
AirBlender: Enhancing Interactive 3D Environment Generation with
Text-driven Modifications

Agam Bhatia
Computer Science Department

Stanford University
agam2026@stanford.edu

Abstract

3D simulated environments play a critical role in de-
veloping embodied artificial intelligence agents, but their
creation requires expertise and extensive manual effort, re-
stricting their diversity and scope. To mitigate this limi-
tation, we present AirBlender, a system that modifies 3D
environments to match a user-supplied prompt fully auto-
matedly in an end-to-end manner. AirBlender can modify
diverse indoor scenes, adjust scene styles and themes, and
can capture the nuances of complex queries such as “place
the table horizontally in parallel to the bed” and “make the
sofa look rustic”. AirBlender leverages a fine-tuned vision
model, CLIP, for asset retrieval in data generated by per-
turbing existing scene datasets and uses a large collection
of 3D assets from Objaverse to populate the scene with di-
verse objects. We show that the performance of a depth esti-
mator, Marigold, which is derived from Stable-Diffusion-2,
finetuned on AirBlender data results in better spatial under-
standing than off-the-shelf diffusion models. The improved
performance of a depth estimator like Marigold on a small
dataset acts as a proof of concept for AirBlender as it ex-
tends the utility of modified 3D scenes in various domains
such as virtual reality, game development, and embodied
AI training environments by providing automatic data aug-
mentation for training.

1. Introduction

Realistic, diverse, and interactive 3D simulated environ-
ments serve as vital platforms where AI systems can learn
and refine complex behaviors in a controlled yet flexible set-
ting. Generating realistic, diverse, and interactive 3D envi-
ronments plays a crucial role in the success of this process
and facilitates better training of embodied AI agents.

Conventional methods for creating 3D training environ-
ments— such as manual design [3], 3D scanning [2], and
procedural generation [5] — lack the scalability and adapt-

ability needed for the dynamic requirements of AI research,
which demands diverse scenarios for robust agent training.
Methods like manual design involve meticulous modeling
by experts, which is not only time-consuming but also lim-
its the frequency of updates and revisions. Similarly, 3D
scanning provides high-fidelity reproductions of real-world
spaces, but is constrained by the physical availability and
the static nature of scanned environments. Procedural gen-
eration offers a more scalable approach, allowing environ-
ments to be created according to predefined rules; however,
this method often lacks the flexibility needed to accommo-
date specific or unique training scenarios, and can result in
environments that feel unnatural due to their formulaic con-
struction.

There is a critical need for tools that simplify and de-
mocratize the creation of 3D environments, allowing for
quick modifications without extensive 3D modeling skills.
By enabling easier and faster customization of training sce-
narios, these tools can significantly accelerate AI research
and development, broadening the scope of tasks AI agents
can learn and enhancing their ability to operate in varied,
complex scenarios.

In light of these challenges, we present AirBlender, a
language-guided system tested using Marigold[12], a dif-
fusion model derived from Stable-Diffusion-2, [18] to au-
tomatically modify diverse, customized, and interactive 3D
embodied environments from textual descriptions. Given a
user described modification, AirBlender parses the query to
get user intent. AirBlender then uses its hierarchical frame-
work of parsing user queries to generate low-level actions
to modify existing scenes according to the given prompt
using generated Blender code. It then chooses from over
50K diverse and high-quality 3D assets from Objaverse
[4] to satisfy a myriad of environment descriptions. Mo-
tivated by the emergent abilities of Large Vision-Language
Models (VLMs), AirBlender exploits the commonsense pri-
ors and spatial knowledge inherently present in VLMs like
Stable-Diffusion-2 [21]. Using pairs of modified images
along with a supplied user conversation, AirBlender pro-

1



vides a basis for enhanced controllability and contextual
understanding previously absent in diffusion models. To
test the effectiveness of AirBlender for training, we focus
on AirBlender’s contribution in aiding zero-shot monocular
depth estimation on Marigold. When finetuned on a small
dataset with minimal compute resources, we find Marigold
performs comparably in out-of-distribution tasks, serving
as a proof-of-concept for the scalability of AirBlender as
a method for accurate scene modifications.

2. Related Work
Embodied AI Environments Previous work in this area

relies on 3D artists to design these environments. This has
several scalability problems, as design modifications need
to be extremely well thought out and specific, and require
days or sometimes weeks for iteration and improvement re-
quiring human labor. Additionally, scenes generated us-
ing this method are less interactive. The procedural gen-
eration framework PROCTHOR [5] showcases its potential
to generate largescale interactive environments for train-
ing embodied agents. Phone2Proc [3] uses a phone scan
to create training scenes that are semantically similar to
the desired real-world scene. A concurrent work, Robo-
Gen [25], proposes to train robots by generating diversified
tasks and scenes. These works parallel our concept, Air-
Blender, which aims to train generalizable embodied agents
and presents an avenue for further exploration in text-driven
3D interactive scene generation.

LLMs for Scene Design Many works on scene design
either learn spatial knowledge priors from existing 3D scene
databases [17] or leverage user input and refine the 3D
scene iteratively. However, having to learn from datasets
of limited categories such as 3D-FRONT [7] restricts this
method’s applicability. Recently, Large Language Models
(LLMs) were shown to be useful in generating 3D scene
layouts. However, their methods of having LLMs directly
output numerical values can yield layouts that defy physi-
cal plausibility (e.g., overlapping assets). In contrast, Air-
Blender builds on HOLODECK [26] which uses LLMs to
sample spatial relational constraints and a solver to optimize
the layout, ensuring physically plausible and realistic scene
arrangements.

Diffusion Models Denoising Diffusion Probabilistic
Models (DDPMs) [9] are a powerful class of generative
models that learn to reverse a diffusion process that progres-
sively degrades images with Gaussian noise so that they can
draw samples from the data distribution by applying the re-
verse process to random noise. This idea was extended to
DDIMs [23], which provide a non-Markovian shortcut for
the diffusion process. Conditional diffusion models are an
extension of DDPMs [8] that ingest additional information
on which the output is then conditioned, similar to cGAN
[16] and cVAE [24]. In the realm of text-based image gen-

eration, [21] have trained a diffusion model on the large-
scale image and text dataset LAION-5B [22] and demon-
strated image synthesis with previously unattainable qual-
ity. The cornerstone of their approach is a latent diffusion
model (LDM), where the denoising process is run in an effi-
cient latent space, drastically reducing the complexity of the
learned mapping. Such models distill internet-scale image
sets into model weights, thereby developing a rich scene un-
derstanding prior, which is used in this work for monocular
depth estimation.

Text-driven 3D Generation Early endeavors in 3D gen-
eration focus on learning the distribution of 3D shapes
and/or textures from category-specific datasets [7]. Sub-
sequently, the advent of large vision-language models like
CLIP [18] enables zero-shot generation of 3D textures and
objects. These works excel at generating 3D objects but
struggle to generate complex 3D scenes. More recently,
emerging works generate 3D scenes by combining pre-
trained text-to-image models with depth prediction algo-
rithms to produce either textured meshes or NeRFs [15].
However, these approaches yield 3D representations that
lack modular composability and interactive affordances,
limiting their use in embodied AI. In contrast, AirBlender
utilizes a comprehensive 3D asset database to generate se-
mantically precise, spatially efficient, and interactive 3D en-
vironments suitable for training embodied agents and show-
cases that such a method can improve scene generation and
understanding in diffusion models.

3. Data
Marigold is a monocular depth estimator developed on a

latent diffusion model that requires ground truth depth la-
bels for training.

Training Datasets In this work, we train Marigold ex-
clusively with 2000 synthetic data samples generated from
AirBlender. We find that real depth datasets suffer from
missing depth values caused by the physical constraints of
the capture rig and the physical properties of the sensors.
Specifically, the disparity between cameras and reflective
surfaces diverting LiDAR laser beams are inevitable sources
of ground truth noise and missing pixels. On the other hand,
synthetic depth is inherently dense and complete, meaning
that every pixel has a valid ground truth depth value, allow-
ing us to feed such data into the variational auto-encoder,
which cannot handle data with invalid pixel values. Second,
synthetic depth is the cleanest possible form of depth, which
is guaranteed by the rendering pipeline of AirBlender. Since
we are using a text-to-image Latent Diffusion Model, syn-
thetic depth gives the cleanest set of examples and reduces
noise in gradient updates during the fine-tuning protocol.
Incomplete samples are filtered out. RGB images and depth
maps are resized to 480 × 640 size during preprocessing.
Additionally, we transform the original distances relative to



the focal point into conventional depth values relative to the
focal plane. The generation process for AirBlender data is
described in the Methods section.

Evaluation Datasets Marigold is evaluated on 3 datasets
consisting of real images that are not seen during training
by the model. NYUv2 [11] and ScanNet [1] are indoor
scene datasets captured with an RGB-D Kinect sensor. For
NYUv2, we utilize the designated test split, comprising a
total of 654 images. In the case of the ScanNet dataset, we
randomly sampled 800 images from the 312 official valida-
tion scenes for testing. KITTI [13] is a street-scene dataset
with sparse metric depth captured by a LiDAR sensor.

4. Method
Our goal is to transform a text query q into a modified 3D

scene s that is not only spatially coherent but also contex-
tually rich before training a model on the generated images
and text. This requires (a) identifying the correct spatial
and contextual relationships between assets, (b) predicting
a high fidelity and nice looking arrangement that aligns with
these relationships, and (c) identifying user intent and accu-
rately replicating that in-context of the visual arrangement
of the scene. AirBlender performs this task by building on
top of a state-of-the-art VLMs and a professional rendering
software (Blender). We now describe the key components
of our method, which builds upon SceneCraft [10]. Our
unique contributions over SceneCraft here are (1) the use of
a finetuned CLIP model on indoor scenes for asset retrieval,
(2) a chained prompting system for input to modified scene
generation, and (3) a hierarchical prompting framework to
better capture user intent and distill it to low-level actions
that can be coded via an LLM on-the-fly and executed via
the Blender API.

4.1. Asset Retrieval and Scene Decomposition

A scene consists of a set of assets, where each asset is
a 3D model. Given the input text query q, the agent makes
an LLM (in this case, GPT-4) call to generate a list of asset
names and description that shall be put in the scene. Based
on them, a set of 3D assets are retrieved from a large repos-
itory of 3D objects utilizing a CLIP-based retriever. The re-
trieval process first finds the top assets based on the text de-
scription of each asset. Then each retrieved asset is rendered
as an image and the one with the highest text-to-image score
is selected.

Some scenes might contain up to a hundred assets, mak-
ing the layout planning very difficult. The SceneCraft agent
decomposes the scene into a set of sub-scenes, each repre-
senting a part of the entire scene. Breaking the problem into
small pieces is a widely adopted strategy in natural language
question answering and general reasoning [30].

The agent calls a LLM-empowered decomposer that
breaks the input query into a sequence of sub-scenes ŝk,

each containing a title, a list of asset names Ak and a
sub-scene description qk.

(q1, A1), . . . , (qK , AK)← LLM-decomposer(q). (1)

4.2. Parsing User Intent into Editing Actions

To accurately understand vague user queries, we created
a chained prompting and clarification system that gathers
refined user clarification for the particular task and inter-
prets actions based on user intentions for our text-based
3D scene modification interface. Based on scene graphs
constructed like in SceneCraft, we develop an Object Ac-
tion library that encodes different types of simple actions
(add, remove) and complex actions (swap, replace, modify)
with the aim of expanding this library. We distill compound
queries into much simpler, fundamental actions that are eas-
ier to execute via a Blender Script. For example, the action
of swapping can be interpreted as the sequence of the fol-
lowing simple instructions: remove object 1, remove object
2, add object 2 where object 1 was, add object 1 where ob-
ject 2 was. Efforts to build a robust input evaluation system
that understands user queries is a work in progress and will
only get better with the progress in foundation models.

4.3. Hierarchical User Intent Parsing

Additionally, we use a hierarchical question-answering
system to better understand user intention. For each query,
we ask a few LLM-generated clarification questions to the
user based on the query to better capture intent. These ques-
tions encourage the user to be more specific and detailed.
Once that is done, we take the entire context of the user-
module conversation and categorize it as one of several pos-
sible actions, along with identifying the target objects to be
modified in the scene. Lastly, this is passed into a low-level
action generation module that specifies exact location coor-
dinates, rgb color values, degrees of rotation etc. that need
to be executed via the Blender API.

AirBlender achieves a level of robustness where it deals
with multiple compound queries for multiple objects in one
prompt for a limited set of actions. We presently use a
blender interface for recursive self-improvement and scene
generation but this work extends to any 3D simulation envi-
ronment, like Unity for virtual reality, where object actions
can be codified and different 3D assets can be retrieved.

4.4. Monocular Depth Estimation

We test the effects of AirBlender on Monocular Depth
Estimation performance, since we hypothesize that embed-
ded information about depth captured in modified scenes
guided by a user-system conversation will lead to a better
understanding of scene depth during training and evalua-
tion of vision models. Monocular depth estimation aims
to transform a photographic image into a depth map, i.e.,



Figure 1: Modified Scene Generation Pipeline

regress a range value for every pixel. The task arises when-
ever the 3D scene structure is needed, and no direct range
or stereo measurements are available. Clearly, undoing the
projection from the 3D world to a 2D image is a geomet-
rically ill-posed problem and can only be solved with the
help of prior knowledge, such as typical object shapes and
sizes, likely scene layouts, occlusion patterns, etc. In other
words, monocular depth implicitly requires scene under-
standing. At the technical level, monocular depth estima-
tion is a dense, structured regression task. Previous meth-
ods to get better ’in-the-wild’ or out-of-distribution perfor-
mance were functions of the diversity of the training dataset
but Marigold shows transfer learning by leveraging com-
monsense priors stored in these large vision models, prov-
ing to be a good foundational model to test AirBlender’s
effectiveness on.

Marigold poses monocular depth estimation as a con-
ditional denoising diffusion generation task. In the for-
ward process, which starts at d0 := d from the condi-
tional distribution, Gaussian noise is gradually added at lev-
els t ∈ {1, . . . , T} to obtain noisy samples dt as

dt =
√
αtd0 +

√
1− αtϵ

where ϵ ∼ N(0, I), αt :=
∏t

s=1 1− βs, and {β1, . . . , βT }
is the variance schedule of a process with T steps. In
the backward or reverse processs, the conditional denois-
ing model eθ(·) parameterized with learned parameters θ
gradually removes noise from dt to obtain dt−1.

At training time, parameters θ are updated by taking a
data pair (x, d) from the training set, noising d with sam-
pled noise ϵ at a random timestep t, computing the noise
estimate ϵ̂ = eθ(dt, x, t) and minimizing one of the denois-
ing diffusion objective functions. The canonical standard
noise objective L is given as follows:

L = Ed0,ϵ∼N(0,I),t∼U(T )

[
∥ϵ− ϵ̂∥2

]
At inference time, d := d0 is reconstructed starting from
a normally-distributed variable dT , by iteratively applying
the learned denoiser eθ(dt, x, t).

Marigold utilizes a frozen Variational Autoencoder
(VAE) to encode both the image and its corresponding depth

map into a latent space, essential for training the conditional
denoiser. Furthermore, the model incorporates a special-
ized normalization technique to achieve affine-invariance,
which is crucial for maintaining accuracy in depth predic-
tions. This method ensures that the depth map can be recon-
structed with minimal error from the encoded latent code,
demonstrated by the approximation d ≈ D(E(d)). At in-
ference, the model decodes the depth latent code once at the
end of the diffusion process, and the average of the three
channels is computed to produce the predicted depth map.

Marigold also uses a combination of multi-resolution
noise and an annealed schedule to converge faster and sub-
stantially improve performance over the standard DDPM
formulation. The multi-resolution noise is composed by su-
perimposing several random Gaussian noise images of dif-
ferent scales, all upsampled to the U-Net input resolution.
The proposed annealed schedule interpolates between the
multi-resolution noise at t = T and standard Gaussian noise
at t = 0.

Figure 2: Marigold Model derived from Stable Diffusion-2

5. Experiments
To conduct a thorough evaluation of our system, we test

the capabilities of the individual modules of our system
which comprises hierarchical user intent parsing and asset
retrieval modules before using generated data for monocu-
lar depth estimation using the Marigold model. We do this
to develop a user-guided framework for data augmentation



and training for our module, such that even arbitrary user
queries can be interpreted correctly and scenes can be mod-
ified accurately for training.

To evaluate the effectiveness of AirBlender in modifying
3D environments according to user-supplied prompts, we
conducted several experiments that assess different compo-
nents of the system. Here, we detail the metrics used for
evaluation and the results achieved.

5.1. User Intent Parsing Accuracy

The ability of AirBlender to correctly parse user inten-
tions from text queries was quantitatively measured. We
utilized a set of 200 manually crafted queries reflecting var-
ious complexity levels, from simple asset additions to com-
plex spatial arrangements. Each query was processed by
AirBlender’s parsing module, and the output editing ac-
tions were compared against manually generated ground
truths. AirBlender achieved an intent parsing accuracy of
83%, indicating robust performance in understanding and
converting natural language into actionable editing com-
mands. Since we aren’t able to conduct large scale hu-
man evaluation of the system present like in SceneCraft,
we cannot compare this to the three qualitative metrics that
measure the quality of images generated by SceneCraft but
qualitatively that AirBlender achieves accuracy on par with
SceneCraft and beats the BlenderGPT baseline.

5.2. Asset Retrieval Accuracy

The CLIP model, pre-trained on a wide array of im-
ages and textual descriptions, undergoes specialized fine-
tuning tailored to the unique demands of 3D scene genera-
tion in the context of the AirBlender application. This fine-
tuning procedure optimizes the model’s weights to enhance
its ability to associate specific 3D asset images with their
corresponding textual descriptions effectively.

This enhanced model was evaluated for its precision in
accurately retrieving 3D assets from the Objaverse in re-
sponse to user queries. This was done using the CLIP-
Frechet Inception Distance metric, which captures the qual-
ity of the distribution o f 3D Renders against a ground truth,
which we supply. Inception distance scores based on a pre-
trained visual representation can in principle capture the
overall quality of the scenes, including natural placement
and cohesiveness. To conduct this evaluation, we estab-
lished a benchmark dataset comprising 500 specific queries,
each paired with appropriately tagged assets. We compare
our finetuned CLIP model against different CLIP retrievers
on common indoor object retrieval and the results are shown
in Table 1, where lower CLIP-FID scores are better.

The results highlight our system’s capability to identify
and prioritize the most relevant assets for 3D scene modi-
fications effectively. Particularly, we see that our model is
better able to capture large scenes that contain a variety of

Room Type Model CLIP-FID(l)
Bedroom ATISS 0.33

CLIP-Layout 0.25
CLIP-Finetuned 0.22

Dining room ATISS 0.27
CLIP-Layout 0.19
CLIP-Finetuned 0.18

Library ATISS 1.68
CLIP-Layout 1.31
CLIP-Finetuned 1.20

Living room ATISS 0.19
CLIP-Layout 0.13
CLIP-Finetuned 0.10

Table 1: Metrics for one-step partial scene completion
(Baselines derived from CLIP-Layout [14])

3D Assets and is able to effectively generate scenes based
on them, showing that finetuning CLIP on indoor scenes
boosts its asset retrieval capabilties.

5.3. Marigold Performance

We implement a finetuning script on top of Marigold
gold using PyTorch and utilize Stable Diffusion v2 [38]
as our backbone, following the original pre-training setup
with a v-object. The original Marigold pipeline has text-
conditioning disabled, but we enable this for our purposes.
We apply the DDPM noise scheduler with 1000 diffusion
steps. At inference time, we apply the DDIM scheduler and
only sample 50 steps. For the final prediction, we aggregate
results from 10 inference runs with varying starting noise.
Due to compute resources, training as part of our method
takes 7K iterations (700 steps or epochs) using a batch size
of 32 and 16 gradient accumulation steps. We use the Adam
optimizer with a learning rate of 3e-5 and a mixed-batch
sampler that prevents data overloading on our GPU. Addi-
tionally, we apply random horizontal flipping augmentation
to the training data. Training using our method takes ap-
proximately 4 hours on a single Nvidia A100 GPU with 32
GB VRAM. The smooth loss curve obtained during train-
ing is shown in Figure 3 and provides evidence of our model
learning the priors that make up scene modifications, which
are tested further.

For evaluation with the datasets mentioned in Section 3,
we follow the procedure highlighted in Marigold where,
obeying the protocol of affine-invariant depth evaluation
[20], we first align the estimated merged prediction m to
the ground truth d with the least squares fitting. This step
gives us the absolute aligned depth map a = ms + t in the
same units as the ground truth. Next, we apply two widely
recognized metrics [20] [19] for assessing quality of depth
estimation. The first is Absolute Mean Relative Error (Ab-



Figure 3: Loss Curve for Marigold on AirBlender generated
Training Scenes

sRel), calculated as:

AbsRel =
1

M

M∑
i=1

∣∣∣∣ai − di
di

∣∣∣∣ ,
where M is the total number of pixels. The second metric,
δ1 accuracy, measures the proportion of pixels satisfying

max

(
ai
di
,
di
ai

)
< 1.25.

The results for Marigold finetuned on AirBlender data
are shown in comparison to baselines in Table 2.

As Table 2 shows, Marigold trained with AirBlender
generated scenes exhibits comparable performance to
Marigold trained on Hypersim (which is a much larger
dataset) and surpasses other baselines without going
through as many training steps as other methods. We see
that Marigold+AirBlender is consistently worse off than
Marigold, both because of compute (Marigold was trained
for 2 days) and data availability but close enough to make
us believe that this method will only improve with scale.
Marigold+AirBlender consistently beats other depth esti-
mation methods, showcasing the potential of AirBlender as
a method to better equip understanding in diffusion models
for depth estimation. Despite being trained solely on syn-
thetic depth datasets, the model can generalize to a wide
range of real scenes, as shown by the performance on the
test sets, all of which contain real data. This successful
adaptation of diffusion-based image generation models to-
ward depth estimation confirms our initial hypothesis that
a comprehensive representation of the visual world is the
cornerstone of monocular depth estimation. Moreover, it
shows that AirBlender can allow the model to better capture
spatial understanding in different 3D Scenes and understand
nuances in depth previously uncaptured. It also shows that
our fine-tuning protocol was successful in adapting Stable
Diffusion for this task without unlearning such visual pri-
ors.

Figure 4: Out-of-Distribution Test Image of a person run-
ning through a road surrounded by a forest

5.4. Qualitative Evaluation

Beyond quantifying the capabilities of AirBlender, we
feel it is important to qualitatively see the difference in
scene understanding and generation that AirBlender equips
Marigold with.

Figures 4 and 5 distinctly show the capabilities of Air-
Blender on Marigold. From Figure 5, we can see that the
model preserves the overall layout of the scene and recog-
nizes differences between objects that are closer (the dark
orangish red road) than others (the light blue and yellow
faraway trees) in the pictures, and applies a depth transfor-
mation accordingly. It also is not distracted by the light-
ing present in the scene, which, during our analysis, some-
times spoils the generated depth map. Despite being trained
solely on synthetic depth datasets that contain indoor envi-
ronments, the model can well generalize to a wide range of
real scenes. Crucially, the depth map is clear evidence of
spatial understanding equipped within Marigold, highlight-
ing that the AirBlender method reinforces existing priors
and equips new ones when understanding scenes.

Beyond spatial understanding and generation, the Air-
Blender user intent parsing and modified scene generation
pipeline is not foolproof. While AirBlender is able to gen-
erate complex actions that require multi-step reasoning in a
systematic manner, it is sometimes unable to generate spe-
cific low-level action for modification. At times, AirBlender
struggles with what object the user is talking about, espe-
cially if there are multiple such objects in the scene and so
it fails to differentiate one from the other. Even when it is
able to, it misses out on distilling complex actions to sim-
pler ones. For example, Figure 6 below shows a user-system
conversation that shows that while the system identifies the



Method NYUv2 KITTI ScanNet
AbsRel δ1 AbsRel δ1 AbsRel δ1

DiverseDepth [27] 11.7 87.5 19.0 70.4 10.9 88.2
MiDas [28] 11.1 88.5 23.6 63.0 12.1 84.6
LeReS [20] 9.0 91.6 14.9 78.4 9.1 91.7
Omnidata [6] 7.4 94.5 14.9 83.5 7.5 93.6
HDN [29] 6.9 94.8 11.5 86.7 8.0 93.9
DPT [19] 9.8 90.3 10.0 90.1 8.2 93.4
Marigold (w/ ensemble) 5.5 96.4 9.9 90.6 6.4 95.1
Marigold + Airblender (w/ ensemble) 7.2 93.4 10.0 89.1 7.9 92.1

Table 2: Summary of Depth Estimation Metrics on Selected Datasets

Figure 5: Generated Depth Map by the Modified Marigold
Model where darker colors indicate objects perceived by the
model to be closer

need of a black door, it fails to realize that it needs to replace
the existing door before adding a new one.

We mitigate this problem to some extent by providing a
scene description to the LLM and believe that using more
powerful vision language models would imbue stronger pri-
ors to ground the model on for better user clarification ques-
tioning and low-level action generation.

6. Conclusion

In this paper, we introduced AirBlender, an innovative
framework designed for generation and modification of in-
teractive 3D environments using text-driven inputs. By in-
tegrating the common sense priors of advanced diffusion
models and extensive 3D assets, AirBlender provides a ver-
satile tool that reduces the need for specialized 3D modeling
expertise and accelerates the creation and customization of
diverse 3D training environments for AI applications.

Throughout our research, we demonstrated that Air-

User Query:

Color the door black
System Response:

Clarifying Question: Which door are
you referring to? Is it the one that is
closed in front of the bed or is it the
one that is ajar facing the window?
User Query:

The one that is ajar
System Response:

Object addition: black door
Adding a black door...
Solving for the layout...
Rendering the new scene...

Figure 6: Failure Case of User Query and System Response

Blender’s capabilities extend beyond traditional scene mod-
ification methods by incorporating user-supplied textual
prompts to dynamically alter and enhance virtual environ-
ments. This is made possible through the fine-tuning of
Marigold, our depth estimation model, on the AirBlender-
generated data, which has shown remarkable adaptability
and precision in handling complex scene modifications,
even in challenging out-of-distribution settings.

Our experiments affirm the efficacy of AirBlender in
parsing user intent with high accuracy and retrieving and
arranging 3D assets to fulfill specified environmental con-
texts. These functionalities are critical in supporting the nu-
anced requirements of training scenarios for embodied AI
agents, thereby contributing to more robust and adaptable
AI systems. AirBlender can be adapted and applied to a
range of fields from virtual reality and game development
to embodied agent training and acts both as a form of data
augmentation but also focused finetuning for end applica-
tions.



7. Future Work
As we continue to refine and enhance AirBlender, future

work will focus on expanding its asset library, improving
the system’s ability to handle even more complex modi-
fications, and enhancing its understanding of spatial rela-
tionships and user intents. Additionally, the effect of Air-
Blender on other kinds of models beyond Monocular Depth
Estimation is yet to be seen as a test of generalization of this
method.

References
[1] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,

and M. Nießner. Scannet: Richly-annotated 3d reconstruc-
tions of indoor scenes, 2017. 3

[2] M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve,
R. Mottaghi, J. Salvador, D. Schwenk, E. VanderBilt,
M. Wallingford, L. Weihs, M. Yatskar, and A. Farhadi.
Robothor: An open simulation-to-real embodied ai platform,
2020. 1

[3] M. Deitke, R. Hendrix, L. Weihs, A. Farhadi, K. Ehsani, and
A. Kembhavi. Phone2proc: Bringing robust robots into our
chaotic world, 2022. 1, 2

[4] M. Deitke, D. Schwenk, J. Salvador, L. Weihs, O. Michel,
E. VanderBilt, L. Schmidt, K. Ehsani, A. Kembhavi, and
A. Farhadi. Objaverse: A universe of annotated 3d objects,
2022. 1

[5] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, J. Salvador,
K. Ehsani, W. Han, E. Kolve, A. Farhadi, A. Kembhavi, and
R. Mottaghi. Procthor: Large-scale embodied ai using pro-
cedural generation, 2022. 1, 2

[6] A. Eftekhar, A. Sax, R. Bachmann, J. Malik, and A. Zamir.
Omnidata: A scalable pipeline for making multi-task mid-
level vision datasets from 3d scans, 2021. 7

[7] H. Fu, B. Cai, L. Gao, L. Zhang, J. W. C. Li, Z. Xun, C. Sun,
R. Jia, B. Zhao, and H. Zhang. 3d-front: 3d furnished rooms
with layouts and semantics, 2021. 2

[8] H. Fu, Z. Yang, M. Wang, and M. Chen. Unveil conditional
diffusion models with classifier-free guidance: A sharp sta-
tistical theory, 2024. 2

[9] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion proba-
bilistic models, 2020. 2

[10] Z. Hu, A. Iscen, A. Jain, T. Kipf, Y. Yue, D. A. Ross,
C. Schmid, and A. Fathi. Scenecraft: An llm agent for syn-
thesizing 3d scene as blender code, 2024. 3

[11] D. Ignatov, A. Ignatov, and R. Timofte. Virtually enriched
nyu depth v2 dataset for monocular depth estimation: Do we
need artificial augmentation?, 2024. 3

[12] B. Ke, A. Obukhov, S. Huang, N. Metzger, R. C. Daudt, and
K. Schindler. Repurposing diffusion-based image generators
for monocular depth estimation, 2024. 1

[13] Y. Liao, J. Xie, and A. Geiger. Kitti-360: A novel dataset
and benchmarks for urban scene understanding in 2d and 3d,
2022. 3

[14] J. Liu, W. Xiong, I. Jones, Y. Nie, A. Gupta, and B. Oğuz.
Clip-layout: Style-consistent indoor scene synthesis with se-
mantic furniture embedding, 2023. 5

[15] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng. Nerf: Representing scenes as
neural radiance fields for view synthesis, 2020. 2

[16] M. Mirza and S. Osindero. Conditional generative adversar-
ial nets, 2014. 2

[17] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and
A. Torralba. Virtualhome: Simulating household activities
via programs, 2018. 2

[18] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and I. Sutskever. Learning transferable visual
models from natural language supervision, 2021. 1, 2

[19] R. Ranftl, A. Bochkovskiy, and V. Koltun. Vision transform-
ers for dense prediction, 2021. 5, 7

[20] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and
V. Koltun. Towards robust monocular depth estimation: Mix-
ing datasets for zero-shot cross-dataset transfer, 2020. 5, 7

[21] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Om-
mer. High-resolution image synthesis with latent diffusion
models, 2022. 1, 2

[22] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon,
R. Wightman, M. Cherti, T. Coombes, A. Katta, C. Mullis,
M. Wortsman, P. Schramowski, S. Kundurthy, K. Crowson,
L. Schmidt, R. Kaczmarczyk, and J. Jitsev. Laion-5b: An
open large-scale dataset for training next generation image-
text models, 2022. 2

[23] J. Song, C. Meng, and S. Ermon. Denoising diffusion im-
plicit models, 2022. 2

[24] Y. Wang, J. Liao, H. Yu, G. Wang, X. Zhang, and L. Liu.
Advanced conditional variational autoencoders (a-cvae): To-
wards interpreting open-domain conversation generation via
disentangling latent feature representation, 2022. 2

[25] Y. Wang, Z. Xian, F. Chen, T.-H. Wang, Y. Wang, Z. Erick-
son, D. Held, and C. Gan. Robogen: Towards unleashing
infinite data for automated robot learning via generative sim-
ulation, 2023. 2

[26] Y. Yang, F.-Y. Sun, L. Weihs, E. VanderBilt, A. Herrasti,
W. Han, J. Wu, N. Haber, R. Krishna, L. Liu, C. Callison-
Burch, M. Yatskar, A. Kembhavi, and C. Clark. Holodeck:
Language guided generation of 3d embodied ai environ-
ments, 2024. 2

[27] W. Yin, X. Wang, C. Shen, Y. Liu, Z. Tian, S. Xu, C. Sun, and
D. Renyin. Diversedepth: Affine-invariant depth prediction
using diverse data, 2020. 7

[28] W. Yin, J. Zhang, O. Wang, S. Niklaus, L. Mai, S. Chen, and
C. Shen. Learning to recover 3d scene shape from a single
image, 2020. 7

[29] C. Zhang, W. Yin, Z. Wang, G. Yu, B. Fu, and C. Shen. Hi-
erarchical normalization for robust monocular depth estima-
tion, 2022. 7

[30] P. Zhou, J. Pujara, X. Ren, X. Chen, H.-T. Cheng, Q. V. Le,
E. H. Chi, D. Zhou, S. Mishra, and H. S. Zheng. Self-
discover: Large language models self-compose reasoning
structures, 2024. 3


