
Adaptation of OCR Models for LATEX Vision

Nikash Chhadia
Stanford University

chhadia@stanford.edu

Sambhav Gupta
Stanford University

samgupta@stanford.edu

Abstract

This research focuses on OCR for LaTeX mathematical
expressions, which is the problem of determining the LaTeX
code used to generate a compiled expression in image form.
We apply two approaches to this problem, namely (1) fine-
tuning a general OCR model instead of training a model
from scratch, and (2) utilizing a synthetically generated La-
TeX dataset to enable training on a large set of data with-
out manual data collection. Both of these approaches are
applied with the intention of drastically reducing the quan-
tity of resources and compute required to train an effective
model for the task. We find that, after fine-tuning, although
the model shows some success classifying simple expres-
sions, performance rapidly breaks down for more complex
expressions. We present potential explanations for this per-
formance for a model which succeeds in OCR tasks, which
include an oversized token set, undertraining of the model,
and lack of CNNs for feature extraction. We also present an
interesting visualization of the attention mechanism of the
model, which shows bias towards the beginnings of expres-
sions.

1. Introduction
Optical Character Recognition (OCR) is typically de-

fined as the process of converting an image with text into
a machine-readable text format. Techniques and strategies
for OCR have significantly evolved over the past decades,
transforming how we digitize and interact with textual data.
It allows for the conversion of different types of documents,
such as scanned PDFs or images, into editable and search-
able data, which has found applications across numerous
fields including data entry automation, content archiving,
and digital accessibility.

This research focuses on OCR for mathematical expres-
sions and language, particularly that of the LaTeX markup
language, which incorporates deterministic semantics for
more complicated mathematical and scientific notation in-
cluding sub and superscripts, fractions, and special sym-
bols. With this research, we aim to determine the feasi-

bility of using an off-the-shelf general OCR model such as
TrOCR [8] to solve the LaTeX to text problem. The input
to the TrOCR model is an image of text, and the model uses
a vision transformer to output a sequence of predicted to-
kens which state the content of the text in the image. After
fine-tuning, our version of the TrOCR model will take an
image of compiled LaTeX as input, using the vision trans-
former to output a series of tokens relaying the code which
would generate that image. We also use a randomized algo-
rithm to generate a large set of LaTeX strings, which can be
compiled to form a large dataset of image-text pairs for this
problem.

For our results, we find that the general OCR model is
relatively poor at learning this task. In particular, we find
that the model is able to learn to recognize short LaTeX
expressions and is often able to recognize the symbols in
longer expressions, but generally has trouble conforming to
the strict syntactic structure of LaTeX expressions.

2. Related Work
As a basis of our work, we rely on the following pa-

pers, several of which represent attempts at solving the La-
TeX OCR problem, one of which presents the general OCR
model (TrOCR) which we fine-tune to obtain our results,
and one of which presents inspiration for our dataset ge-
neation algorithm.

[3] uses a neural encoder-decoder model for LaTeX
OCR, which is aligned with our desired task. It introduces
an RNN (in practice, LSTM [7])-based architecture for en-
coding which recursively encodes the rows and columns of
the input image to generate features, followed by a fairly
standard RNN-based decoder. It also introduces some in-
teresting and fairly complex alternative attention schemes
including sparsemax attention [12] and hard attention. Fi-
nally, and most importantly for our purposes, it introduces
a large dataset of LaTeX-image pairs which we hope to use
to compare our model’s performance on synthetic data and
real-world data.

[14] is a more recent paper, also on LaTeX OCR,
which applies more modern techniques to the problem and
achieves much better results, including an increase in BLEU

1

score from 66.65 to 89.72. The model they use con-
sists of three main modules: a global feature extractor, a
transformer-based [19] encoder, and a mask attention-based
decoder. The feature extractor is a fairly standard convnet
with some custom residual layers. The encoder is stan-
dard, using sine and cosine positional embeddings rather
than learned embeddings. The decoder is custom-proposed
for the purpose of mitigating over-parsing, when some parts
of the image are parsed multiple times, and uses a Gate Re-
current Unit (GRU) function [1] — which can be utilized if
we notice over-parsing in our model’s results.

In addition to the above two papers, we take inspiration
from the following papers, which are mentioned in compar-
isons by the above paper and which we summarize briefly.
[17] uses a fairly involved and early approach to LaTeX
recognition, which involves connecting an OCR model for
non-LaTeX characters with a LaTeX character recognition
model. This is somewhat similar to our approach of fine-
tuning a non-LaTeX OCR model. [4] uses a standard convo-
lutional network approach for feature extraction, then uses
an RNN as a row encoder before passing the marked up
tokens into the decoder, alongside some other tricks. This
specialized scheme, which uses a hand-tuned architecture
specifically based on insights into LaTeX, has a similar de-
sign philosophy to [14]. We see similar features in [23];
features are created with a CNN, then passed into an LSTM-
based encoder. In this case, they are decoded with two sep-
arate attention mechanisms (hence the name), then the out-
put is passed in series to another series of LSTM modules,
which keep hidden state and produce the final series of to-
kens. We also reference [5], which focuses on parsing of
handwritten mathematical expressions. This paper utilizes
a CNN feature extractor along with GRU units and single
headed attention in the decoder, which shares many sim-
ilarities component-wise with other architectures, but also
rearranges them in an interesting order.

Figure 1. The architecture of the TrOCR [8] encoder-decoder
model, with a pre-trained image Transformer as the encoder and a
pre-trained text Transformer as the decoder.

[8] releases a pre-trained model called TrOCR, which is
a transformer-based OCR model as displayed in Figure 1.
The framework is a standard transformer-based encoder-

decoder model, where the encoder applies attention over
patches of the input that are combined with position embed-
dings. With this model, we are primarily interested in the
fact that this model is a good candidate for fine-tuning into
a capable LaTeX OCR model; indeed, the LaTeX OCR task
shares many subtasks with the standard OCR task, most no-
tably identification of characters in the input image, so we
hypothesize that fine-tuning a general OCR model on syn-
thetic LaTeX expressions will yield interesting results with
less computation than training from scratch.

For data generation, we take inspiration from methods
presented in [6], which is primarily focused on generating
synthetic handwritten examples. We take interest in chapter
2.3 specifically, which presents LaTeX expressions as sym-
bol layout trees, and represents a form of our approach to
generating synthetic LaTeX expressions.

For the analysis of attention scores in our model, we ref-
erence [20], which presents some visual illustrations of at-
tention that we take inspiration from when illustrating the
attention our model gives to patches of input. We also ref-
erence [22], though we do not directly use it, as it provides
insights like finding attention heads which order image to-
kens based on brightness and hue—something we find sim-
ilar behavior to in our model.

3. Data
We synthesize our own dataset by generating random La-

TeX expressions. To do this, we write an algorithm which
is initialized with lists of expressions of various types: ‘sin-
gletons’ (the alphabet, numbers, and Greek letters such as
α), ‘one ops’ (such as

√
and trigonometric functions),

‘two ops’ (such as #+#, # ·#, #
) and ‘three ops’ (such

as integrals and summations). We then essentially build up
a syntax tree as follows: we start an expression with a sin-
gle #. While the expression still contains # characters, we
roll a random number to replace the next existing # with
either a singleton, one op, two op, or three op, which them-
selves are randomly chosen from their respective lists. The
weights given to these four possibilities are chosen such that
the process terminates in finite time in expectation, and are
roughly hand-tuned; we add singletons with probability 0.6,
one ops with probability 0.1, two ops with probability 0.25,
and three ops with probability 0.05. An illustration of this
procedure as a kind of Markov chain is provided in Figure
2, where p0, p1, p2, p3 are the probabilities of generating a
singleton, one op, two op, and three op respectively.

We made several opinionated design decisions in the
generation of this dataset in order to tailor it closer to the
types of expressions we see in the wild; we do not claim
that any of these design decisions are optimal, but we expect
that in aggregate, they will produce realistic-enough LaTeX
expressions that we can expect good results after training a
model. We added a probability distribution for the single-

2

Figure 2. Illustration of synthetic LaTeX generation scheme.
Dashed arrows indicate further iterations.

tons and operators in each set to allow us to hand-tune the
distribution of operators selected; indeed, we would expect
common operators to appear more frequently than niche
and special use operators. We also added some three-ops
as one-ops with common arguments filled in, like

∑n
i=0,

because this format is unlikely to appear frequently other-
wise. We also explicitly include various lengths of expres-
sions in the dataset to avoid the length distribution being ar-
bitrarily derived from our generation scheme; in the current
dataset of 48, 000 expressions, we enforce that each block
of 8, 000 expressions is constrained to one of the ranges
{[1, 5], [6, 10], [11, 15], [16, 20], [21, 25], [26, 30]}. We find
that re-querying our generation algorithm until we find an
expression of the desired length does not cause a significant
slowdown—as shown in Figure 3, enough sequences of var-
ious lengths from 1 to 50 are generated that a brute-force
re-querying approach is sufficient. The dataset is quick to
synthesize; it takes a few seconds to generate 48,000 ex-
pressions.

Figure 3. Distribution of expression lengths generated

In figure 4 we show several images from the [26, 30]

bracket we generated. Notably, most of the expressions are
only similar in overall form to real LaTeX expressions, and
their specific contents is much more variant.

Figure 4. Assortment of compiled LaTeX expressions generated
by synthetic dataset generator, lengths 26-30

In addition to this synthetic data, we use the
IM2LATEX-100k dataset presented in [3] for evaluation af-
ter the model is fine-tuned.

4. Methods
We formally define our problem as converting an im-

age of rendered LaTeX to the source LaTeX code. The in-
put x in this case would be the rendered image, and the
output y would be the sequence of tokens y1, y2, · · · , yT
corresponding to the LaTeX code for the image, so that
x = rendered(y). Our dataset consists of some sam-
ple (x,y) pairs for the model to learn relationships during
training, but during inference, only x is provided, and the
goal is for the model to predict a ŷ as close to the ground
truth y as possible.

To address this problem of converting compiled LaTeX
images back into their source LaTeX code, we use a com-
prehensive approach involving multiple methods. Our pri-
mary strategy involves fine-tuning a pretrained OCR model
on our synthesized LaTeX dataset. Then, in the post-
generation stage, we utilize a method to balance brack-
ets/delimiters that often cause compile errors. We addi-
tionally propose (though do not implement) two additional
methods, one implementing a feedback mechanism for the
balancing task during learning, and the other involving a
language model (LLM) fine-tuned to correct errors in pre-
dicted LaTeX code. Although we do not necessarily aim
to compete with the current SOTA for this task, the SOTA
such as the one in [14] are suitable points of comparison.

4.1. Primary Method

The core of our approach is a pretrained OCR encoder-
decoder model designed to handle the conversion of images

3

with text present into natural language. The encoder part
of the model is a vision transformer (ViT) designed to pro-
cess the input image and generate meaningful embeddings.
Vision transformers have shown exceptional performance
in various image processing tasks by treating an image as
a sequence of patches, similar to how text sequences are
handled in NLP tasks. The decoder part of the model is a
text transformer that generates the LaTeX markup sequence
from the vectors produced by the ViT encoder.

To adapt the vision transformer model specifically for
LaTeX, we fine-tune it on our dataset composed of images
and their corresponding LaTeX markup sequences. As our
dataset is curated to cover a wide range of LaTeX con-
structs, we give the model data that should be sufficient to
learn to recognize various symbols, structures, and format-
ting rules inherent in LaTeX formulas.

We summarize the architecture of TrOCR, the ViT-based
model we are using. The model resizes an input image to a
fixed size, then decomposes the image into square patches
that tile to compose the full image. Each patch is flattened
and projected to an embedding vector. Once each patch has
an embedding, the image can be read as a sequence of em-
beddings with position embeddings. These embeddings are
passed to a normal transformer, which maps all the embed-
dings to their encoded versions on the encoding step and
processes them into a series of text tokens on the decoding
step. The TrOCR model was initialized with DeiT [18] and
BEiT [2] for the encoder (these are pre-trained transformers
for image patches), and RoBERTa [9] and MiniLM [21] for
the decoder (these are good quality LLMs).

4.2. Reducing Compile Errors

Compile errors in LaTeX are often caused by mispre-
dicted tokens, especially brackets and delimiters, which are
crucial for the syntactical correctness of the markup result.
To mitigate this issue, we implement a hard-coded and de-
terministic method, and propose two additional solutions
that may reduce the likelihood of compile errors in the fi-
nal output:

1. The first strategy is to use an algorithm for balanc-
ing brackets in the generated LaTeX code, ensuring
that each opening bracket (‘{’, ‘[’, or ‘(’) has a cor-
responding closing bracket (‘}’, ‘]’, or ‘)’) and that
they are correctly paired. By appending missing open-
ing brackets before unmatched closing brackets and
adding necessary closing brackets at the end, it guar-
antees properly nested and balanced brackets, which is
necessary for compiling LaTeX documents without er-
ror. Our implementation of this strategy is displayed in
Algorithm 1.

2. A second strategy we propose is a feedback mecha-
nism that can be implemented to penalize the model

Algorithm 1 Balance Brackets in LaTeX Code
1: function BALANCE BRACKETS(latex code)
2: bracket stack← []
3: bracket pairs← {‘{’: ‘}’, ‘[’: ’]’, ‘(’: ‘)’}
4: new code← []
5: for char in latex code do
6: if char in bracket pairs then
7: bracket stack.append(char)
8: else if char in bracket pairs.values() then
9: if bracket stack and bracket pairs[bracket stack[-

1]] == char then
10: bracket stack.pop()
11: else
12: for opening, closing in bracket pairs.items()

do
13: if closing == char then
14: new code.append(opening)
15: bracket stack.append(opening)
16: break
17: end if
18: end for
19: end if
20: end if
21: new code.append(char)
22: end for
23: while bracket stack do
24: new code.append(bracket pairs[bracket stack.pop()])
25: end while
26: return ‘’.join(new code)
27: end function

for generating sequences with unbalanced brackets and
delimiters, ensuring better syntactic correctness in the
generated LaTeX code. This mechanism introduces an
additional loss term Lbalance into the training objective,
which penalizes the model based on the degree of im-
balance in the brackets and delimiters. The total loss
function is a combination of the standard cross-entropy
loss L and the balance loss term:

Ltotal = L+ λ · Lbalance

Here, λ is a hyperparameter controlling the weight of
the balance loss relative to the standard loss. The bal-
ance loss term Lbalance penalizes unbalanced states pro-
portional to the size of the bracket stack at each posi-
tion in the sequence. This encourages the model to
generate LaTeX code with properly balanced brackets
and delimiters.

3. A third strategy we propose is to use a small LLM fine-
tuned to correct errors in the predicted sequences. This
approach leverages an LLM’s capability to understand
and generate grammatically and syntactically correct
sequences. We would first create a synthetic dataset
by introducing common LaTeX errors into correct se-

4

quences. The LLM is then trained on the synthetic
dataset with an objective to transform erroneous La-
TeX sequences into their correct forms. The training
objective remains the cross-entropy loss, applied to the
token sequences.

LLLM = −
T∑

t=1

logP (ŷcorrected
t |ŷerror

t)

By fine-tuning the LLM in this manner, we would aim
to enhance the robustness of the overall system, ensur-
ing that even if the initial predictions contain errors,
they can be effectively corrected for the final output.

4.3. Baseline Method

We use the the results in [14] as a baseline for our results,
with the caveat that we do not necessarily expect to exceed
these results in raw performance. Instead, we aim to investi-
gate how our proposed methods, which include using an ex-
isting OCR model and a synthetic dataset along with some
tricks to improve output quality, compare in performance to
baseline models trained specifically for LaTeX OCR using
real data, which requires much more computation and effort
to generate training data.

To compare our proposed methods against the existing
results, we will use the CER (Character Error Rate) and
BLEU (Bilingual Evaluation Understudy) metrics. These
metrics provide a quantitative measure of the accuracy and
quality of the generated LaTeX code:

1. CER measures the edit distance (insertions, deletions,
substitutions) between the generated and reference La-
TeX sequences, normalized by the length of the ref-
erence sequence. A lower CER indicates fewer errors
and higher accuracy.

CER =
Number of Character Errors

Total Number of Characters in Reference

2. The BLEU score is a precision-based metric that eval-
uates the similarity between the generated LaTeX code
and the reference (ground-truth) LaTeX code. It con-
siders n-gram matches between the generated and ref-
erence sequences, with a higher BLEU score indicat-
ing better alignment with the ground-truth.

BLEU = BP · exp

(
N∑

n=1

wn log pn

)

where BP is the brevity penalty, wn are the weights for
different n-grams, and pn are the precision scores for
n-grams of length n. In particular, we utilize The Nat-
ural Language Toolkit (NLTK) implementation [10] of
BLEU score in our evaluations.

To establish a baseline for comparison, we use results
listed in [14]:

Model BLEU

INFTY [17] 66.65
WYGIWYS [4] 87.73

Coarse-to-Fine Attention [3] 87.07
Double Attention [23] 88.42
Global Context [14] 89.72

5. Experiments
We started by generating a small dataset of 1000 train-

ing examples to ensure that our fine-tuning pipeline was
functioning properly. After this validation, we ran the fine-
tuning operation on a full set of 48, 000 images (split into
80% training images and 20% testing images using Pandas
DataFrame [13]). We used Pytorch [15] to run our experi-
ments, which involved loading the data, loading the model
(as per the code provided by [8]), and used the AdamW op-
timizer [11].

Our fine-tuning runs consisted roughly of the following
trials:

1. Verification run to ensure model is set up correctly;
1, 000 training examples.

2. Several different short runs at various learning rates;
we find here that 5e−5 is optimal for our purposes.

3. Several long runs at 5e−5 learning rate; we experi-
enced issues with GCP SSH pipe breaks, which de-
layed the project significantly. After several trials we
completed a run, which took about 10 hours.

4. Low temperature run at T = 0.01 (previous default 1);
we ran into numerical instability issues at this temper-
ature.

5. Low temperature run at T = 0.1. This run completed
without issue; we ended at a loss of 2.27.

Our justification for reducing the temperature is due to
the fact that the LaTeX generation process should, in the-
ory, be close to deterministic (in practice there are slight
differences with the positions and necessities of brackets).
We achieve a BLEU score of 28.78 on our own dataset
and a CER score of 0.515 on our own dataset, both fairly
low (note that these results are not on the IM2LATEX-100k
dataset):

Model BLEU CER

Fine-tuned TrOCR 28.78 0.515

Selected generations are shown in Figure 5. We notice
informally that some of these results give the impression

5

Figure 5. Assortment of generations produced by the model, after
a deterministic bracket balancing step. Ground truth is on the left
and generations are on the right.

of an LLM which has been paused in the early stages of
training, as text generation transformers often learn basic
character patterns and high level grammar first before learn-
ing lower level concepts like semantics and producing sen-
tences that make sense. The model we are using, TrOCR, is
rather large at 334M parameters, so we do not believe this
level of performance is entirely due to architectural restric-
tions.

In Figure 6, we can see a very interesting visualization of
the attention operation over the patches of the image. Recall
that, to process the image, it is converted into a set of fixed
size patches and each patch is converted to an embedding.
These embeddings are then processed by the encoder, which
applies attention. Since there is a 1 to 1 correspondence be-
tween the patches and the embeddings, we can compress
the attention scores over the course of the attention opera-
tion into a vector of patch attentions, which roughly give the
amount of importance each patch of the image contributed
to the computation with respect to the attention operation.

From Figure 6, we can extract some very important in-

sights. For one, the attention scores are consistently finding
parts of the structure of the underlying image—so much so
that in some images, it is possible to see the underlying ex-
pression in the heatmap alone. For two, the attention is con-
sistently applied with bias towards the left side of the image,
especially for more complex expressions. This is extremely
important for interpreting the results in Figure 5, as we can
see a pattern of the model attaining high accuracy on the
first one or several tokens, but low accuracy on all others.

Figure 6. Visualization of attention given to each patch in the input
image

We note several reasons we believe are likely or potential
causes of the poor performance.

1. Our fine-training pipeline may be suboptimal for this
model and task. Although the model saw all data-
points in the dataset during the fine-tuning process, it
only saw datapoints in batches of size 4, so the gradi-
ent descent operation was likely to be noisy. Unfortu-
nately, we could not scale above size 4 batches due to
time constraints, as the model took about 10 hours to
train one epoch (covering the full training set) at this
batch size. Training was completed using a T4 GPU
on GCP. Factoring in failed training runs and experi-
mental runs, these factors approached the upper bound
of our time and compute resources. We believe that a
model trained for more passes on the dataset in larger
batch sizes has significant potential, as our model be-
gan to learn the semantics of LaTeX.

To further expand on this, our final loss was around
2.27, which is equivalent to randomly guessing from
a set of 190 or so tokens. Given that the set of to-
kens used to represent the training data is likely much

6

smaller than the 31, 959 tokens supported by TrOCR,
we hypothesize that the model initially learned only
basic character frequencies of the fine-tune dataset,
and training was paused before proper LaTeX seman-
tics could be learned. This reasoning is further com-
pounded by the fact that the model learned to attend
to the first part of the expressions it saw, which corre-
spond with the earliest tokens in each generation.

2. The token set for the TrOCR model is likely too large
for the LaTeX prediction task. Indeed, the types and
distributions of tokens which appear in LaTeX are very
different from those which appear in standard OCR
tasks, and OCR tasks make use of many longer tokens
of alphabetic characters which would rarely if ever ap-
pear in a LaTeX dataset. A refinement to our approach,
which we at one point considered, would be to run an
algorithm like byte pair encoding [16] on the LaTeX
dataset, then prune the TrOCR model’s tokens to just
those which have the potential to appear. This has the
extensions of explicitly adding full-size LaTeX com-
mand tokens like \alpha to the token set. This smaller
model can improve training speed.

3. The TrOCR model does not use CNN filters for fea-
ture extraction. We theorize that this is less detrimen-
tal for an OCR model than it is for a LaTeX-reading
model. This is because an OCR model generally must
read line-by-line for a given image, and so it is often
that the patch creation and position embedding process
will distort the underlying text very little. However,
LaTeX images do not follow this standard line-by-line
structure, as expressions like a fraction, integral, and
subscripts or superscripts will break the pattern. We
theorize that a model which takes advantage of CNN
filters like [14] has an advantage in learning the struc-
ture of LaTeX, as our fine-tuned TrOCR model often
gives the impression of a model that can identify char-
acters but not order them.

4. In conjunction with the previous item, the TrOCR
model may simply be too underspecialized for the La-
TeX task at an architectural level. Indeed, [14] uses a
very specific and hand-tuned architecture for the task,
which includes a custom “Global Context” block to ex-
tract features (as well as CNNs). It may be the case
that the network machinery required to learn LaTeX
semantics is not present in this relatively basic OCR
model.

5. Our dataset may be too unusual in form due to its ran-
domness. Many other LaTeX-reading models train di-
rectly on the IM2LATEX-100k dataset, which is ex-
tracted from real-world expressions, so there may be
regularity in these expressions which our model is

never exposed to. We believe the issues in performance
are more likely attributable to architecture, however,
as the IM2LATEX-100k dataset also contains much
longer and more complex expressions, so the regular-
ity in these expressions from being human-generated
is unlikely to provide a great advantage.

6. The characters which are most often recognized by
OCR models are very different from those read gen-
erated by a LaTeX reader. Furthermore, the LaTeX
model must generate many symbols which do not ap-
pear in the original image; with respect to these differ-
ences, the weights of the pre-trained model may actu-
ally prove to be a hindrance, as in the second case the
model must unlearn a 1:1 mapping between characters
in the image and characters to print.

Although we proposed two additional methods for re-
ducing LaTeX compile errors and are confident that they
would be highly effective as part of an already effective
model, we found that our own fine-tuned OCR model did
not achieve results with sufficiently low noise that this
method was likely to be successful; many of the results our
model produced did not have sufficient information to re-
cover the original expression, especially for longer expres-
sions. For further experiments, and especially for mod-
els with high quality baseline results, we believe that these
strategies can be used to refine the model accuracy.

6. Conclusion
We find that the TrOCR vision transformer is ill-suited to

learn to solve the problem of generating LaTeX code from
a compiled image. Despite the existing ability of the model
to recognize characters in images, the model is unable to
learn the ability to recognize the structure of LaTeX at a
sufficiently noise-less level. Even when restricted to our
synthetically generated dataset, the model fails to achieve
a BLEU score over 30, which is not approaching the score
of existing models on the much more difficult IM2LATEX-
100K dataset. However, we were able to visualize the way
in which the model applied attention to the input image,
which provided valuable insight into the ability of the model
to generate accurate outputs.

We proposed a set of reasons for this suboptimal perfor-
mance. To summarize, these are (1) an undertrained model,
due to time and compute restrictions, (2) an abundance of
tokens which will never be used in a LaTeX expression, bur-
dening the model with too many tokens, (3) lack of CNNs
for feature extraction, (4) architecture underspecialization
for the LaTeX task, (5) issues with the dataset distribution,
and (6) differences in distribution between the tokens which
OCR models read and those which LaTeX models read,
putting the usefulness of the pretrained model into question.

7

Although one of the ultimate goals of this research was
to show that fine-tuning an OCR model is competitive or
better resource-wise than training a handmade model from
scratch due to the computational savings of using a pre-
trained checkpoint, we are unable to make this comparison
without a stronger model.

We believe that there is significant reason to expect the
model to improve if given more compute, so the application
of more compute to this model presents a significant oppor-
tunity for future work. We also see opportunities for fur-
ther experiments and improvement in the previously noted
points (2), (3), (5). The use of an OCR model with a lower
parameter count for faster training may also help, as this
would allow us to determine the actual ceiling of perfor-
mance when training is run to completion rather than lim-
ited by compute resources.

7. Contributions & Acknowledgements

We would like to acknowledge the TrOCR paper [8] for
being instrumental in this research. We would also like to
acknowledge the CS 231N course staff and GCP for provid-
ing cloud computing resources that were vital to the project.

The two team members contributed equally to the final
project. Nikash Chhadia contributed the fine-tuning of the
TrOCR model, which involved loading and peparing the
model as well as selecting hyperparameters over various tri-
als, which were run on GCP over several days. Sambhav
Gupta contributed the custom LaTeX generation code and
generated the dataset used for this work. He also generated
the visualizations of attention hotspots in the final model.

References
[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine

translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[2] H. Bao, L. Dong, and F. Wei. Beit: BERT pre-training of
image transformers. CoRR, abs/2106.08254, 2021.

[3] Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush. Image-to-
markup generation with coarse-to-fine attention. Sept. 2016.

[4] Y. Deng, A. Kanervisto, and A. M. Rush. What you get
is what you see: A visual markup decompiler. ArXiv,
abs/1609.04938, 2016.

[5] H. Ding, K. Chen, and Q. Huo. An encoder-decoder ap-
proach to handwritten mathematical expression recognition
with multi-head attention and stacked decoder. In J. Lladós,
D. Lopresti, and S. Uchida, editors, Document Analysis and
Recognition – ICDAR 2021, pages 602–616, Cham, 2021.
Springer International Publishing.

[6] V. Heska. Generating synthetic online handwritten mathe-
matical expressions from markup languages, 2021.

[7] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[8] M. Li, T. Lv, J. Chen, L. Cui, Y. Lu, D. Florencio, C. Zhang,
Z. Li, and F. Wei. Trocr: Transformer-based optical character
recognition with pre-trained models, 2022.

[9] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A ro-
bustly optimized bert pretraining approach, 2019.

[10] E. Loper and S. Bird. Nltk: The natural language toolkit,
2002.

[11] I. Loshchilov and F. Hutter. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

[12] A. F. T. Martins and R. F. Astudillo. From softmax to sparse-
max: A sparse model of attention and multi-label classifica-
tion, 2016.

[13] W. McKinney et al. Data structures for statistical computing
in python. In SciPy, volume 445, pages 51–56, 2010.

[14] N. Pang, C. Yang, X. Zhu, J. Li, and X.-C. Yin. Global
context-based network with transformer for image2latex. In
2020 25th International Conference on Pattern Recognition
(ICPR), pages 4650–4656, 2021.

[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library, 2019.

[16] R. Sennrich, B. Haddow, and A. Birch. Neural machine
translation of rare words with subword units, 2016.

[17] M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T. Kana-
hori. Infty: an integrated ocr system for mathematical docu-
ments. In Proceedings of the 2003 ACM Symposium on Doc-
ument Engineering, DocEng ’03, page 95–104, New York,
NY, USA, 2003. Association for Computing Machinery.

[18] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablay-
rolles, and H. Jegou. Training data-efficient image trans-
formers amp; distillation through attention. In M. Meila and
T. Zhang, editors, Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 10347–10357. PMLR,
18–24 Jul 2021.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. Advances in neural information processing sys-
tems, 30, 2017.

[20] J. Vig. Visualizing attention in transformer-based language
representation models, 2019.

[21] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou.
Minilm: Deep self-attention distillation for task-agnostic
compression of pre-trained transformers, 2020.

[22] C. Yeh, Y. Chen, A. Wu, C. Chen, F. Viégas, and M. Watten-
berg. Attentionviz: A global view of transformer attention,
2023.

[23] W. Zhang, Z. Bai, and Y. Zhu. An improved approach based
on cnn-rnns for mathematical expression recognition. In Pro-
ceedings of the 2019 4th International Conference on Mul-
timedia Systems and Signal Processing, ICMSSP ’19, page
57–61, New York, NY, USA, 2019. Association for Comput-
ing Machinery.

8

