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Abstract

Our project investigates cutting-edge methods in neural style
transfer, analyzing the strengths and weaknesses of several ap-
proaches. We found that fine-tuning Dreambooth with semantic
content capture yielded promising results in preserving both style
and content. However, introducing source image residuals dur-
ing diffusion, while maintaining composition, posed challenges
in achieving high-quality outcomes due to limitations in current
diffusion models. Notably, direct neural style transfer exhib-
ited shortcomings in fidelity and adaptability, particularly with
complex style-image combinations. Still, Dreambooth fine-tuning
with semantic content capture emerged as the top-performing al-
gorithm, offering superior control over style transfer and con-
tent preservation by learning strong semantic priors from image-
caption pairs. Future research includes enhancing diffusion mod-
els with more advanced techniques for integrating source image
information, exploring language-vision model integration for bet-
ter style control, and refining evaluation metrics to be better tai-
lored to style transfer tasks.

1. Introduction
In computer vision, neural style transfer is a powerful tech-

nique for transforming images by combining one image’s con-
tent with the artistic style of another. This process is valuable for
various applications, such as digital art, photo editing, and aug-
mented reality. However, existing approaches have limitations,
particularly with fidelity and flexibility. Right now, there are two
primary paradigms for style transfer.

• The first paradigm involves directly combining textures and
colors of a style image with content of another, usually with
image convolution. This naive approach, while straightfor-
ward, often fails to achieve high-fidelity results [3].

• The second paradigm uses large, pre-trained models, such
as Stable Diffusion. While these models can generate much
more impressive results, they are constrained by the styles
they have been explicitly trained on, and they offer limited
usage control [6].

Our project aims to develop a high-fidelity style transfer
method that overcomes the limitations of the above paradigms.
We propose a novel approach that uses a content image and
a small set of style images to learn and apply styles more ef-
fectively. Unlike the first paradigm, which focuses on features
from a single image, our method leverages features from multiple

images to capture a deeper and more nuanced understanding of
style. Additionally, unlike the second paradigm, our approach al-
lows transfer of novel, untrained styles with better precision and
control.

Specifically, the input to our system is a single content image
and a set of 5 style images. The output is a transformed (styl-
ized) image that keeps the content image while incorporating the
learned style from the style set. In our paper, we test out this
method using two different techniques:

• Deep Style Transfer with Semantic Content Capture: We
first train Stable Difussion using sets of images from differ-
ent styles using the Dreambooth finetuning technique. We
then use GPT-4V to caption images, combining these cap-
tions with style tokens. Our hypothesis is that this approach
will yield better results than existing baseline methods.

• Deep Style Transfer with Source Image Residuals: In order
to incorporate more visual content from the source image we
introduce latent information from the source image during
the diffusion process. This latent information is generated by
encoding the source image with the variational autoencoder
module of the latent diffusion model. We hypothesize that
this technique will better preserve content and composition
of the original image compared to methods relying only on
captions.

By exploring these techniques, we hope to achieve style trans-
fer with higher fidelity and push the envelope for what’s possible
in AI-driven image transformation.

2. Related Work

2.1. Image Generation & Style Transfer

Gatys et al. [3] illustrate the first paradigm of neural artistic
style transfer. They separate the style and content of images with
a deep CNN trained for object recognition. By analyzing the ac-
tivations of the CNN’s filters at different layers, they extract fea-
tures representing image content (higher layers) and style (texture
information across layers). They then use this separation to create
new images by combining the content of one photograph with the
style of famous paintings. This work is the first to achieve content
and style separation in complex images and allows for controlling
the balance between content and style by adjusting weights in the
loss function). However, it fails to achieve high-fidelity results.

Johnson et al. [4] illustrates an attempt to create more visually
appealing style transfer results. They build on Gatys’s approach
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by introducing a perceptual loss function. This loss function re-
lies on features extracted from pre-trained CNNs, and helps to
improve image similarity between content and stylized images.
However, they lack the improvements in content preservation and
style control that later methods like Ruiz et al. [7] honed.

Rombach et al. [6] illustrate the second paradigm with la-
tent diffusion, the architecture behind the Stable Diffusion model.
While diffusion models traditionally operate in the pixel space,
Rombach et al. notes that the pixel space is extremely high
dimensional, meaning that training diffusion models is pro-
hibitively expensive, taking hundreds of GPU days. Latent dif-
fusion expedites diffusion model training by introducing a com-
pression step where images are effectively downsampled using
a variational auto-encoder. Unlike prior attempts at latent diffu-
sion, they use a latent space that preserves the spatial information
of image. This allows them to use a Unet architecture for the dif-
fusion objective, which is advantageous since Unets can make use
of spatial inductive biases for denoising, which are absent from
unstructured 1-dimensional latent spaces. However, methods like
Stable Diffusion do not enable fine-grained control over a gener-
ated image.

Casanova et al. [1] propose an instance-conditioned GAN (IC-
GAN) to generate realistic variations of a target instance. Unlike
prior methods, IC-GAN focuses on individual data points and
their neighbors, which allows it to create images resembling the
target distribution. This approach leads to subjectively better im-
age generation on datasets like ImageNet, but it still struggles
with replicating unique subjects and underperforms on preserv-
ing subject identity.

Gal et al. [2] propose Textual Inversion which allows users
to submit concept images of a subject or style to preserve, and
represents this concept with a ”pseudo-word” within the text-
embedding space of a pre-trained text-to-image model. Then,
they attempt to optimize the embedding vector linked to the
”pseudo-word” and minimize the loss between the generated im-
ages and the concept images, thus personalizing image genera-
tion without retraining the entire model. However, this approach
does not perfectly capture details of the concept that are key to
a human observer (e.g., shape or texture) and might not preserve
subject identity across generated images.

Instead, Ruiz et al. [7] propose a new approach for image
style transfer by customizing text-to-image diffusion models and
expanding the language-vision dictionary to link words to par-
ticular subjects, so that model outputs preserve key features of
the subject while contextualizing it in novel scenes. They aim to
learn strong semantic priors from image-caption pairs to synthe-
size new outputs with specific subjects preserved across different
contexts. By representing subjects with unique identifiers in the
input prompt (followed by the subject’s class name), model out-
puts can illustrate the semantic priors of the subject’s class, while
still preserving the subject itself. Next, they fine-tune a model
on a small set of subject images. Finally, they compute an au-
togenous, class-specific, prior preservation loss, which is a loss
function that helps to mitigate language drift and ensure diverse
output scenes.

2.2. Evaluation Metrics

To measure the quality of our stylized images, Sanakoyeu et
al. [8] propose the ”deception rate,” the fraction of stylized im-
ages that an artist classification network has assigned to the artist

whose artworks are the style images. However, the deception rate
has some key drawbacks: it requires training an artwork classifier
network for every artist whom our style images are from, which
is a problem if is that our style images come from a variety of
artists. Plus, it doesn’t account for content preservation.

Ledig et al. [5] introduce VGG (Visual Geometry Group) loss
as an alternative to pixel-wise loss to measure similarity between
images. VGG loss uses a pre-trained image recognition network
(such as VGG itself) to analyze features in different image lay-
ers, focusing on human-perceived aspects like shapes and objects.
However, VGG loss misses complex images details like textures
that are important to human perception.

Zhang et al. [10] show LPIPS (Learned Perceptual Image
Patch Similarity) as an improved way to measure content preser-
vation. They use deep features, extracted from deep CNNs
trained for image recognition, to measure perceptual similar-
ity as a proxy for content preservation. Perceptual similarity is
how ”semantically” similar two images appear to the human eye,
which LPIPS quantifies by analyzing deep features between im-
age patches. LPIPS outperforms other image comparison met-
rics like VGG loss when evaluated with large dataset of human-
annotated perceptual similarity judgments.

Finally, Wright et al. [9] propose a more state-of-the-art met-
ric, ArtFID, to considers two key aspects of neural style trans-
fer: content preservation and style matching. First, they compute
the distance between a content image and a stylized image using
LPIPS, taking the mean distance for a batch of images. Next,
style matching is how well the feature distribution of the style
images match the stylized images. This is measured by training
a large neural network classifier to learn image representations
from a dataset of labeled artworks (artist and style). To quantify
how well style is transferred, Wright et al. computes the distance
between a style image’s and a stylized image’s feature distribu-
tions using Frechet distance. The final ArtFID score combines
the content preservation and style matching measures into a sin-
gle value.

3. Methods
With our selected of content and style images (detailed in Sec-

tion 4: Dataset & Features), we conduct the following experi-
ments:

3.1. Experiment 0: Gatys et. al’s Neural Style Transfer

We implement neural style transfer from Gatys et. al’s semi-
nal ”Neural Style Transfer” paper as our baseline. This approach
works by directly optimizing the pixel values of a generated im-
age, such that the low level features are close to a style image and
the high level features of the image are close to a content image.
Like the original paper, we use VGG19 as our feature extractor
using early layer for low level features and late layers for higher
level features. We perform the optimization with gradient descent
with Adam using a mean squared error loss between the sample
and target features.

3.2. Experiment 1: Deep Style Transfer with Semantic
Content Capture

Dreambooth finetuning allows for the creation of high-fidelity
stylistic themes. These learned themes can be used for the style
transfer task. However, applying style transfer to an image re-
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quires some way of representing the image to the tuned genera-
tor so that the new style can be applied. Thus we use semantic
content capture where we leverage a vision-language model to
describe the image, so that it can be recreated by our diffusion
model. For captioning, we use GPT4-v with the prompt ”please
provide a very short caption of the image.”

Our hypothesis is that this approach will yield better transfer
results than the baseline.

3.3. Experiment 2: Deep Style Transfer with Source
Image Residuals

Captioning enables the transfer of an image’s subject to a new
style, though it may not retain fine-grained details such as subject
positioning within the composition. To address this, we suggest
using the content image — the subject we aim to style transfer to
— as the basis for our latents during the diffusion step, ensuring
preservation of visual and compositional content. Our goal is to
utilize the denoiser’s ability to generate an image in a specific
style, guided by the latent representation of the style image.

Our initial attempt involved forward diffusion before the back-
ward pass, yet the erasure of image content by forward diffu-
sion and the reliance of the backward pass on prompt guidance
made this ineffective. Unfortunately, due to implementation con-
straints, executing a partial forward and backward diffusion pass
was unfeasible.

In our second approach, we treated the content image as the
noisy latent seed. However, this also failed to produce the de-
sired outcome. The denoising Unet module expects pure noise at
the initial latent, leading to instability if the input latent does not
match its expected norm. Although scaling the input latent helps,
it results in a blurred version of the source image, rather than a
novel image.

To overcome this, we proposed feeding the denoiser a mixture
of noise and source image latents. Yet, this approach also fell
short, as the Unet denoiser either returned a blurred source im-
age, or an unrelated image based on the noise-to-source latents
ratio. The denoiser’s failure highlights the need for a method that
iteratively generates a novel image while favoring content similar
to a source image. Thus, we introduce a new technique: diffusion
with source image residuals.

Diffusion with source image residuals works by introducing
source image latents to the diffusion process at multiple timesteps
throughout the process. Rather than introducing the source latents
to the seed noise of the diffusion process, where they will either
be ignored or dominate the diffusion such that no novel content
can get added to the image, we add a small ”residual” at multi-
ple early timesteps to gently influence the diffusion process. Just
adding the source latent residual alone will lead to loss of noise
too early in the diffusion process, leading to the same output as
using just source latents as input noise. In order to smooth out the
diffusion process, we will also add a small amount of additional
noise between denoising steps. Since the Unet generates samples
by removing noise, adding additional noise during the diffusion
process is necessary to increase the expressiveness of the Unet for
a better image.

Generally for diffusion models, the latent input to the next time
step, lnext, is just the predicted latent matrix from the previous
timestep lpred. Our modification to the diffusion process can be

formally defined as:

lnext = (1− a− b)lpred + a× lsrc(
||lpred||F
||lsrc||F

) + b× ϵ(
||lpred||F
||ϵ||F

)

... with epsilon representing the added noise, lsrc being the latent
representation of the content image, and the Frobenius norm be-
ing used to fix the scale of the latents thus avoiding instability in
the diffusion process. Our weight factors a and b for source im-
age residual and noise are generated with exponential decay over
the diffusion timesteps. Namely:

a = astart × exp(α1
−t

timesteps
)

b = bstart × exp(α2
−t

timesteps
)

astart, bstart control the impact of these factors weight at the
start of the denoising process, while the α values control how
fast these elements decay, t representing the current timestep of
diffusion. Depending on (α1, α2), the effective source residual
and additive noise quickly approach zero, allowing for later steps
of the diffusion process to function as standard latent diffusion
steps. We note the observed behavior of this technique is heavily
dependent on these hyperparameters.

As with Experiment 1, we use generated captions with ap-
pended and prepended style tokens produced from Dreambooth
finetuning runs when generating samples.

3.4. Experiment 3: Compositional Style Transfer

We attempted to replicate Experiment 1 using multiple learned
style tokens. Empirically, the model completely fails to incorpo-
rate elements from multiple learned styles, revealing a limitation
in the finetuning method we employed. Due to extremely poor
empirical results, we did not formally evaluate this approach any
further.

3.5. Evaluation

We use ArtFID to evaluate performance of all three experi-
ments:

ArtFID(Xg, Xc, Xs) =

(1 + 1
N

∑N
i=1 d(X

(i)
c , X

(i)
g )) · (1 + FID(Xs, Xg)

ArtFID combines two aspects of style transfer, where
d(X

(i)
c , X

(i)
g ) measures content preservation (via taking the

LPIPS metric between each content image and stylized image),
and FID(Xs, Xg) represents style matching (via taking the
Frechet distance between the feature distributions of the style im-
ages Xs and the stylized images Xg).

4. Dataset & Features
4.1. Selected Content Images

We select the five images displayed in Table 1 as our desig-
nated content to test various style transfer methods. All selected
content images are in the public domain. Criteria for selection
include:

• Variety of mediums: Images include photography, painting,
animation, and a woodblock print.
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• Variety of subjects: Subjects include animals, people, and
environments.

(And as you can see, we like the color blue, a lot.)

4.2. Selected Styles

We turned to HuggingFace datasets to find comprehensive im-
age sets that represent unique art styles. The four styles chosen
for this study are listed in Table 2: Impressionism, Chinese Land-
scape, Basquiat, and Skribbl (yes, you read that right). We chose
these styles because they represent a broad spectrum of artistic
expressions, so they form a robust set of styles to test our style
transfer techniques.

5. Experiments, Results, & Discussion
5.1. Experiments

For Experiment 0 (our baseline), we used an Adam optimizer
with a learning rate of 0.03 to update the generated image, be-
cause these hyperparameters allowed us to balance convergence
speed and image quality. Image results are in Table 3.

For Experiment 1, we used a small learning rate of 5e-06, a
batch size of 2 with gradient accumulation steps of 2, as well as
precision training with gradient checkpointing to lower memory
usage. The learning rate and batch size were selected based on
task complexity and hardware constraints, and we used of mixed
precision training and gradient checkpointing to optimize mem-
ory efficiency. Image results are in Table 4.

For Experiment 2, we used the same training runs as Exper-
iment 1, only updating the inference method. For our hyperpa-
rameters, we used astart = 0.018 and bstart = 0.009, which are
the starting weights for source image residual and noise compo-
nents respectively. For decay factors, we used α1 = 6.5 and
α2 = 4.5, so that the added image residual decays faster than the
added noise. Last but not least, image results are in Table 5.

5.2. Results

The following table contains our ArtFID scores for each style
we transferred. Before each style transfer, we first computed the
average style image from all training images of that style. After
transfer, we used each average style image as a point of refer-
ence and compared content images against their corresponding
stylized images.

Experiment → 0 1 2
Style ↓

Impressionism 328.05 360.6 354.14
Chinese Landscape 282.35 391.62 306.3

Basquiat 615.65 511.55 463.37
Skribbl 481.89 599.64 520.39

5.3. Discussion

5.3.1 Experiment 0

Our results with the neural style transfer baseline show clear
weaknesses with the technique. The output images for the most
part represent somewhat naive superpositions of the content and
style images. In the case where the low level features of an image
are not homogenous, the method fails completely. For instance,
for the Skribbl art style, there only exist low-level features to

transfer for a small part of the image, which leads to an awkward
superposition. For images with richer low-level details though,
the neural style transfer results look much more satisfying.

5.3.2 Experiments 1 and 2

We observe clear failure modes for these experiments too. Some
learned styles could be transferred to some content, but not other
content. For instance, for Experiment 1 the generation for sheep
(Content Image 1) in the learned Basquiat (<BAS>) style shows
no sign of any influence from Basquiat. This is in spite of the
qualitative observation the trained model is quite capable of cre-
ating Basquiat-style images. When prompted with ”<BAS>
art” the model produced the following image which is very high-
fidelity in terms of style as shown in fig 1. This speaks to the
strengths and weaknesses of the Dreambooth finetuning method.
The method works by modifying how the Stable Diffusion mod-
els responds to certain prompts, namely those with the special
token associated with the training theme. However, some input
prompts will be too dissimilar to the training prompts to elicit the
learned behaviour from the diffusion model even when the spe-
cial token is included in the prompt. Further work includes mod-
ifying the Dreambooth training regime such the output model is
more sensitive to the learned special token across inputs prompts.

On the positive side, we observe that incorporating source
image latent residuals during the diffusion process successfully
maintains source image composition while allowing novel image
generation in a new style. We note that some variation in the
output image is the result of a random crop transform we used
when encoding the content image as latents. For instance, gen-
erated variants based on the Studio Ghibli content image (Con-
tent Image 5) often only include one of the subjects — the boy
facing the window or the girl facing us — which is a result of
this random crop transform. Replacing this random crop with an
interpolation-based re-scaling transform would fix this issue for
square input images.

Despite the success in maintaining image composition, the
residual-controlled generations are generally inferior in quality
to the just-text samples. They are a bit blurry, have less detail,
and often do not achieve the target style. Since the samples gen-
erated tend to be a bit flat, the method does work well for repro-
ducing the Skribbl style. While these issues could potentially be
fixed by finding better hyperparameters for the residual and noise
magnitude schedules, the decrease in sample quality seems like a
reasonable result as we are tampering with the diffusion process.
Generating quality samples with this method would likely require
an additional trained component, since taking a weighted aver-
age between predicted and content latents is a somewhat naive
approach to controlling generation by visual features. One direc-
tion for improving this method would to be to introduce a learned
model which can combine these latent matrices intelligently. This
model could then be trained with a reward model that represents
a pseudo-label for image quality.

Another issue with this approach is the nature of the latents
produced by the VAE. These latents are more of a condensed ver-
sion of the image pixel values rather than a high-level seman-
tic representation of the image. For this reason, introducing the
residual for the content latent has the effect of introducing low-
level features from the source image, rather than the high-level
semantic features we desire. Introducing these latents therefore
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Content Image 1 Content Image 2 Content Image 3 Content Image 4 Content Image 5

Table 1: Our dazzlingly designated content images. Sourced linked in labels.

Style Name Example Images

Impressionism

Chinese Landscape

Basquiat

Skribbl

Table 2: Our stylishly selected styles. Sources are linked in labels.

consigns the generated image to have the same colors palette as
the original image, which is not desired for the style transfer task.
Directly introducing high-level features and not the low level fea-
tures is not possible with the latent representations from the Sta-
ble Diffusion VAE. We do essentially capture these high level fea-
tures in the semantic capture setup where these desired features
are represented with a textual prompt.

6. Conclusion
Our project explores state-of-the-art techniques for neural

style transfer, highlighting strengths and weaknesses of each ap-
proach. Fine-tuning Dreambooth with semantic content capture
demonstrated promising results in preserving both style and con-
tent; language-vision models guide the generation process effec-
tively. However, the introduction of source image residuals dur-
ing diffusion, while maintaining composition, reveals challenges
in achieving high-quality results due to inherent limitations in
current diffusion models. Notably, the direct application of neu-
ral style transfer showcases limitations in fidelity and adaptability,
particularly evident in more complex style-image combinations.

Still, fine-tuning Dreambooth with semantic content capture
emerges as the highest-performing algorithm, offering better con-
trol over style transfer and preservation of content. This success

can be attributed to the model’s ability to learn strong semantic
priors from image-caption pairs, enabling the synthesis of out-
puts with specific subjects preserved across different contexts.
The challenges encountered with other techniques, such as dif-
fusion with source image residuals, underscore the importance of
further research to address limitations in current methodologies.

For future work, exploring enhancements to diffusion mod-
els, such as incorporating more sophisticated methods for incor-
porating source image information, could lead to significant im-
provements in style transfer fidelity. Additionally, investigating
the integration of language-vision models with diffusion-based
approaches may offer new avenues for enhancing content preser-
vation and style control. Moreover, continued research into eval-
uation metrics tailored for style transfer tasks could provide more
nuanced insights into model performance, guiding the develop-
ment of more effective algorithms. Overall, the report lays a
solid foundation for future research directions in AI-driven im-
age transformation, emphasizing the need for interdisciplinary
approaches to tackle complex challenges in this domain.
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Content Image

Table 3: Baseline image results. As you can see, content and style images are basically just stacked on top of each other.
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Style Impressionism Chinese Landscape Basquiat Skribbl

Content Image

Table 4: Finetuned model image results. Note that style images are now the average image of all style images, since we are now training
on multiple style images.
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Style Impressionism Chinese Landscape Basquiat Skribbl

Content Image

Table 5: Reresolved model image results. Similar to the table of finetuned images, note that style images are now the average image of
all style images, since we are now training on multiple style images.
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Figure 1: This sample — generated with prompt ”<BAS> art”
— shows high fidelity to the Basquiat style.
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