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Abstract

In this project, we compare the effectiveness of sev-
eral machine learning models such as MLPs, ConvNets,
ResNets, and more to accomplish tasks that are regularly
encountered by autonomous vehicles on the road. In partic-
ular, we evaluate the models on classification (determining
whether a road image contains a car) and object detection
(determining the location of a car within an image). Both of
these tasks are crucial for any autonomous driving system,
and it’s We will evaluate the models’ performances on the
validation set against each other, and select the best one to
run on the test set. We’ll also evaluate the efficacy of fine-
tuning existing models like ResNet50, VGGNet, and AlexNet
to our dataset and compare them to the various models we
built from scratch. We obtain our training, validation, and
testing data from a wide range of image datasets including
the Vehicle Detection Image Set, Car Object Detection, and
Coco. Our project provides critical insight into the applica-
bility of various models in autonomous vehicles, especially
in such a field where safety is crucial.

1. Introduction
Image recognition, especially in the domain of self-

driving cars, plays a pivotal role in various sectors ranging
from automotive safety to autonomous driving systems. As
the self-driving vehicle industry continues to evolve, the de-
mand for accurate and efficient methods for identifying and
classifying vehicles from images becomes increasingly cru-
cial. The ability to segment and identify cars and car-related
objects in an image holds immense value.

In this paper, we explore image recognition for self-
driving cars. Our primary objective is to explore and com-
pare the performance of various deep learning architectures
such as linear classifiers, fully connected networks, convo-
lutional networks (ConvNets), residual networks (ResNets),
and more in accurately classifying and boxing road images.
We aim to provide statistics about the performance and par-
ticular attributes of different models for this task. For in-
stance, we are curious about what different models pay at-

tention to when identifying a car out of an image—as could
be analyzed with a heat map.

Through this comparative analysis, we address critical
questions about the application of different deep-learning
architectures in self-driving vehicles.

In the following sections, we will delve into the meth-
ods employed, data used, experimental setups, and results
obtained from our model training, culminating in a compre-
hensive evaluation of the different architectures.

1.1. Problem Statement

We’re currently focused on analyzing how different
models perform tasks related to self-driving cars. Specifi-
cally, we want to compare how different deep learning de-
signs handle image classification and object detection tasks.

2. Related Works
There has been significant progress in the field of image

recognition for self-driving cars.
In 2021, Rao et al. achieved 86% accuracy in recog-

nizing the make and model of a car [1]. They utilized
a Single Shot Detector (SSD)-YOLOV5 for car recogni-
tion and a deep residual network (ResNet) for classification
purposes. They also employed two different classification
models: VGG16 and ResNet34. VGG16 is a CNN made up
of convolution layers with filter sizes of 3× 3 with stride 1
and a max-pooling layer of 2× 2 with stride 2. ResNet34 is
a 34-layer convolutional neural network that uses residual
blocks with skip connections. In both models, the ReLU
activation function is used in all hidden layers and the final
result is followed by a softmax activation function to cate-
gorize. Both models were optimzied using SGD. Overall,
VGG16 gave a 71% test accuracy and ResNet34 was 86%.

A year later, in 2022, another IEEE paper published by
Kumar et al. combined neural networks and cost-effective
cameras to build a self-driving car prototype [2]. Their pro-
totype successfully recognized lanes, traffic signals, and ob-
structions along with implementation of trajectory planning
and steering control. In their project, the robot contained
a Raspberry Pi as the brain, a Raspberry Pi camera, and a
Motor driver. An Image Folder with images collected by the
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camera named as per the timestamp and a Log File of the
steering angle values are used to train the model. The model
is then trained by a Convolutional 2D layer, Flatten layer,
Dense layer with the Adam method for optimization. The
end result of their project was a robot that could drive and
function on its own without any human input. It was able to
find its own path on the road (a small road built by the re-
searchers). Additionally, it was able to detect traffic signals
and other barriers and act accordingly. For our project, we
similarly want to examine the applications of advancements
in image recognition in improving self-driving cars.

In 2023, Khan et al. analyzed two state-of-the-art ob-
ject detection methods: You Only Look Once (YOLO) and
Faster Region CNN (Faster R-CNN) [3]. Khan et al. created
a hybrid model combining the boundary box selection capa-
bilities of YOLO with the region of interest (RoI) pooling
from Faster R-CNN resulting in improved segmentation and
classification accuracy. The research compared 2 models of
YOLO (v5 and v7), the R-CNN, and the hybrid approach
based on two metrics mean average precision (mAP) and
inference time. The proposed hybrid model achieves the
highest mAP values compared to all other models when the
inference time is between 4 ms and 44 ms. The research
shows that combining the strengths of different models can
be very effective in some tasks.

Similarly, we wish to similarly analyze an array of dif-
ferent models and point out the strengths and weaknesses
of models to eventually build a fast and accurate model or
combination of models. Though many of the models dis-
cussed above seem to have relatively high accuracies (e.g.
86%), in the context of self driving cars, this might not be
enough. If our vehicles only correctly identified other cars
86% of the time, this still leaves much room for error, and
this error can be incredibly harmful. Clearly, there is still
much room for improvement in this regard. Therefore, our
project aims to close this gap by taking state-of-the-art mod-
els such as the ones mentioned above, and determine which
combination of models an give the highest accuracy.

2.1. Project Targets

For our project milestone, our goal was to explore the
methods discussed in class for image classification. To do
this, we utilize the Vehicle Detection Image Set (VDIS) [4].
Our aim for this milestone is to evaluate the following mod-
els on our data-set: linear classifiers, fully-connected net-
works, and convolutional neural networks.

We also intend to advance to the more complex task
of object detection within an image—something crucial
for self-driving cars to do in real-time. To do so, we’ll
use several models like AlexNet, ResNet, and VGGNet
as backbones and fine tune them to our object detection
task[5, 6, 7]. We would also like to try our hand at train-
ing our own object detection model and comparing our re-

sults with these fine-tuned models. We’ll train our detection
models on a combination of the Coco and Car Object De-
tection (COD) datasets [8, 9].

3. Methods

3.1. Image Classification

In the first part of our project we compared the efficacy
of different classifier models on the Vehicle Detection Im-
age Set (VDIS) [4]. We first implemented different mod-
els studied in class (Linear Softmax, Fully-Connected, and
Convolutional Network). We trained the models to detect
whether an image contains a car. We performed a train-val-
test split of 60%, 5%, 35% on the dataset. Our goal was
to develop models that achieved near-perfect performance
on the dataset, as the field of self-driving cars demands ex-
tremely high accuracy. Since we are working with a binary
classifier we expect even simple models to have relatively
high accuracy.

Our linear model flattened the inputs and performed a
single matrix multiplication (with a (64×64×3)×2 matrix),
then a softmax operation. For our optimization we used the
Adam optimizer with 1× 10−3 learning rate.

Our fully-connected model flattened the inputs,
then passed it through three hidden layers of sizes
5000, 10000, 200. At each layer before the output, we
perform a Batchnorm and a ReLU after the affine operation.
We used the same optimizer for this model.

Our convolutional model leverages 6 convolutions, each
followed by a batchnorm and a ReLU. After every other
convolution, we add a 2 × 2 maxpool operation. Our first
convolution uses a 5 × 5 kernel, while all others use 3 × 3
kernels. They all have stride 1 and padded so that the di-
mensions are unchanged. Our first two convolutions both
have 16 output channels, our second two have 32 output
channels, and our final two have 64 output channels. Fol-
lowing our convolutional layers, we flatten the output and
pass it through two hidden layers of 1000 neurons each, tak-
ing Batchnorm and ReLU after each hidden layer. We once
again used the Adam optimizer.

We trained the models until their training accuracy
plateaued (60 batch iterations for linear and fully connected,
and 100 for convolutional).

Additionally, we compared the accuracies of pre-trained
models we learned about in class (Adam, VGG-16 and
ResNet-50). We altered the final layers of the model to out-
put a binary class selection and trained the models using
SGD + Momentum to fine-tune the class selection in our
data set. We also transformed all images to be 224x224 so
that the pre-trained models could work correctly.

AlexNet [5] is a simple convolutional neural network and
was one of the first successful image classification architec-
tures to be trained on GPU. VGG-16 [7] is a newer and more
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robust convolutional neural network architecture. ResNet
50 [6]is a convolutional network that makes the use of resid-
ual connections to ease the training of deeper networks. All
these models have been pre-trained on millions of images
and only their last layer has been changed to adapt to the
new data-set. In particular, we loaded the pre-trained mod-
els directly from the Pytorch library [10].

3.2. Object Detection

For the bulk of our project, we expanded beyond a sim-
ple binary classifier and compared the ability of models to
detect desired objects. Since we are mostly concerned with
the usage of AI in the context of self-driving cars, we tested
the ability of models to properly detect where cars are in a
given image.

Our dataset consisted of everyday road images: some
with cars, some without cars. Each image was paired
with bounded box coordinates: (xmin, ymin, xmax, ymax).
For images without cars, these coordinates defaulted to
(0, 0, 0, 0) to indicate the lack of a car. We then trained var-
ious models on this data to compare their abilities at object
detection.

To adapt our models to do object detection, we changed
the output of the last layer of every model to be 4 dimen-
sional and used mean squared error as our loss function.

We first implemented the same convolutional neural net-
work as our image detection with the only change at the last
fully connected layer. After that, we used ResNet50 and
AlexNet as two backbones for the model. For these models,
we appended a single convolutional layer to the last con-
volutional layer of the backbone. This convolutional layer
with 256 3× 3 kernels, and a stride and padding of 1. This
convolutional layer is followed by a 8× 8 average pool and
two linear layers of with activation dimensions of 1024 and
4. For these backbone models, we froze all the gradients
within the backbones and only allowed backpropagation to
affect the added layers.

As this is no longer a simple binary classification prob-
lem with a clear right and wrong, we had to create a new
way of calculating the accuracy of each model to compare
results. Here, it became important to differentiate between
images with and without cars. When the original area was
not zero (that is, there was a car in the image), the calculated
value for that data point was the intersection of the true and
predicted boxes divided by the union of the two areas. In
other words, if we let Tb be the true box and Pb be the pre-
dicted box, When the original area was zero (no car in the
image) we needed to take a different approach since no mat-
ter what the car output the intersection would be always zero
and so the accuracy would not correctly reflect the model’s
capabilities. Hence we decided to take 1

1+Area(Pb)
to be the

accuracy value on this case. Thus, we have

Acc(Tb, Pb) =

{
Area(Tb∩Pb)
Area(Tb∪Pb)

if Area(Tb) > 0
1

1+Area(Pb)
if Area(Tb) = 0

(1)
This would penalize any nonzero predicted area with a
lower accuracy the larger the predicted area is. Our accu-
racies were calculated by averaging over all of these accu-
racies for every data point.

However, we saw that our models could not handle si-
multaneously boxing cars and outputting zero-area boxes
for images with no cars. Indeed, as we can see in Figure 1,
the loss was wildly oscillating as the model trained—even
with tiny learning rates on the order of 10−8, meaning that
something was going very wrong with the model. We sus-
pect that this oscillating loss is due to the zero-car images
forcing the model to output tiny boxes, while the one-car
images kept pushing the sizes of the output boxes back up.
This back-and-forth process resulted in horrendous accu-
racy and no convergence.

Figure 1. Loss of AlexNet Backbone Model, trained on both 0-
and 1-car images for two epochs.

As such, we removed the images where there were no
cars present and only included images where there was one
car present. On this smaller dataset, we trained a ConvNet
and two networks that used AlexNet [5] and ResNet18 [6]
as backbones.

4. Dataset
For our project milestone, we utilize the Vehicle Detec-

tion Image Set, which contains over 17, 000 64 × 64 × 3
images depicting road scenes with and without cars [4].

For the object detection portion of our project, we uti-
lized the COCO: Common Objects in Context dataset [8].
This dataset contains a variety of everyday images with la-
bels and coordinates for bounding boxes on each labeled
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Figure 2. Image 94: bbox = [356.23,275.22,42.87,38.46]

Figure 3. Image from COD, with ground-truth box

item of interest. To download and use the COCO dataset,
we utilized FiftyOne an open-source tool to aid in down-
loading and visualizing datasets.

Of interest for our scenario, are images containing cars.
It is rather convenient that COCO allows for the specifi-
cation of specific image types when downloading the data.
Therefore, our dataset consists of images with cars and
bounding box coordinates for the car or cars in each im-
age (bounding box coordinates in the form of (x, y) of the
lower corner + the width and height). For example, 2 is a
part of the dataset with an id-label of 94.

Additionally, we combined this database with another
database we found on Kaggle: Car Object Detection (COD)
[9]. This dataset contains over 1000 images of cars from
all views and coordinates to bound the car and its location.
These coordinates are in the form of (xmin, ymin, xmax,
ymax) 3.

To combine the datasets properly, we modified the
bounding boxes within the COCO dataset to resemble the
coordinates from the COD dataset. Additionally, because
images were all different sizes when inputted, we scaled
each image to be 256 × 256 and then scaled the boxes ac-
cordingly. This ensured that the images inputted into the
model were all of the same size.

By combining the two datasets, we were able to train
and test on 932 images. Of these 932 images, 646 did not
contain cars. This is largely due to the fact that the COD

dataset used raw footage off of roads. Therefore, there was
a considerable amount of time where no cars were present
on these roads. Additionally, some of the images from the
COD dataset contained more than one car. As not to confuse
the model too much, we decided to remove such images.
We’ll refer to the combined dataset as CocoCOD.

Because the two dataset images have differing dimen-
sionality, to run them through the same model, we first re-
shape all images to be 3× 256× 256, scaling the bounding
box dimensions accordingly.

5. Results/Evaluation
5.1. Binary Classification

Table 1 shows the final testing accuracies of each of our
models. We found that all models performed well on the
VDIS dataset, with 94% testing accuracy for the fully con-
nected network and 98% accuracy for the ConvNet. Even
the linear softmax classifier achieves 80% accuracy.

Model Validation Accuracy

Linear Classifier 0.80
Fully Connected 0.94

CovnNet 0.98

AlexNet 0.99

VGG-16 0.98

ResNet60 0.98

Table 1. Testing Accuracies of Models on VDIS

Even with unusually high performance across all models,
we can see a clear improvement from 80% to 98% due to the
activation and normalization techniques utilized in the fully
connected and convolutional networks

We can see that even our simple model with a linear clas-
sifier performed considerably better than random chance.
We can also see that adding more hidden layers with non-
linearity and normalization techniques utilized had a signifi-
cant improvement in accuracy. As expected the convolution
model performed the best with less than 1/3 of the mistakes
of the fully connected model.

For each of the three models, we graphed the change in
training accuracy, validation accuracy, and training loss, as
shown in Figures 7. We see that all models have a high
amount of fluctuation in their training accuracy, but the val-
idation accuracy is a lot more stable. We suspect that the
training accuracy fluctuation is due to a very ill-behaved
loss function, where a step in the gradient direction will of-
ten overshoot the local minimum. We also suspect that the
comparative smoothness of the validation accuracy is that
the models are powerful enough to generalize quickly, and
most of the epochs are spent focusing on very small details
in the training data.
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Similarly, when comparing the validation accuracies, we
see that the validation accuracy of both the Full Connected
Model and the CNN converged rather quickly, but the linear
model showed repeated fluctuation.

Additionally, we can see that our fine-tuned models
achieved high accuracy very fast. This is due to the fact
that models already learned to identify the most impor-
tant features of the image and only needed to learn how to
see which features were relevant to the car. Additionally,
very complex models seemed to perform slightly worse than
simpler models. We suspect that since this task is not that
complex very deep models have a harder time identifying
what parts of the image are relevant. This can be further
analyzed by looking at the heat maps for the models.

Figure 4. Alex Net Heat Map

Figure 5. VGG Heat Map

As we can see, AlexNet had a bigger focus on impor-
tant areas on on the car’s boundary specially around the
wheels which are represented by a strong red color. How-
ever, on more complex models we can see that the speci-
ficity was diluted and on the resnet50 we can see almost no
red color showing that the model tried to identify the image
as a whole and not focus on important areas. This might
be a reason why AlexNet performed better than the other
models.

]
Figure 6. ResNet50 Heat Map

5.2. Object Detection

On our object detection task, we saw a different pattern.
This task is considerably more complex than just the image
classification and as a result, our accuracy was significantly
lower.

From our graphs, we can see that the ResNet18 back-
bone model didn’t perform well with the validation accura-
cies oscillating below 0.2. The AlexNet backbone model
performed better with stable accuracies around 0.4. Our
best-performing model was the CNN with a more stable val-
idation accuracy around 0.6.

Comparing ResNet18 with AlexNet reveals that the that
performed better in the image classification task also per-
formed better in the object detection task. However, com-
paring our CNN with AlexNet we see that even though
AlexNet performed better in the image classification task
our CNN performed much better in the object detection
task. We hypothesize that this is due to the AlexNet model
being pre-trained on a different task with different loss func-
tions. Our CNN model was trained from scratch for the ob-
ject detection task and only on this data set, however, the
AlexNet model was trained on the image classification task
for different data sets. This wasn’t an issue on image clas-
sification tasks as seen in the performance of the models
above however it proved it be a problem in object detection
tasks.

However, we see that in almost all cases, the general area
in which the model generates a box is very close to the area
with the car. We believe that we only attain a lower accuracy
because our accuracy function heavily penalizes any dif-
ference between the model’s outputted box and the ground
truth, even if they generally box the same area. We display
an example of this from the AlexNet backbone model in
Figure 11,

Another failure point could be a lack of data. Due to the
structure of the Car Object Detection Dataset [9], there was
overwhelmingly more images of roads without cars than
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Figure 7. Training statistics of different classification models.

that with cars.

Figure 8. Accuracies and Loss for ResNet18 on CocoCOD

6. Conclusion

By comparing state-of-the-art models such as AlexNet,
ResNet, etc. on simple yet fundamental aspects of com-
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Figure 9. Accuracies and Loss for AlexNet

puter vision in self-driving cars, we elucidate the efficacy
of various architectures on problems faced in autonomous
driving. From the binary classification problem, we can see
that AlexNet’s sensitivity to the boundary of images (as dis-

Figure 10. Accuracies and Loss for ConvNet

played in our heat maps) helped it best succeed in this clas-
sification process. For the object detection problem, we see
that the CNN gave the highest results, of an accuracy of
around 0.6. Additionally, though ResNet 18 is very power-
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Figure 11. AlexNet Backbone’s prediction for an image in the
COD dataset

ful in classification settings, they did not perform as well as
the vanilla CNNs in object detection.

We emphasize that near-perfect accuracy is necessary for
this field. With many other uses of machine learning, minor
errors may be negligible. If ChatGPT made an error in sum-
marizing a paper, this may be inconvenient for the user but
nevertheless relatively harmless. However, in the context
of self-driving cars, these tiny chances of error still have
the potential to cause considerable degrees of harm. If a
self-driving car is unable to properly classify a human, for
example, this may result in the car running into humans or
other vehicles on accident, causing unimaginable harm. As
such, it’s reassuring that our most advanced models were
able to attain near-perfect validation accuracy.

This issue is what our future works could aim to address.
How can we improve these models to say with certain that
such harmful mistakes will be avoided? How can we deter-
mine when a model is strong enough to be operating on a
car driving on a road?

Another future direction we could explore is real-time
video analysis. Real self-driving cars would need to inter-
pret video from the world rather than just one stationary
image. It would be rather illuminating to test the ability of
current models to identify and detect objects on a moving
road, and maybe even calculate the speed at which certain
objects are moving in real time.

Though our experiments show relatively high success in
the current ability of models to classify and detect objects
relevant to self-driving cars, we can clearly see that there
is much room for progress. By identifying the gaps in our
research and building upon what we’ve discovered through
our experiments, we come one step closer to making self-
driving cars a reality for society.
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