the Caiman model,
while a threshold of 0.99 was selected for the Suite2p
model. These strict thresholds ensure that very few non-
true cell masks are automatically classified into the true cell
group, while accepting that some true cells may be filtered
into the non-cell group.

Misclassifying some true cells as non-cells can poten-
tially lead to discarding good data. To make up for this,
our model can return the scores for all masks, allowing re-
searchers to manually inspect masks that have high scores
but were not automatically classified as true cells by our
models. Despite the high throughput of new two-photon
imaging methods, this manual curation step once again be-
comes possible because our models sort through the bulk
of masks, leaving only a few masks left for researchers to
manually classify if they want to ensure they retain all good
data.

Confusion matrices for both the Caiman and Suite2p
models after applying their respective thresholds are in-
cluded in Figure 5. As one can see, the Caiman model
achieved precision, recall, and F1 scores of 0.904, 0.582,
and 0.717, respectively. The Suite2p model achieved pre-
cision, recall, and F1 scores of 0.865, 0.915, and 0.893,
respectively. With both models achieving precision scores
near or above 0.9, both models do a fantastic job at sorting
out the non-cell masks. The Suite2p model, which has a
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Figure 4. ROC curves (top) and precision-recall curves (bottom)
for the Caiman (blue) and Suite2p (orange) final models. The
Suite2p model, utilizing a deeper network and more training data,
tended to achieve better AUC and more even trade-offs between
precision and recall.

recall score of over 0.9, also does a fantastic job in prevent-
ing the need for any post-processing curation, as almost all
true cells are classified correctly. The Caiman model, on
the other hand, with a recall of about 0.6, will require some
manual post-processing if researchers want to utilize all true
cell masks (but, once again, even without this manual post-
processing, researchers can still be confident that their re-
sults are not being corrupted by non-cell masks!). As stated
above, even though models that achieve even higher accu-
racy would be preferred, given the trade-off between preci-
sion and recall, these models represent great advancements
in expediting mask sorting tasks for researchers.

5.1. Qualitative measures of model training

After confirming satisfactory precision and recall by our
models, we then wanted to evaluate the qualitative outputs
of our models. First, we wanted to observe what kinds of

Figure 5. Confusion matrices of predictions for both the Caiman
(top) and Suite2p (bottom) models

true cell masks the model was misclassifying as non-true
cells and vice versa. An example from this analysis is in-
cluded in Figure 6. For the Caiman mis-classifications, it
seemed like the model was not consistently able to iden-
tify true cells when the strongest mask weight was centered
around a few pixels near the edge of the mask. Meanwhile,
it classified some non-cells as cells when a strong weight
was concentrated in the middle of the mask. These mis-
classifications seem reasonable and seem like they could be
resolved only by providing the model with temporal infor-
mation about each of the masks in the recording instead of
just spatial information.

When looking at the Suite2p masks, it is first evident
that the structure of Suite2p masks was very different than
the Caiman masks, as the Caiman masks tended to be round
and large, while the Suite2p masks tended to be smaller and
take on lots of different shapes. These differences are ex-
pected given the different underlying processing techniques
in each algorithm. For the Suite2p mis-classifications, it
seemed like the model had a difficult time distinguishing
the long, thin masks as non-cells. It also had a difficult time
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discerning the small, concentrated masks as true cells. Be-
cause these types of masks are relatively rare in the datasets,
including more examples of these masks in the training
dataset, or generating more augmented versions of these
types of masks, could help the model be able to better clas-
sify these masks.

Figure 6. Examples of mis-classified true cell masks and non-cell
masks for both Caiman (left) and Suite2p (right)

Next, we plotted saliency maps based on guided back-
propagation. By adapting code from [6], we were able to
carry out guided backpropagation on the sigmoid outputs of
our models. The guided backpropagation works by follow-
ing gradients from the output image with respect to the in-
put image, with ReLU activations applied in the backwards
direction at each activation layer. As [10] demonstrated,
applying these ReLUs in the backwards direction prevents
backward flow of negative gradients, which correspond to
the neurons that decrease the activation of the higher layer
unit we aim to visualize.

Two examples from this guided backpropagation analy-
sis are included in Figure 7. As one can see in the exam-
ples, the gradients tend to follow the shape of the masks
pretty closely, indicating successful model training. In both
examples, it seems like the models have the strongest gradi-
ents where the mask is most concentrated and the weakest
gradients on the edges and center of the mask. It is interest-
ing that the gradients are weakest in these locations because
these are not the locations of weakest weights in the input
images (as the entire background has zero weight). Instead,
it seems indicative of the characteristic annulus of in-plane
cells. Because the calcium fluorescent that is being imaged
by the two-photon method resides mostly in the cytoplasm
of the cell, an annulus around the nucleus of the cell can
usually be seen in in-plane cells. These saliency maps seem
to trace out the annulus on many of the masks, indicating
that the models found one of the defining characteristics of
many cells.

Figure 7. Saliency maps generated by guided backpropagation for
two masks.

Finally, we wanted to develop occlusion maps to deter-
mine which parts of the masks had the biggest effect on
model decisions. To perform this test, we applied a 5x5
sliding window over input images to zero out a small por-
tion of the image. Then, the image was passed through the
model, and the output score was recorded for each position
of the window. Regions where the model score drops sub-
stantially demonstrate which parts of the image the model
relied on the most for its prediction. Examples from this
analysis are included in Figure 8.

Similar to the saliency maps generated by guided back-
propagation, these occlusion maps seem to suggest that the
model is influenced most by an annulus around the center of
the mask. The model is able to make confident predictions
unaffected by the occlusion when the window is in front
of the center of the mask (covering the nucleus that does
not contain the calcium fluorescent) or near the edge of the
frame (not covering the mask). However, when the occlu-
sion blocks the area of the cell corresponding to cytoplasm
(that contains the calcium flurescent), the model predictions
tend to suffer. These model learnings are very biologically
relevant, as the annulus around the center of the cell is one
of the defining characteristics of true cells versus non-cells.

6. Conclusion

Using a deep learning approach, we have developed
novel classifiers to accelerate two-photon calcium imag-
ing analysis using the two most popular segmentation algo-
rithms. Our model for the Caiman algorithm achieves pre-
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Figure 8. Occlusion maps generated by applying a sliding window
over the input image and recording the model output

cision of over 0.9 and recall of almost 0.6, while our model
for the Suite2p algorithm achieves precision of 0.87 and re-
call of 0.92. These precision values indicate robust clas-
sification against false positives, which help prevent false
data from corrupting scientific conclusions. Furthermore,
our models return the output scores of all masks to the re-
searcher, so that he or she can recover some of the true
cells that our model misclassified as non-cells. Although
this manual curation is not currently feasible because of the
size of the datasets being analyzed, the ability of our clas-
sifier to confidently sort through the bulk of the data allows
researchers to inspect the minority of masks that our models
were not as confident on.

Additionally, the qualitative visualizations of the mod-
els demonstrate successful training of the models, with both
models seeming to identify the characteristic annulus that is
present in many cells.

Despite the initial success of our models in distinguish-
ing true cell masks from non-cell masks, there are still a
few key points that we would like to develop further in the
future. First, the Caiman model achieved relatively low per-
formance compared to the Suite2p model. We believe this is
primarily due to the lower amount of training data prevent-
ing us from using deeper CNN architectures (ironically, we

only had more data for the Suite2p model because the al-
gorithm generated more false masks to begin with). A first
step in obtaining more data would be to continue the aug-
mented data generation to higher counts of true cells and
non-cells. However, because the augmented images are so
similar to the original images, this technique would likely
lead to even more overfitting in the long run. Instead, more
time should be devoted to manually labelling recordings so
that the models can be trained on additional data. Although
this manual labelling has a high upfront cost, it would save
time in the long run, as better models would decrease the
need for manual post-processing curation on every dataset.

Another reason we think more manually labelled
datasets are necessary is for additional testing on our mod-
els. Because the number of available recordings was low,
we used all available data for training for models. However,
it is possible that the algorithms produce nuanced mask
topologies specific to the recording on which they were gen-
erated. It would be very beneficial to reserve all masks from
a recording for testing to better understand how the models
perform on masks from an unseen recording.

One final key point related to data quality that could be
improved is how the labelled datasets are aligned with the
Suite2p and Caiman outputs. As discussed in the data sec-
tion, we considered a mask equivalent to a human-labelled
mask if they overlapped by at least 70% by the Jaccard in-
dex. It is likely, however, that some of these alignments
were not accurate, leading to some masks being misla-
belled. For pristine data quality, one should not only label
the locations of true cells in the original recording, but also
label which masks output by the segmentation algorithms
align with the cells. This extra step would again incur a
large upfront cost but would also help develop better mod-
els that would save more time in the future.

Our models, which were specifically developed for the
two most popular existing cell segmentation algorithms,
demonstrate the possibility of automatically classifying true
cell masks versus non-cell masks in high throughput set-
tings. This novel development helps unlock the potential of
the newly developed high throughput two-photon imaging
techniques. Our models automatic cell classification abili-
ties help negate the possibility of non-cell masks corrupting
scientific data, thereby enabling revolutionary discoveries
utilizing new two-photon imaging technologies.
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