
AI-Enhanced Lighting Activation for Awakening Passengers

Kim, Dayoung
Stanford University

dkim9613@stanford.edu

Song, Wanbin
Stanford University

wanbins@stanford.edu

Abstract

This paper proposes a deep learning-based system for
intelligent lighting activation in aircraft cabins, aiming to
gently awaken passengers at optimal times by recogniz-
ing their activity patterns. We utilized a publicly avail-
able action recognition repository from IBM as a founda-
tion and integrated advanced components to improve ac-
curacy and efficiency. Our method begins with video in-
put captured by cameras installed above passenger seats,
which are processed using a ResNet18 backbone for spa-
tial feature extraction. The Temporal Action Module (TAM)
then captures temporal dependencies across frames. To en-
hance performance, we incorporated TokenLearner and To-
kenFuser modules, to efficiently process and integrate spa-
tial and temporal features. We trained our model using
a cross-entropy loss function and evaluated it on a pre-
pared dataset, achieving significant improvements in clas-
sification accuracy. Our results demonstrate the effective-
ness of combining traditional CNN-RNN architectures with
cutting-edge token-based approaches, providing a robust
solution for intelligent lighting activation in aircraft cabins.
This system not only enhances passenger comfort but also
represents a state-of-the-art approach in the application of
deep learning to smart cabin systems.

1. Introduction
In recent years, the airline industry has prioritized en-

hancing passenger experiences during flights. A crucial as-
pect of this enhancement is optimizing the wake-up process
to minimize jet lag and align with meal services. To address
this, we propose the development of a deep learning-based
system for intelligent lighting activation in aircraft cabins.
This system aims to gently awaken passengers at optimal
times by recognizing their activity patterns.

Our motivation for pursuing this problem is from our
background in the aviation industry and our interest in im-
proving passenger experiences and smart cabin systems.
We believe that an intelligent wake-up system could sig-
nificantly enhance the quality of service offered by airlines,

differentiating them in a competitive market. The input to
our algorithm is a streaming video captured by cameras in-
stalled above passenger seats. We utilize a deep learning
model to process this video input. The output of our sys-
tem is a notification to the flight crew indicating whether
a passenger is awake. This ensures timely wake-ups and
synchronization with meal services, contributing to a more
comfortable and efficient travel experience for passengers.

In our baseline module development, we have demon-
strated the effectiveness of this approach by leveraging the
spatial feature extraction capabilities of 2D Convolutional
Neural Networks (CNNs). These networks are adept at
identifying intricate patterns within individual frames. To
capture the temporal dependencies essential for accurate ac-
tivity recognition, we integrated temporal modeling com-
ponents, which significantly enhance the system’s perfor-
mance

Furthermore, to improve the overall accuracy and relia-
bility of our system, we incorporated recent advancements
in token-based approaches for recognition tasks. This in-
tegration allows our system to process and interpret video
data more efficiently, ensuring a higher quality of service
for airline passengers. By combining state-of-the-art tech-
niques in deep learning and activity recognition, our in-
telligent lighting activation system represents a significant
advancement in enhancing passenger experiences during
flights.

2. Related Work
The development of intelligent systems for passenger

comfort in aircraft has been explored in various studies.
Existing research can be categorized into three main ap-
proaches: sensor-based systems, camera-based systems,
and hybrid systems.

2.1. Sensor-based Systems

Sensor-based systems often utilize wearable devices to
monitor physiological parameters such as heart rate, body
temperature, and movement. For instance, [1] developed a
wearable sensor system to detect sleep patterns and stress
levels during flights. These systems are highly accurate in

1



physiological measurement but suffer from inconvenience
and discomfort for passengers who need to wear devices
throughout the flight.

2.2. Camera-based Systems

Camera-based systems leverage image and video pro-
cessing to monitor passenger states. Many of researches
focues on driver’s fatigue recognition using facial features
from image from camera[2]. While these systems are non-
intrusive, they often struggle with varying lighting condi-
tions and occlusions, impacting accuracy. Additionally, the
study by Zheng et al. [3] on real-time detection of driver fa-
tigue using a CNN-LSTM model showcases the potential of
combining convolutional layers for feature extraction with
LSTM layers for temporal sequence modeling. This method
provides improved accuracy in detecting fatigue states but
requires significant computational resources. These ap-
proaches are clever in their use of powerful image process-
ing capabilities but still face challenges with dynamic envi-
ronments.

2.3. Summary of Strengths and Weaknesses

Overall, sensor-based systems provide precise physio-
logical data but lack convenience. Camera-based systems
offer non-intrusive monitoring but face environmental chal-
lenges. Our proposed system aims to balance these trade-
offs by leveraging the strengths of camera-based monitoring
with advanced deep learning techniques, providing a robust
and user-friendly solution for intelligent lighting activation
in aircraft cabins.

2.4. Video understanding

If we only focus on video understanding problem, there
are lots of related researches and progress with the introduc-
tion of a number of large-scale video datasets, such as Ki-
netics, Moments-In-Time and YouTube-8M. Recent mod-
els have highlighted the importance of efficiently model-
ing spatiotemporal information for video action recogni-
tion. Many of successful deep learning architectures for ac-
tion recognition are usually based on two-stream model [4],
which process RGB frames and optical flow in two seperate
CNNs with a late fusion in upper layers [5]. Two stream
approaches have been utilized in a range of action recogni-
tion methods [[6], [7], [8], [9]]. Another straightforward yet
popular method involves using 2D CNNs to extract frame
level features and then modeling the temporal casuality. For
example, TAM[10] is based on depthwise 1x1 convolutions
to capture temporal dependencies across frames efficiently.
Another approach involves using 3D CNNs, which build
upon the success of 2D models in image recognition[11]
to identify actions in videos. For example, C3D[12] uti-
lizes 3D ConvNets, outperforming 2D CNNs by leveraging
large-scale video datasets.

3. Methods

In our project, we aimed to develop a system for intelli-
gent lighting activation in aircraft cabins based on passen-
ger activity recognition. To achieve this, we utilized deep
learning algorithms to analyze video input from cameras
installed above passenger seats. We started with a pub-
licly available repository from IBM, specifically designed
for action recognition using PyTorch [13]. This repository
provided a strong foundation for our work, allowing us to
focus on refining the model and adapting it to our specific
use case.

The input to our algorithm is streaming video captured
by cameras. These videos are processed frame by frame
to extract relevant features. Each frame is represented as a
tensor of pixel values, typically of shape (C, H, W) where
C is the number of color channels, H is the height, and W is
the width. Our system processes these frames to predict the
activity state of passengers, particularly focusing on iden-
tifying if a passenger is awake or asleep. The output of
our algorithm is a binary classification indicating whether
a passenger is awake (1) or asleep (0). This output is used
to control the cabin lighting system and notify flight crews
accordingly.

Figure 1. Baseline Model Architecture

For our baseline model, we utilized ResNet18 as the

2



backbone for feature extraction and a Temporal Action
Module (TAM) for capturing temporal dependencies in
video sequences. ResNet18 is a widely used Convolutional
Neural Network (CNN) that efficiently extracts spatial fea-
tures from input frames. The key component of ResNet18
is the residual block, which helps in training deep net-
works by mitigating the vanishing gradient problem. In or-
der to learn temporal dependencies in video sequences, our
baseline approach[13] integrates Temporal Adaptive Mod-
ules (TAM)[10] and temporal pooling layers, extending the
ResNet-18 architecture. Each BasicBlock has a TAM in-
cluded within it which processes features from the previ-
ous, current, and next frame using Squeeze-and-Excitation
(SE) modules, enabling adaptive focus on important tem-
poral features. After certain residual layers, the temporal
pooling layer are added to gradually downsample the tem-
poral dimension while keeping important temporal infor-
mation. Then the input’s journey throughout the architec-
ture would be, first, convolutional and pooling layers pro-
cess the input tensor, which has been reconfigured to han-
dle each frame separately. TAM-enhanced residual blocks
come next. Global average pooling and dropout are applied
after the last residual layer, and the tensor is then passed
through a fully connected layer for classification. The out-
put is then reshaped and averaged across frames to produce
the final prediction, effectively leveraging temporal context
for improved action recognition in videos.

To improve the baseline accuracy, we incorporated two
additional components: TokenLearner[14] and TokenFuser.
These components are inspired by the Vision Transform-
ers (ViTs) architecture and help in efficiently capturing both
spatial and temporal dependencies.

The effect of the implementation of TokenLearner and
TokenFuser is that the attention module can learn which
tokens would be used for the recognition task. It uses a
set of selected tokens instead of all the fixed tokenized in-
puts. With this adaptive tokenization and dynamic selec-
tion, overall process becomes efficient.

TokenLearner selects the informative combination of
pixels using a weight map. The spatial attention module
for TokenLearner and TokenFuser uses 3 convolutional lay-
ers with ReLU with the last layer generating attentions with
sigmoid. These spatial attention modules in TokenLearner
learn which regions seem to be more important and generate
tokens based on their adaptive learning. With the created
tokens, they compute a weight map from the tokens and
multiply the input to the weights. Then, the global average
pooling layer reduces the dimensionality to have tokens as
dense as the chosen size, 8 or 16 in this project. Figure 1
shows TokenLearner applying each spatial attention to the
subsets of input tensor and generating tokens. The formula
of calculating token z is in equation (1), where X is an in-
put, A is an intermediate weight tensor, α is a function that

Figure 2. TokenLearner

Figure 3. TokenFuser

3



calculates A, γ is the broadcasting function, and ρ is a spa-
tial global average pooling function.

Zi = Ai(Xi) = ρ(Xt

⊙
Aiw) = ρ(Xt

⊙
γ(αi(Xt)))

(1)
The generated tokens are then fed into a multi-head at-

tention layer. TokenFuser utilizes the learned information,
the output of multi-head attention module, to remap them
to the original input tensor generating the same size out-
put with the input of TokenLearner. Figure 2 shows how
the output from TokenLearner and multi-head attention and
the original input tensor are computed inside of the To-
kenFuser module. The equation (2) explains computation
within TokenFuser, where each output of TokenLeaner and
multi-head attention is Yt, the input tensor is Xt,and the in-
termediate weight tensor is Bw computed by the function
β.

Xj+1
t = B(Yt, X

j
t ) = BwYt+Xj

t = βi(X
j
t )Yt+Xj

t (2)

Having the input size of TokenLearner and the output
size of TokenFuser same, it makes easier to apply this set of
TokenLearner and TokenFuser after any convolutional layer
in ResNet-18 architecture.

4. Dataset
The dataset utilized in this project is the Charades

dataset[15], a publicly available collection of videos with
various household activities. The Charades dataset is de-

Dataset Total Videos Total Frames c133 c134
Train 257 8,635 102 155
Val 82 2,154 45 37

Table 1. Summary of the Processed Charades Dataset

signed to facilitate research in activity recognition, offer-
ing annotated video clips that capture a wide range of ac-
tions performed in indoor environments. It has 157 activity
classes with 8000 training and 1686 validation videos of
30 seconds on average. However, our project focuses on
a subset of the Charades dataset, specifically targeting the
actions ”Someone is awakening in bed” (action ID: c133)
and ”Lying on a bed” (action ID: c134). These actions were
chosen due to their relevance to our project objectives, and
each action was mapped to a numeric label to facilitate pro-
cessing, to label 0 for ’c133’, and 1 for ’c134’. With these,
we’ve implemented data pre-processing module which in-
cludes loading metadata from a given CSV file, filtering ac-
tions, extracting frames from video files, and writing the
metadata text file to be used during the training stage. The
detailed processed dataset statistics are shown in Table 1.

Focusing on specific actions and employing system-
atic frame extraction and data preparation techniques, this

Figure 4. Model Architecture with TokenLearner, Multi-head At-
tention, and TokenFuser

Figure 5. Examples of dataset. (a) c133 (b) c134

project constructs a robust dataset tailored to the research
objectives. The combination of detailed metadata, orga-
nized frame storage, and clear labeling facilitates effective

4



analysis and model development.

5. Experiments/Results/Discussion
We utilized the ResNet-18 backbone with the TAM and

the model was trained for 100 epochs with a SGD optimizer,
learning rate of 0.001, a batch size of 16. We chose learning
rate to be 0.001 because it showed better performance than
0.05 and others. The SGD optimizer is chosen because of
its fastness. Also, it’s known to give a good generalization.

Model Loss
(Train/Val)

Accuracy
(Train/Val)

ResNet-18 0.613 / 0.813 62.868% / 48.718%
ResNet-18

w. TL & TF
after L1, T = 8

0.341 / 1.017 84.191% / 48.718%

ResNet-18
w. TL & TF

after L3, T = 16
0.303 / 1.028 87.500% / 60.256%

ResNet-18
w. TL & TF

after L3,4, T = 16
0.418 / 0.780 79.779% / 61.539%

Table 2. Training and Validation Performance of Models

There are three experiments that have significant im-
provement we found to explain about in Table 2. The first
experiment with the set of TokenLearner and TokenFuser
was to apply them after the first layer of ResNet-18. With
8 tokens used, the training performance significantly im-
proved from the baseline model. However, the validation
accuracy remained same with higher loss. One of the next
experiments to improve the model was applying the set af-
ter the third layer with 16 tokens. In this experiment, both
training and validation accuracy was higher than the base
line and the first experiment. The fact that the validation
loss was higher could mean that when the model misclassi-
fies the data, it makes a big error. The final experiment was
applying the set after the third layer and the fourth layer
with 16 tokens. Although we expected both train and val-
idation accuracy to be higher than previous ones, only the
validation accuracy improved a little and the loss and the
accuracy of training was a little less.

As you can see in Figure 4, The confusion matrices for
the training and validation datasets show that the model cor-
rectly classified 82 out of 102 samples for class c133 and
123 out of 155 samples for class c134 in the training set. For
the validation set, the model correctly classified 27 out of 45
samples for class c133 and 23 out of 37 samples for class
c134, indicating a higher performance on the training data
compared to the validation data. As mentioned in the paper
[14], applying the set of TokenLearner and TokenFuser after
3/4 of the model structure showed better performance than

Figure 6. Confusion matrices for t

applying it close to the input layer. Also, repeating the set to
multiple layers helped generalizing the model. In addition,
the number of tokens also seemed to be affecting the perfor-
mance. When we used more tokens without any change in
other settings, there were 1 or 2% improvement in accuracy
scores. Although the paper [14] mentions about computa-
tional expensiveness with more tokens, but the time differ-
ence was not much and was able to be compensated for the
better performance. Therefore, among the experiments, the
last model, ResNet-18 with the set of TokenLearner and To-
kenFuser after third and fourth layer with 16 tokens, could
be considered as the best considering both train and valida-
tion performance indicating the most generalized model.

6. Conclusions/Future Work

The experiments of this project showed the effect of To-
kenLearner and TokenFuser. Learning representations of
input tensor and adding a multi-head attention module im-
proved the performance of classification problem. Also,
how applying them to the model was important to make
more generalized model, being able to make good predic-
tions on new data. Over the experiments, although we were
able to improve the performance and decrease the gap be-
tween the train and validation accuracy and loss, more ways
could exist to enhance the model. The possible improve-
ments include modifications in backbone model and modi-
fications in the set of TokenLearner and TokenFuser.

The ResNet-18 backbone we used has 4 convolutional
layers. If experiments with more layers in the model or
with models with different architecture were conducted, we
might have seen difference in performance scores. If the

5



architecture is different, the set of TokenLearner and To-
kenFuser might have been needed to applied differently and
their learning mechanism also could have been changed, af-
fecting the performance.

Another possible modification that could improve the
performance is changing the spatial attention module. The
spatial attention module we used uses three convolution lay-
ers. We chose to use three layers because when We worked
with one convolutional layer, it advanced overfitting. There
could be other architectures of spatial attention that im-
proves the performance and reduces overfitting.

The other hyperparameter settings could exist, which
best fits our dataset. For example, the initial number of to-
kens were chosen based on the paper [14]. However, since
the dataset is different, our dataset might advantage from
more tokens or less. With more time and resources, the
experiments with the number of tokens and other hyperpar-
maeter tuning could improve the result.

Since the main problem statement of this project is to
recognize flight passenger’s awakeness, the dataset of peo-
ple sitting in flight would have been more useful. Since we
weren’t able to get the data of flight passengers and their
actions, it could be one of future limitations when imple-
menting the system in the real world.

7. Contributions Acknowledgements
D.K designed and implemented the set of Token-

Learner and TokenFuser with the reference of a pub-
lic repository, https://github.com/ariG23498/
TokenLearner/tree/master, and wrote the pa-
per. W.S designed and implemented data prepro-
cessing logic, baseline architecture with the reference
of a public repository, https://github.com/IBM/
action-recognition-pytorch, and wrote the pa-
per.

References
[1] Akane Sano and Rosalind W Picard. Stress recognition using

wearable sensors and mobile phones. In 2013 Humaine as-
sociation conference on affective computing and intelligent
interaction, pages 671–676. IEEE, 2013.

[2] Zuopeng Zhao, Nana Zhou, Lan Zhang, Hualin Yan, Yi Xu,
and Zhongxin Zhang. Driver fatigue detection based on con-
volutional neural networks using em-cnn. Computational in-
telligence and neuroscience, 2020, 2020.

[3] Ming-Zhou Liu, Xin Xu, Jing Hu, and Qian-Nan Jiang. Real
time detection of driver fatigue based on cnn-lstm. IET Im-
age Processing, 16(2):576–595, 2022.

[4] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. Ad-
vances in neural information processing systems, 27, 2014.

[5] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In Pro-
ceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 1725–1732, 2014.

[6] Guilhem Chéron, Ivan Laptev, and Cordelia Schmid. P-cnn:
Pose-based cnn features for action recognition. In Proceed-
ings of the IEEE international conference on computer vi-
sion, pages 3218–3226, 2015.

[7] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,
Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,
and Trevor Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2625–2634, 2015.

[8] Georgia Gkioxari and Jitendra Malik. Finding action tubes.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 759–768, 2015.

[9] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vi-
jayanarasimhan, Oriol Vinyals, Rajat Monga, and George
Toderici. Beyond short snippets: Deep networks for video
classification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4694–4702,
2015.

[10] Quanfu Fan, Chun-Fu Chen, Hilde Kuehne, Marco Pistoia,
and David D. Cox. More is less: Learning efficient video
representations by big-little network and depthwise temporal
aggregation. CoRR, abs/1912.00869, 2019.

[11] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolu-
tional neural networks for human action recognition. IEEE
transactions on pattern analysis and machine intelligence,
35(1):221–231, 2012.

[12] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015.

[13] Chun-Fu Chen, Rameswar Panda, Kandan Ramakrishnan,
Rogerio Feris, John Cohn, Aude Oliva, and Quanfu Fan.
Deep analysis of cnn-based spatio-temporal representations
for action recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2021.

[14] Michael S. Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa
Dehghani, and Anelia Angelova. Tokenlearner: What can 8
learned tokens do for images and videos? CoRR, 2022.

[15] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity under-
standing. CoRR, abs/1604.01753, 2016.

6

https://github.com/ariG23498/TokenLearner/tree/master
https://github.com/ariG23498/TokenLearner/tree/master
https://github.com/IBM/action-recognition-pytorch
https://github.com/IBM/action-recognition-pytorch

