
AirWall: Malicious Drones Detection using YOLO

Alexey Tuzikov
Stanford University

atuzikov@stanford.edu

Abstract

We have explored implementation of YOLOv9 model to
the increasingly important and urgent task of malicious
drone detection. For that we use a rare dataset of (mostly)
small object drone images in the sky taken from the ground
during various day/season/weather conditions. Apart from
the baseline YOLOv9 model we experiment with scaling the
image during trainign and applying Slicing Aided Hyper
Inference for better small object detection. The baseline
delivers quite good results, but SAHI shows better perfor-
mance, possibly because of better feature learning trough
enchanced representation of small drones, to which the
dataset is skewed. Further work might layer connections
further for adapting FPN to small object detection.

1. Introduction
Proliferation of drones is changing the landscape of pos-

sible terrorist and malicious attacks. Recently, drones car-
rying explosives were used to attack civilian objects in
places as diverse as Saudi Arabia[1], Burkina-Faso [2] and
Russia[3]. In many such cases, the result was huge eco-
nomic cost of destroyed infrastructure[4], disruption of air-
port operations[5] and loss of civilian lives[6]. Unlike air-
planes, drones often do not require runway and other com-
plex infrastructure for launch, and so can be launched from
any place, including from the territory of the country they
are aimed to attack. Heavier drones can travel long dis-
tances (sometimes up to 1000 kilometers) without being de-
tected. Current detection systems were built for detecting
planes - large, metallic, flying quite high objects, whereas
drones are often made from materials that are hard for
radars to detect, are quite small, and are able to fly at low
altitudes below the reach of radars. However, visual sys-
tems systems may be particularly well suited for detecting
malicious drones.

In this proiect we aim to build a system that would detect
drones using images from CCTV. Speficifally, the model
has image as inpute and uses CNN (Convulational Neural
Network) to predict presence of a drone and a rectangular

bounding box around it.

2. Related work

2.1. General object detection

Before proliferation of deep learning-based detection
methods, Deformable parts models (DPM)[7] were state of
the art, and used a sliding window approach where the clas-
sifier is run at evenly spaced locations over the entire image,
comparing each window’s features with pre-trained features
of objects.

With the rebirth of Convolutional neural nets in 2012[8],
deep learning-based methods diverged into two branches:
1) Two-stage detectors, and 2) One-stage detectors.

Two-stage detectors started with R-CNN[9] that extract
a set of object proposals (object candidate boxes) by selec-
tive search [10]. Search generates potential bounding boxes,
a CNN extracts features, an SVM scores the boxes, a lin-
ear model adjusts the bounding boxes, and non-max sup-
pression eliminates duplicate detections. Each stage of this
complex pipeline must be precisely tuned independently
and the resulting system is very slow, taking more than 40
seconds per image at test time [11]

The techniques were further refined by avoiding re-
peated computing feature maps using Spatial pyramid pool-
ing [12]. Fast R-CNN[11] enabled us to simultaneously
train a detector and a bounding box regressor under the
same network configurations, while Faster R-CNN [13] in-
troduced a Region Proposal Network (RPN) to propose re-
gions of interest. Further introduction of Feature Pyramid
Networks (FPN) [14] improved detection by running a de-
tector several layers deep, but the family of methods still
falls short of real-time detection speed.

The first one-stage detector in the deep learning era,
YOLO [15], applies a single neural network to the full im-
age. This network divides the image into regions and pre-
dicts bounding boxes and probabilities for each region si-
multaneously. Single Shot MultiBox Detector (SSD) [16]
introduced the multi-reference and multiresolution detec-
tion techniques, which significantly improves the detection
accuracy of a one-stage detector, especially for some small

1



objects. DETR [17] applied transformers architecture to ob-
ject detection.

2.2. Object detection applied to drones

There have been some attempts to build video-based
drone detection systems. Most of them build on top of
YOLO, SSD or Faster R-CNN models. [see [18] for a re-
view of attempts]

2.3. Small object detection

For the task at hand, many drones can be quite far away
from a CCTV and thus be quite small relative relative to the
image size. The current prevailing feature extractors usu-
ally down-sample the feature maps to diminish the spatial
redundancy and learn high dimensional features, which un-
avoidably extinguishes the representation of tiny objects.

Cheng et al 2023[19] provide a taxonomy of small
object detection methods, which consists of 6 main ap-
proaches: 1) sample-oriented (data augmentation, etc); 2)
attention-based 3) feature-imitation (enriching the regional
features of small objects) 4) context-modelling 5) scale-
aware (scale-specific detectors, feature fusion) 6) focus and
detect. In this paper we focus on the first branch - data aug-
mentation.

3. Data
We use a ”Real World Object Detection Dataset for

Quadcopter Unmanned Aerial Vehicle Detection”[20]. The
dataset is specifically designed for detection of flying
drones from the ground in real-life circumstances with vary-
ing time of the day, season and landscape backgrounds. The
set contains 51446 train and 5375 (640x480) images and
55539 bounding boxes in PASCAL-VOC format, divided
into train and test sets. See Figure 1.

Figure 1. Example of dataset images with drones

In the training dataset, there are more small objects than
large ones: 41% of objects are small (area < 1024), 36%
are medium (1024 < area < 9216), and 24% are large (area
> 9216) as specified by the COCO challenge (Figures 2, 3).

The training set doesn’t contain negative examples (with-
out drones), but the valid and test sets do. However, the

negative examples in the test set seem to have quite differ-
ent distributions from the positive examples, as they contain
images of interior, faces and those few exterior negative im-
ages there are are taken during a sunny summer day in the
European latitude (see Figure 4).

Figure 2. Heatmap of object (drone) box center locations (x,y) and
height and width of their boxes

Figure 3. Cumulative distribution of box areas for train (left) and
test (right) datasets

Due to infrastructure and training time limitation we ran-
domly select 6592 training images from the train set and
4098 validation images from the test set (2625 or 64% of
which have drones and the rest are negative examples) for
the purpose of our analysis.

We pre-process the dataset by stretching the resulution
to 640x640 and converting to YOLOv9 format.

Figure 4. Negative examples (without drones) in the test set have
quite different features from the positive ones, as the contain im-
ages of interior, faces, and exteriors are sunny summer days

2



4. Methods
4.1. Baseline

For the baseline, we use the YOLOv9 (small) model[21],
which is a state-of-the-art CNN based image detection
model that ”predicts bounding boxes and class probabilities
directly from full images in one evaluation”.

YOLO divides the image into an S × S grid and for each
grid cell predicts B bounding boxes, confidence for those
boxes, and C class probabilities. These predictions are en-
coded as an S × S × (B*5 + C) tensor.

Figure 5. High-level YOLO atchitecture

Then, YOLO uses non-maximal suppression to retain
only the largest prediction, to avoid duplicate predictions
between adjacent cells.

The Original YOLO network architecture has 24 con-
volutional layers followed by 2 fully connected layers (see
Figure 6).

Figure 6. YOLO original architecture

During training, the following loss function is optimized:

λcoord

∑S2

i=0

∑B
j=0 1

obj
i,j

(
(xi − x̂i)

2 + (yi − ŷi)
2

)
+

+λcoord

∑S2

i=0

∑B
j=0 1

obj
i,j

(
(
√
wi −

√
ŵi)

2 +

(
√
hi −

√
ĥi)

2
)

+
∑S2

i=0

∑B
j=0 1

obj
i,j

(
Ci − Ĉi

)2

+

+λnoobj

∑S2

i=0

∑B
j=0 1

noobj
i,j

(
Ci − Ĉi

)2

+

+
∑S2

i=0 1
obj
i,j(pi(c)− p̂i))

2

Where 1obj
i encodes whether any object appears in cell i.

Note that if there is no object in a cell we do not consider
any loss from the bounding box coordinates predicted by
that cell. In this case, there is no ground truth bounding box
so we only penalize the associated probabilities with that
region.

YOLOv5 and higher use a two-stage object detector, and
seperates the model into the input, backbone, neck, and
head sections. The backbone model is a feature extractor
that uses a classification model such as VGG16. The neck
is a feature aggregator that collects feature maps from dif-
fering stages from the backbone model. The head is an ob-
ject detector that reports whether a particular grid has an
object in it but not necessarily what class of object it is.
YOLOv9 introduces a few improvements over previous ver-
sions of YOLO, such as Programmable Gradient Informa-
tion (PGI) and the concept of Reversible function, that aid
in preserving essential data across the network’s depth, en-
suring more reliable gradient generation and, consequently,
bettesr model convergence and performance.

Figure 7. YOLOv5 architecture

Figure 8. FPN and PANet structure of YOLO starting from v5.

Learning rate: Learning rate schedule is as follows: For
the first epoch we set the learning rate to 7∗10−4, then dou-
ble it for the 2nd epoch, triple for the 3rd, and then linearly
decrease it to 6∗10−5 until the last 50th epoch (see the Fig-
ure 9). If we start at a high learning rate our model often
diverges due to unstable gradients.

Optimizer: We use AdamW optimizer that due to mo-
mentum and weight decay to speed-up and stabilize learn-
ing and improve generalization.

3



Figure 9. Learning rate schedule by epoch

Mini-batch size: We used minibatch size of 16 as rec-
ommended by OpenCV [22], which is a good balance be-
tween stability of training and speed in terms of effective
utilization of GPU.

Leveraging of existing code: We utilize existing
YOLOv9 implementation by Ultralytics [23]. We do not
adjust architecture of the model as we explore the data aug-
mentation branch of small object detection field.

4.2. Experiment 1: Higher resolution images for
better small object detection

If as we saw in 2.3 the down-sampling to learn high di-
mensional features leads to extinguishment of the represen-
tation of tiny objects, the logical solution is to increase the
image size so that small objects occupy more pixels in the
image after down-sampling, hopefully improving their rep-
resentation. Moreover, higher resolution can lead to better
small object detection through better spatial context.

The experiment is therefor to increase the image size dur-
ing training from 640x640 to 960x960.

4.3. Experiment 2: Slicing Aided Hyper Inference
and Fine-tuning for Small Object Detection
(SAHI)

Slicing Aided Hyper Inference and Fine-tuning for Small
Object Detection (SAHI) [24] is a slicing aided inference
and fine-tuning pipeline for small object detection.

In finetuning, the dataset is augmented by extracting
patches from the images and resizing them to a larger size.
During inference, image is divided into smaller patches and
predictions are generated from larger resized versions of
these patches. Then these predictions are converted back
into original image coordinates. Optionally, predictions
from full inference can also be added.

Due to time and compute resources limitation we use
only the inference option of SAHI, slicing images 5x5.

We utilize SAHI implementation provided by the authors
of the original paper [25], although the code is quite buggy
and poorly documented.

Figure 10. SAHI: Slicing aided fine-tuning

Figure 11. SAHI: Slicing aided hyper inference

5. Results
5.1. Metrics

We use F1 score and mAP as our main performance
metrics, defined as follows:

F1 = 2
precision ∗ recall
precision+ recall

where
precision =

TP

TP + FP

recall =
TP

TP + FN

mAP =
1

C

∑
C

AP

mAP =
∑n−1

k=0 (Recalls(k)−Recalls(k + 1)) ∗ Precisions(k)
mAP is a weighted sum of precisions at each confidence
threshold where the weight is the increase in recall. In our
case there is only 1 class (drone), so mAP = APdrone

5.2. Qualitative analysis of errors

We have reviewed errors of the baseline model to con-
firm that most of them come from failing to recognize
small drones or mistaking small objects other than drones
as drones (See Figure 12 and Figure 13). It confirmed our
hypothesis that small object might indeed be a problem for
the baseline.

4



Figure 12. Examples of baseline model errors:
left: one drone recognized as two (false positive)
right: two drones recognized as one (false negative)

Figure 13. Examples of baseline model false positive mistakes:
left: small street lights mistakenly recognized as a drone
right: a hole in the ground mistakenly recognized as a drone

5.3. Comparison of models

We see that the Experiment 1 of increasing resolution of
the image from 640x640 to 960x960 during training leads
to worse results, but Experiment 2 of slicing images into
5x5 non-overlapping cells actually improve the results.

Method mAP@50

Baseline 0.971
Baseline higher img size 0.966
Baseline + SAHI 0.975

Table 1. mAP Results

Figure 14. F1-confidence curves of the SAHI (left) and Baseline
(right) methods

Figure 15. mAP50 over 50 epochs

Figure 16. Precision over 50 epochs

Figure 17. Recall over 50 epochs

5.4. Discussion of results

Failure of experiment 1 (Scaling the image during train-
ing 1.5x): If the model is trained on larger images but eval-
uated on the original resolution (640x640), there may be
a mismatch in the feature scales and receptive fields that
the model has learned versus what it needs to apply dur-
ing inference. This discrepancy can lead to suboptimal per-
formance as the model might not generalize well from the
higher resolution training data to the lower resolution infer-
ence data.

Another reason is that YOLO models use predefined an-
chor boxes and feature maps at different scales to detect

5



objects. When the input image size is scaled up signifi-
cantly, the predefined anchor boxes and feature maps might
not align well with the new object sizes and positions. This
misalignment can reduce the accuracy of object localization
and classification since the anchor boxes and feature maps
are no longer optimally tuned for the new image scale.

Relative success of Experiment 2 (SAHI): Why the in-
crease in performance of the experiment over the baseline is
not that significant, it may come from better feature learning
trough enchanced representation of small drones, to which
the dataset is skewed.

6. Conclusion and further work
We have explored implementation of YOLOv9 model

to the increasingly important task of drone detection. The
baseline model provided quite good performance out-of-
the-box. This might be due to the neck that is implemented
in YOLO models starting from v5, which is a feature aggre-
gator that collects feature maps from differing stages from
the backbone feature extractor model, what allows it to per-
form well at detecting objects of different sizes, whereas
data augmentation methods we explored focus primarily on
small objects at the expense of larger ones.

The experiment of data augmentation in the form of in-
creasing image size during training to actually worse re-
sults, possibly due to mismatch between train and test feture
maps and change in anchor box size and its respective loss
due to scaling.

Applying Slicing Aided Hyper Inference to the image
slightly improved performance over the baseline, possibly
because of better feature learning trough enchanced repre-
sentation of small drones, to which the dataset is skewed.

Further work might might include pre-training rather
than pure inference using the SAHI method, as well as
adress the false positive issue by exploring scale-aware fea-
ture fusion models that control information that deep layers
deliver to shallow layers, for adapting FPN to small object
detection.

References
[1] “Two major saudi oil installations hit by drone

strike, and u.s. blames iran,” New York Times,
https://www.nytimes.com/2019/09/14/world/middleeast/saudi-
arabia-refineries-drone-attack.html.

[2] “Burkina faso: Drone strikes on civilians ap-
parent war crimes,” Human Rights Watch,
https://www.hrw.org/news/2024/01/25/burkina-faso-drone-
strikes-civilians-apparent-war-crimes.

[3] “The refinery in slavyansk-on-kuban partially sus-
pended operations after a drone attack,” RIA Novosti,
https://ria.ru/20240427/npz-1942684243.html.

[4] “Russia oil refining curbed by flood
as drone damage persists,” Bloomberg,

https://www.bloomberg.com/news/articles/2024-04-
22/russian-oil-refining-hampered-by-floods-as-drone-
damage-persists,.

[5] “Almost 50 jets fail to land in moscow, redirected
to other airports, says aviation agency,” TASS,
https://tass.com/economy/1662831.

[6] “Ukrainian drones kill six, injure 35 in rus-
sia’s belgorod region, governor says,” Reuters,
https://www.reuters.com/world/europe/ukrainian-drones-
kill-six-injures-35-russias-belgorod-region-governor-says-
2024-05-06/,.

[7] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan, “Object detection with discriminatively trained part-
based models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Advances in Neural Information Processing Sys-
tems (F. Pereira, C. Burges, L. Bottou, and K. Weinberger,
eds.), vol. 25, Curran Associates, Inc., 2012.

[9] J. Uijlings, K. Sande, T. Gevers, and A. Smeulders, “Selec-
tive search for object recognition,” International Journal of
Computer Vision, vol. 104, pp. 154–171, 09 2013.

[10] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and
A. W. M. Smeulders, “Selective search for object recogni-
tion,” International Journal of Computer Vision, vol. 104,
no. 2, pp. 154–171, 2013.

[11] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Con-
ference on Computer Vision (ICCV), pp. 1440–1448, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid
pooling in deep convolutional networks for visual recogni-
tion,” in Computer Vision – ECCV 2014 (D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, eds.), (Cham), pp. 346–361,
Springer International Publishing, 2014.

[13] N. Hao and K. Rajakani, “3d object detection from point
cloud based on deep learning,” Wirel. Commun. Mob. Com-
put., vol. 2022, jan 2022.

[14] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and
S. J. Belongie, “Feature pyramid networks for object detec-
tion,” 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 936–944, 2016.

[15] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object detection,”
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 779–788, 2015.

[16] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-
Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detector,”
in European Conference on Computer Vision, 2015.

[17] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov,
and S. Zagoruyko, “End-to-end object detection with trans-
formers,” ArXiv, vol. abs/2005.12872, 2020.

[18] R. A. Zitar, M. A. Al-Betar, M. Ryalat, and S. Kassaymeh,
“A review of uav visual detection and tracking methods,”
ArXiv, vol. abs/2306.05089, 2023.

6



[19] G. Cheng, X. Yuan, X. Yao, K. Yan, Q. Zeng, X. Xie, and
J. Han, “Towards large-scale small object detection: Sur-
vey and benchmarks,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, p. 1–20, 2023.

[20] M. Pawełczyk and M. Wojtyra, “Real world object detection
dataset for quadcopter unmanned aerial vehicle detection,”
IEEE Access, vol. 8, pp. 174394–174409, 2020.

[21] C.-Y. Wang, I.-H. Yeh, and H. Liao, “Yolov9: Learning what
you want to learn using programmable gradient informa-
tion,” ArXiv, vol. abs/2402.13616, 2024.

[22] “Learn opencv blog: Fine-tuning yolov9 models on custom
dataset,”

[23] “Ultralytics yolov9, url=https://docs.ultralytics.com/models/yolov9/usage-
examples,”

[24] F. C. Akyon, S. Onur Altinuc, and A. Temizel, “Slicing aided
hyper inference and fine-tuning for small object detection,”
in 2022 IEEE International Conference on Image Processing
(ICIP), IEEE, Oct. 2022.

[25] “Github of the authors of the sahi method,”

7


