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Abstract 

  

An increasingly prominent issue in the world are 

wildfires. Wildfire detection can help save properties, 

homes, and ultimately lives. In this paper, convolutional 

neural networks and transformers are used to detect 

wildfires using aerial images captured by drones and 

other unmanned aircraft. The two architectures used 

achieve accuracy scores of 80% and 89% 

1. Introduction 

 

Wildfires have increasingly become a significant 

environmental and economic threat worldwide, causing 

devastating impacts on ecosystems, human lives, and 

property. For instance, several catastrophic wildfire events 

recently occurred in Southern California, particularly in 

my hometown region of Lancaster, Palmdale, and the rest 

of the Antelope Valley area. In September 2023, the 

Fairmont Fire near Palmdale and Lancaster rapidly spread 

which led to extensive firefighting efforts and emergency 

evacuations for my family and other Antelope Valley 

residents. The event highlighted the region’s growing 

vulnerability to wildfires and the need for advanced 

detection technologies to aid in early intervention for my 

hometown and other regions prone to wildfires around the 

world. 

NASA and other space agencies have developed 

satellite systems that use thermal imaging to detect 

wildfires from space. Unfortunately, satellite systems are 

unable to accurately monitor small brush fires that have 

the potential to spread and grow into larger wildfires. This 

along with the high maintenance costs of satellite systems 

lead satellite systems to be an unscalable solution for 

wildfire detection. 

Aerial drones provide a low-cost, effective solution to 

wildfire detection. Equipped with cameras, aerial drones 

can monitor large areas quickly, detect both small and 

large wildfires, and provide real-time data to emergency 

responders. 

This report delves into the application of convolutional 

neural networks (CNNs) and transformers for detecting 

wildfires from aerial images. We will use a CNN model 

derived from a combination of transfer learning and 

additional training techniques as a baseline model for 

wildfire detection. Then, we will compare the results of 

the CNN model and a transformer model built using only 

transfer learning. The results of this report will convey the 

feasibility of integrating such computer vision models to 

aerial drones to solve the problem of wildfire detection. 

1.1. Problem Statement 

The problem involves predicting whether a wildfire is 

present in images taken by an aerial drone. This is a binary 

classification problem, and the previously described 

baseline model and experiment model predict the two 

classes: Fire and No Fire. When making a prediction, the 

models output classification scores for both classes for a 

given input image that consists of either burning forests or 

non-burning forests. The baseline and experiment models 

are evaluated using classification accuracy and F1 score. 

 

2. Related Works 

2.1. Utilizing Convolutional Neural Networks 

for Detecting Wildfires 

Wildfire detection using CNN image classification has 

made advances in the past. In Deep Learning Approaches 

for Wildland Fires Remote Sensing: Classification, 

Detection, and Segmentation[1], Ghali et al. uses 

segmentation architectures to classify wildfire images. Of 

the different segmentation architectures discussed in the 

study, the most noteworthy is U-Net. Initially designed for 

segmentation on biomedical images, U-Net incorporates 

an encoder-decoder structure that features taking the 

outputs of some layers in the neural network, skipping 

subsequent layers, and using these outputs as the inputs of 

later layers. In the Ghali et al. paper, U-Net is applied on 

the FLAME dataset that contains wildfire images taken by 

drones in Arizona forests. From U-Net’s effective 

segmenting of complex shapes and fine details for 

classifying biomedical images, Ghali et al. uses U-Net to 
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parse notable wildfire features possibly present in an 

image. 

Another study on wildfire detection is Attention based 

CNN model for fire detection and localization in real-

world images [2] by Majid et al. that utilizes an attention-

based CNN architecture. In the Majid et al. paper, the 

datasets used are not explicitly named as the authors state, 

“a composite dataset was created by collecting images 

collected from the data of well-known public datasets used 

in recent works on this problem”. 

The attention-based CNN is designed starting with the 

EfficientNet-B0 neural network, and an attention 

mechanism is integrated into the CNN. This attention 

mechanism tunes the model to focus on the regions of an 

image most likely to contain a wildfire based on the 

presence of wildfire features in those regions, like smoke, 

sparks, and burnt vegetation. 

A related study is EmergencyNet: Efficient Aerial 

Image Classification for Drone-Based Emergency 

Monitoring Using Atrous Convolutional Feature Fusion[3] 

by Kyrkou et al. where they propose an approach that 

efficiently classifies aerial images for monitoring 

emergency situations using drones. This approach is 

particularly advantageous due to its quick and efficient 

classification allowing drones without significant on-board 

computing power to perform wildfire classification using 

aerial images. In the Kyrkou etl al. paper, the approach is 

applied on a dataset of images containing different natural 

disasters the authors manually compiled from other 

datasets. 

The method discussed in the work is known as ACFF, 

Atrous Convolutional Feature Fusion. This method 

involves using atrous convolution layers instead of 

standard convolution layers in all but the first and last 

layer of a neural network. The atrous convolution layers 

capture the same contextual information as the standard 

convolution layers without significantly increasing the 

computational load. This is done by spacing out filter 

parameters through introducing gaps between them that 

are controlled by a dilation rate. This process enlarges the 

receptive field of the atrous filters without increasing the 

parameters of the neural network model, thereby 

maintaining effective feature extractors of images at a 

lower computational cost than standard convolutions. 

 

Figure 1: Basic components of Atrous Fusion Block 

. 

Hong et al. employ a ConvNeXt model for wildfire 

detection detailed in their paper Wildfire Detection Via 

Transfer Learning: A Survey[4]. ConvNeXt is a 

convolutional neural network architecture that integrates 

layers that assist with CNN generalizability, like 

depthwise convolutions and layer normalization. It 

simplifies traditional CNN designs while achieving high 

performance results in image classification and other 

computer vision tasks. 

The baseline CNN model mentioned previously is based 

on this ConvNeXt model and will later be compared with 

the results of the CNN models discussed prior. 

2.2. Applying Transformers on Aerial Images 

In addition to applying convolutional neural networks 

toward detecting wildfires, recent studies on transformer 

applications for wildfire detection have been made. The 

paper Early fire detection technology based on improved 

transformers in aircraft cargo compartments [5] by Ai et 

al. addresses the issue of high false alarm rates associated 

with fire detection systems by improving on transformers’ 

long-term dependency handling capabilities. 

The authors created a transformer integrated with a 

multi-head self-attention mechanism to capture long-range 

dependencies. These transformers are enhanced with 

contextual embeddings enabling the model to interpret 

complex environmental features in an image, i.e. haze or 

smoke, orange leaf trees or burning trees etc. This 

improvement helps with distinguishing actual fires from 

false positives. Additionally, the model uses a 

thresholding mechanism that adjusts the thresholds for 

determining a fire being present in an image based on real-

time environmental data, like weather, air quality, 

moisture level etc. This further reduces the rate of false 

alarms being determined by the authors’ transformer. 

In the paper Transforming Wildfire Detection and 

Prediction Using New and Underused Data Sources 

Integrated with Modeling[6] the authors Coen et al. 

approach the wildfire detection problem differently than 

the previously mentioned papers. The study uses dynamic 

data-driven application systems (DDDAS) and models of 

weather-fire behavior for wildfire detection. This study 

utilizes transformers to analyze diverse sources of wildfire 

data, including satellite images, sensors, and social media 

reports, to improve the accuracy and timeliness of wildfire 

detection. 

The transformer model uses a multi-head attention 

mechanism to capture relationships between different 

types of data. For example, social media reports can 

provide real-time information about the locations of 

emerging wildfires while satellite imagery offers a broad 

overview of areas affected by wildfires. Sensors provide 

data closely related to fires, like temperature, humidity, 

and wind conditions. By converting these diverse data 
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sources as embeddings and feeding them to the 

transformer’s multi-head self-attention layers, the paper’s 

transformer model generates a holistic view of possible 

forest fire occurrences which improves the effectiveness 

of wildfire detection systems. 

Adding to their work on wildfire classification using 

CNNs discussed in section 2.1, Ghali et al. study the 

applications of transformers toward detecting wildfires in 

Deep Learning and Transformer Approaches for UAV-

Based Wildfire Detection and Segmentation[7]. Their work 

compares traditional deep convolutional networks, like 

MobileNetV3, DenseNet, and InceptionV3, with their 

vision transformers developed for aerial wildfire detection. 

The model with the strongest performance in their study is 

TransUnet, a transformer model combined with the U-Net 

CNN architecture discussed previously in this report. 

TransUnet integrates a ResNet50 feature extractor into a 

pre-trained Vision Transformer (ViT). Passing these 

feature maps into a decoder, the model concatenates the 

features with the output of ResNet50. 

 

 
Figure 2: TransUnet Architecture 

 

Building on the foundation laid by their previous paper, 

Ghali et al. delve deeper into the capabilities of TransUNet 

for forest fire detection in the study Wildfire Segmentation 

Using Deep Vision Transformers[8]. The study introduced 

multiple improvements to TransUnet to optimize the 

model for wildfire detection. One improvement is adding 

positional encodings dynamic to the different amounts of 

fire imagery present in an image. Another improvement is 

including thresholding techniques to enhance TransUNet's 

sensitivity to subtle signals of fire amidst backgrounds 

containing noisy elements. Additionally, Ghali et al. 

employ random cropping, rotation, and brightness 

adjustments to augment their datasets to improve the 

TransUNet model's generalization capability. 

In Swin Transformer: Hierarchical Vision Transformer 

Using Shifted Windows[9], Liu et al. uses the Swin 

Transformer architecture to efficiently analyze images. 

This architecture divides the input image into non-

overlapping windows, thereby enabling the Swin 

Transformer model to process images using both local and 

global contexts. The windows are then shifted, ensuring 

that the model can capture interactions across different 

parts of the image, which is crucial for detecting wildfires 

that can vary significantly in size and shape. 

 

 
Figure 3: Visualization of shifted window approach in Swin 

Transformer architecture. The left image (layer l) illustrates a 

non-shifted window partitioning scheme where self-attention is 

computed within each window. The right image (layer l + 1) 

shows a shifted window partitioning where new windows are 

created. Self-attention computations in the new windows overlap 

with the previous layer’s self-attention computations 

 

Rekavandi et al. discuss the ability to detect small 

objects in their paper Transformers in Small Object 

Detection: A Benchmark and Survey[10]. Their work 

involves refining the patch embedding process used in 

transformer models. Typically, images are divided into 

32x32 pixel patches, but Rekavandi et al. note for small 

object detection, smaller patches (e.g., 16x16 pixels or 

less) may be used to ensure finer granularity. Each patch is 

then embedded into a fixed-size vector through a linear 

projection, thereby preserving detailed information crucial 

for recognizing features of small objects, like small fires, 

amidst complex backgrounds. 

 The experimental transformer model mentioned 

previously is based on the last two discussed transformer 

model studies. This experimental transformer model will 

later be compared with the results of the baseline CNN 

model as well as the CNN models discussed in prior 

mentioned papers. 

 

3. Methodology 

3.1. Baseline CNN Model 

As stated previously, the baseline CNN model is based 

on the ConvNeXt model detailed in Wildfire Detection Via 

Transfer Learning: A Survey[4]. The authors utilized a 

ConvNeXt model derived from TensorFlow that is pre-

trained on the ImageNet-1K dataset for forest fire 

detection. The training involved using 15 epochs where a 

fixed feature extractor method is used in the first 10 

epochs and a transfer learning method is used in the last 5 

epochs. Wildfire classification was determined by feeding 

the results of the ConvNeXt model to a softmax layer and 

using the binary cross-entropy loss function to measure the 

model’s efficacy. 



 

228 

 

   
Figure 4: Visualization of model–softmax–loss architecture. 

Due to wildfire detection being a binary classification problem, 

i.e. fire or no fire, the loss function above reduces to the binary 

cross-entropy loss function 
 

The baseline ConvNeXt model developed using 

PyTorch follows this transfer learning design by using the 

combined wildfire dataset to train the last layer of the 

ConvNeXt model after 10 epochs. This baseline model 

differs from the ConvNeXt model in the previously 

mentioned paper as the baseline model will train for 20 

epochs instead of 15 epochs Then, the baseline model is 

applied to the validation set to evaluate its accuracy and 

F1 scores. The results of the validation set are derived 

from varying dropout and learning rate to hyperparameter 

tune the model using randomized search. Finally, the 

model’s effectiveness is determined by its accuracy and F1 

scores on the testing set. 

3.2. Experimental Transformer Model 

The experimental transformer model for wildfire 

detection is developed for this report by integrating 

techniques from the previously mentioned papers: Swin 

Transformer: Hierarchical Vision Transformer Using 

Shifted Windows[9] and ViT: Vision Transformer for 

Small-Size Fire Detection[10]. By combining the efficient 

analyzing of images provided by the Swin Transformer 

architecture with the fine granularity given by using small 

patches, the experimental transformer model has a robust 

wildfire detection system. 

For our purposes, the experimental transformer model 

begins as the Swin Transformer pre-trained on the 

ImageNet-1K dataset. Then, transfer learning is employed 

to the model to train the last layer of the Swin Transformer 

using the combined wildfire dataset. Throughout this 

training, the experimental transformer model employs 

using smaller patches, like 16x16 pixels, instead of the 

usual size patches, like 32x32 pixels, of the Swin 

Transformer. 

Similar to the baseline CNN model after being trained 

with the combined wildfire dataset, the experimental 

transformer is applied to the validation set to evaluate its 

accuracy and F1 scores. The results of the validation set 

are derived from varying dropout and learning rate to 

hyperparameter tune the model using randomized search. 

Finally, the model’s effectiveness is determined by its 

accuracy and F1 scores on the testing set. 

 

 
Figure 5: Accuracy and F1 score equations used for both 

baseline CNN model and experimental transformer model; TP = 

True Positive, TN = True Negative, FP = False Positive, and FN 

= False Negative 

3.3. Ensemble Learning 

In this report, ensemble learning is used to enhance the 

generalizability robustness and accuracy of wildfire 

detection. The architecture of the baseline ConvNeXt 

model remains the same as previously discussed with now 

using three ConvNeXt models trained independently from 

one another. Each ConvNeXt model continues to be 

trained by varying the hyperparameters dropout rate and 

learning rate using random search as indicated previously. 

Each ConvNeXt model is still pre-trained on the 

ImageNet-1K dataset and fine-tuned on the wildfire 

dataset developed for this report. 

During inference, the predictions from each of the three 

ConvNeXt models are combined using a voting scheme. 

The final prediction is determined by averaging the 

outputs from the models and selecting the class with the 

highest average score. By utilizing ensemble learning, the 

aggregated ConvNeXt model leverages the strengths of 

multiple models to improve overall classification 

performance. 

4. Dataset 

The dataset used for training, validating, and testing is 

comprised of four different datasets: FIRE Dataset[11], 

Wildfire Detection Image Data[12], FlameVision[13], and 

The wildfire dataset[14]. Each dataset is composed of Fire 

and No Fire images; however, some datasets are organized 

differently than others. For example, FlameVision and The 

wildfire dataset are already organized into training, 

validation, and testing set images whereas the Fire 

Dataset and Wildfire Detection Image Data datasets are 

not. 

Images in these datasets are combined and separated as 

either Fire or No Fire images regardless of images from 

some datasets being exclusively organized as training, 

validation, or testing set images. Then, the combined 

dataset is split into a 60:20:20 ratio for training, validation, 

and testing, respectively. This ratio is used to provide 

abundant training data for the baseline and experiment 

models as well as having ample data to evaluate the 

performance of the trained models. 
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A variety of wildfire images are provided in the 

combined dataset. This variety includes images with large 

smoke plumes, enormous blazing wildfires, small 

smoldering brushfires, and many more distinct wildfire 

features. By training the baseline and experimental models 

on a diverse range of wildfires, the generalizability of the 

baseline and experimental models are increased. 

 

Figure 6: Wildfire images contained within the combined 

dataset. These images provide a diverse set of wildfire features 

for the training of the baseline and experimental models 

 

Figure 7: Non-wildfire images contained within the combined 

dataset. By providing a diverse set of non-wildfire forests in 

different terrains, the baseline and experimental models learn to 

not mistake forest fire features, like rising smoke and orange fire, 

with common forest environments, i.e. adjacent rivers with haze 

and rocky mountains looming over orange hills 
 

4.1. Image Compression 

Due to the dataset used in this report being the 

combination of four different datasets, the images 

contained in the dataset do not have the same resolution 

sizes. Additionally, with some images having very large 

resolution sizes, the training time of both the baseline 

CNN model and the experimental transformer model are 

quite substantial. As a result, the dataset’s images are 

resized to be 224 x 224 in resolution size. This ensures 

consistently sized images that are not too large are used 

for training both models. 

4.2. Dataset Augmentation 

Deep learning models, including both CNNs and 

transformers, require large amounts of labeled data to 

perform well. However, by providing a substantial amount 

of training data to these models, they are susceptible to 

overfitting to the dataset. 

Data augmentation helps increase the generalizability of 

deep learning models to prevent overfitting. This approach 

involves applying different transformations to a dataset’s 

images, maintaining their original labels, and adding them 

to the dataset alongside the original images. The dataset 

used in this report contains horizontal flipped images and 

15-degree rotations that are both derived from the original 

dataset before such transformations. 

 

          Original                              Flipped 
 

      
 

             Original                              Rotated 

 

      
 

Figure 8: Augmented images from the dataset. The top row 

contains a fire image before and after being horizontally flipped. 

The bottom row contains a no fire image before and after being 

rotated 15-degrees. 
 

5. Experiments 

5.1. Experiment Results 

The following are the results of the baseline ConvNeXt 

model. 
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Figure 9: ConvNeXt Model Accuracy vs Epochs & F1 Score vs 

Epochs plots 

 

For both plots, the y-axis represents the performance 

metric, which is either accuracy or F1 score, and the x-axis 

represents the number of epochs. As can be seen in the 

plots, both performance metrics jump considerably higher 

after around 10 epochs. This indicates that the transfer 

learning that takes place after 10 epochs for the ConvNeXt 

model significantly increases its performance.  

In addition to the results of the ConvNeXt model, the 

following are the results of the Swin Transformer model. 

 
Figure 10: Swin Transformer Accuracy vs Epochs & F1 Score 

vs Epochs plots 

 

Unlike the ConvNeXt model, the Swin Transformer 

model displays a consistent improvement in both accuracy 

and F1 score at every epoch. There is no considerable 

jump in both performance metrics after 10 epochs. 

These results are likely due to the design of both 

models. As stated earlier, the baseline ConvNeXt model is 

only trained on its last layer after 10 epochs. 

Consequently, the pre-trained ConvNeXt model does not 

learn from the fire and no fire images present in the 

dataset within the first 10 epochs. This explains the 

model’s poor downward trend performance for the first 10 

epochs. 

Once the ConvNeXt model begins transfer learning 

after epoch 10, the ConvNeXt model performs 

significantly better than previous epochs with an upward 

trend indicating that increasing the number of epoch 

iterations from 20 will lead to the ConvNeXt model to 

continuously improve. 

In regard to the experimental Swin Transformer model, 

the results show the Swin Transformer consistently 

improving as the number of epochs increases. This 

performance is explained by the Swin Transformer 

continuously training its last layer through transfer 

learning for every epoch unlike the baseline ConvNeXt 

model. 

The results shown for both models follow the 

expectation. That being having one model transfer learn 

immediately will likely allow that model to perform much 

stronger than another model that is only allowed to 

transfer learn much later than the first model. 

However, there is a very interesting observation seen in 

the performance scores of the ConvNeXt model: the 

noticeable downward trend in performance of the 

ConvNeXt model early in the training process before 

transfer learning begins. The reason for this behavior is 

due to the ensemble learning architecture being 

implemented exclusively for the ConvNeXt model. 

Ensemble learning was implemented only for the 

baseline ConvNeXt model to make up for its transfer 

learning deficiency up until epoch 10. The intention was 

for ensemble learning to improve on the baseline 

ConvNeXt model’s generalizability and accuracy. 

Instead, by combining the results of three different 

ConvNeXt models as one ensembled ConvNeXt model, 

any misclassifications or inaccuracies caused from not 

allowing any of the three ConvNext models transfer learn 

until epoch 10 are exacerbated. As a result, the baseline 

ConvNeXt model’s performance is not flat early on as 

expected, but instead there is a significant poor downward 

performance before epoch 10 is reached. 

Despite the cons attributed to integrating ensemble 

learning to the baseline ConvNeXt model, there is positive 

merit in implementing ensemble learning to the ConvNeXt 

model evident in its performance plots. 

After epoch 10, both the ConvNeXt model and Swin 

Transformer model see positive upward performances. 

However, the gaps for both performance metrics between 
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the validation set and testing set of the Swin Transformer 

model begin to enlarge as the number of epochs increase. 

This is not the case for the ConvNeXt model as the 

validation set and testing set performance metrics stay 

very close to one another as the number of epochs grows. 

As a result, there is evidence of overfitting for the Swin 

Transformer model and not for the ConvNeXt model. 

This behavior is most likely attributed to ensemble 

learning being integrated into only the baseline model. By 

averaging the results of three different ConvNeXt models, 

the ensembled ConvNeXt model corrects any 

misclassifications of one of the three ConvNeXt models. 

This is only possible with the ensembled ConvNeXt model 

being able to train itself with the intended wildfire dataset, 

which is why we see this positive behavior only after 

epoch 10. 

With the ConvNeXt model’s upward positive 

performance trend and lack of overfitting unlike the Swin 

Transformer, there is strong support for the ConvNeXt 

model being the stronger wildfire detection classifier than 

the Swin Transformer model, which is seemingly not the 

case at first glance of the performances of the two models. 

Thus, the intended goal of improving the generalizability 

of the baseline model through ensemble learning is 

eventually realized for the ConvNeXt model despite its 

early pitfalls during its training process. 

The following are the final performance scores of the 

two models at epoch 20. 

 

 
 

Figure 11: Accuracy and F1 scores for both the baseline 

ConvNeXt model and the experimental Swin Transformer model 

at epoch 20 

 

5.2. Attention Heatmap Qualitative Analysis 

Although both models achieve relatively strong 

performances, the two models do misclassify some non-

fire images as containing fire. 

 

 

Figure 12: Example of the ConvNeXt model misclassifying a 

non-fire orange mountain image as a fire image 

 

As seen above, the baseline ConvNeXt model classifies 

an orange mountain image as containing fire despite no 

fire being present in the image. This behavior is due to the 

original image containing abundant orange color that the 

ConvNeXt model interprets as a feature of wildfires. The 

model’s behavior is indicated by the attention heatmap of 

the same image seen on the right. 

 Another misclassification is seen below. 

 

  
Figure 13: Example of the Swin Transformer model 

misclassifying a non-fire foggy forest image as a fire image 

 

This misclassification is due to the immense amount of 

fog present in the original image. The Swin Transformer 

misinterprets the fog as smoke emanating from a wildfire 

as seen in the attention heatmap leading to the 

misclassification. 

These misclassifications are due to both models 

misinterpreting common fire features to be present in 

images without fires. Adding significant dropout to both 

models targeted toward very common fire features, like 

red and orange colors as well as collection of grey mass, 

during the training process will likely remedy this issue. 

 

6. Conclusion and Future Work 

This report delved into the applying convolutional 

neural networks and transformers toward detecting 

wildfires. After analyzing many previous works targeted 

toward wildfire detection, the techniques of a few papers 

were integrated in building the baseline CNN and 

experimental transformer used in this paper. Methods to 

prevent overfitting were implemented like ensemble 

learning and data augmentation which proved to be useful 

in the results of the two models. Qualitative analysis was 

conducted using attention heatmaps to analyze possible 

improvements to both models. 

Expanding on this work in the future would be 

integrating the models into a system of drones. The drones 

would survey dry regions likely to experience wildfires 
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during hot seasons. Applying these models to the real-

world will help provide a low cost solution to wildfires. 
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