
An exploration on Wasserstein GANs and a f-GANs

Chaoqun Jia
Department of Computer Science

Stanford University
enzojia@stanford.edu

Abstract

Generative Adversarial Nets (GAN) provides a straight-
forward yet effective method for image generation after
learning from training data, and researchers have proposed
variants under GAN framework. In this project I com-
pare performance of two GAN variants, Wasserstein GAN
(WGAN) and f -GAN, both of which extend and general-
ize GAN implementations. Experimental results show that
compared to vanilla GAN, WGAN and Pearson χ2 f -GAN
have similar capacities on learning data distributions and
generating, given features extracted by convolutional net-
works. This project also explores hyper parameter tuning
for WGAN and the results emphasize importance of gradi-
ent clipping threshold.

1. Introduction
Generative adversarial nets (GAN)[4] was proposed as

a generative modeling framework in computer vision field.
GAN learns probability distributions from training data
samples, and accordingly generates new images from ran-
dom noises. This ”learn and generate” mechanism is built
on an adversary, with one classifier as the discriminative
model to determine whether an image was directly sampled
from data or generated by the generator, also another gen-
erative component which generates images from random
noises. The generator is encouraged by loss function to
make the discriminator to classify the generated image as
actual data.

With the essence of generative models being detecting
probability densities in existing data, and then generating
accordingly, for vanilla GAN and its variants, as discussed
in CS231N lectures, the final output of these GANs’ dis-
criminators are modeled to be the probability of the input
image being an actual image sampled from data and not
generated. This is proven to be effective in previous works.
However there are other approaches we can consider, and
one of them is Wasserstein-GAN (WGAN), which does not
train the discriminator (critic) as an classifier outputting

probabilities, but only trains it to give scores without the
constraint of being between 0 and 1 [1]. I will introduce
and discuss WGAN in details in the following sections.

Another way to extend GAN framework is viewing the
generator training procedure as minimizing a divergence,
which is a variant of Jensen-Shannon divergence, between
the model distribution and the real data distribution. Af-
ter generalizing GAN training procedure from minimiz-
ing one specific divergence to minimizing a member of f -
divergence family, we get f -GAN, with the original GAN
as a special case for which we train by minimizing a Jensen-
Shannon divergence variant, and this variant is a member of
f -divergence family [7].

2. Related work
Generative modeling has interested researchers in the

past decade. Recent developments include using decoder
structures as generators, as by definition decoders are gen-
erative and this leads to research efforts of using generalized
denoising auto-encoders [2] as generative models, in which
an encoder model was learnt to extract representations and
a decoder was learnt to reconstruct the input. An extension
from the generalized denoising auto-encoder is deep gener-
ative stochastic network (GSN) [3], as both are developed
from the concept of parameterized Markov chain and can be
trained by Markov chain Monte Carlo methods (MCMC).

Unlike the Markov chain based generative models men-
tioned above, GAN was originally introduced by using a
minimax loss function, which utilizes results from both a
discriminator model and a generator model [4]. With the
goal being replicating the data probability distribution, this
minimax loss function is adopted to reflect the distance be-
tween the distribution of real data versus the distribution
of the generated data. As described by the original re-
search, vanilla GAN structure treats its discriminator output
as the probability of the input being sampled from real data.
Meanwhile there are other approaches which do not restrict
the discriminator output to be a probability, being less than
1 and greater than 0. One example of these approaches is
Wasserstein-GAN (WGAN) that minimizes an approxima-

1

tion of Earth Mover (EM) distance, as this approximation is
proven to be reasonable and efficient [1].

As discussed in the original GAN paper, there is an-
other perspective which sees training GAN as minimizing
a variant of Jensen-Shannon divergence. S. Nowozin et.al
[7] pushes this idea further to generalize training objec-
tives of GAN to the whole f -divergence family, and cor-
responding GAN variant is named f -GAN. Examples of
f -divergence family discussed in the original f -GAN pa-
per include Kullback-Leibler divergence, Reverse KL di-
vergence, Pearson χ2 divergence, Squared Hellinger di-
vergence, Jensen-Shannon divergence, and the GAN diver-
gence which is derived from Jensen-Shannon. The authors
proved the soundness of this generalization both in the-
ory and in empirical results. Further experiments are con-
ducted under a setting of using different divergences in f -
divergence family for train and test, respectively, and test
loss values are calculated and compared. Results show that
even trained with a different divergence in the family, the
test loss values are still reasonably low, and the best perfor-
mance comes from using the same divergence for train and
test.

3. Data

3.1. Actual image data

The MNIST (Modified National Institute of Standards
and Technology) database is a large database containing
60000 training images and 10000 testing images to be used
for training computer vision models [6]. This dataset was
originally created by NIST, with the training set was taken
from a handwritten sample by U.S. Census Bureau employ-
ees, and the testing set was taken from U.S. high school
students. The difference in sources for training versus test-
ing sets makes it arguable whether NIST database is a good
dataset for training machine learning models. So the authors
applied a ”re-mixing” to the NIST database and the out-
put is MNIST database, with data points from both sources
evenly distributed to both training and testing sets. With
this remix strategy, MNIST collects more diversified hand-
writing styles and keeps consistent patterns. Authors of this
database used support vector machine to achieve a higher
than 99% recognition accuracy [5]. In this project I only
use the training set of MNIST data, from which my strategy
randomly select 50000 images for model training and 5000
for model validation.

Each data point of MNIST database is an image of a
handwritten digit, has only one channel because each im-
age is black and white so there is a grey-scale channel, also
the images are normalized to fit into a 28 by 28 pixel reso-
lution.

3.2. Noise generation

For a GAN’s generator model to start with, we need
noise input as seed to generate new images. In this project
I use a uniform pseudo-random noise with values between
-1 and 1. The noise generation directly outputs a noise ma-
trix with dimension of batch size by noise size, and each
element of this matrix is independent to all other elements.
Noise size is aligned with generator model’s input size so
we can use it as a seed.

4. Methods
4.1. Vanilla GAN

The original GAN design provides a framework to in-
clude two component models:

• A generator model G(z; θg) which takes a random
noise vector of an arbitrary size as input seed, and gen-
erates an image by sampling from the probability dis-
tributions learnt from training dataset.

• A discriminator model which is a classifier D(x; θd).
It takes an image as input and outputs a scalar as clas-
sification result, indicating whether this image is gen-
uine from real data or is generated by the generator
G(z; θg).

In other words, G(z; θg) is a mapping from input noise
vectors to data space, parameterized by θg , and z is the
input noise which has a prior distribution pz(z). We usu-
ally design G to be a differentiable function so we can learn
the generator’s distribution pg over data x by applying gra-
dient descent/ascent optimizers. Meanwhile discriminator
D(x; θd) is parameterized by θd and its scalar output is usu-
ally interpreted as the probability that the input x is sampled
from data rather than generated by G. Goal of training of
a GAN is to have D to maximize the probability of cor-
rectly labeling an input image whether it is from actual data
or generated by G, and meanwhile to have G to minimize
the probability that D labels generated images correctly. To
achieve this goal the authors developed the minimax loss
function as shown in equation 1.

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼p(z) [log (1−D(G(z)))]

(1)

Goodfellow et al. [4] proved that given G and D are pa-
rameterized to have enough capacity, the training criterion
in equation 1 makes it possible to recover the data distribu-
tion. In actual implementations of this loss function we up-
date the discriminator and generator alternatively, as shown
in Algorithm 1 in page 8, which is proven to optimize the
loss function as demonstrated by equation 1.

4.2. Wasserstein GAN

An usual approach to learn the probability distribution in
training data is equivalent to solving:

max
θ∈Rd

1

m
Σm

i=1 logPθ(x
(i)) (2)

where x(i) are examples from training data. This ap-
proach uses model density Pθ to approximate the real data
distribution Pr and minimizes the Kullback-Leibler diver-
gence KL(Pr||Pθ). In the Wasserstein GAN (WGAN)
method which was proposed by M. Arjovsky et. al [1],
the authors use Earth-Mover distance which is also know
as Wasserstein-1, to measure the distance between model
distribution and real data distribution. As proven by the
authors, the Earth-Mover distance provide similar prop-
erties compared to other probability distances and diver-
gences, including Total Variance (TV) distance, Kullback-
Leibler (KL) divergence, and Jensen-Shannon (JS) diver-
gence. With Earth-Mover distance defined as equation 3.

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [||x− y||] (3)

where Π(Pr,Pg) denotes the set of all joint distributions
γ(x, y) whose marginals are respectively Pr and Pg . In
practice we do not use the distance defined in equation 3
because it is intractable, however according to Kantorovich-
Rubinstein duality we have equation 4.

W (Pr,Pθ) = sup
||f ||L≤1

Ex∼Pr [f(x)]− Ex∼Pθ
[f(x)] (4)

where function f for the supremum is any 1-Lipschitz
function mapping from domain to R. In the original paper
for WGAN the authors prove existence of a solution f :
X −→ R to the optimization problem 4, and we can calculate
corresponding gradient by applying:

∇θW (Pr,Pθ) = −Ez∼p(z)[∇θfw(gθ(z))] (5)

where Pθ is the distribution of gθ(z)) and with Z be-
ing a random variable with density p satisfying the assump-
tion discussed by equation 3. Now we have gradient of
the model’s parameters and can work on the algorithm, as
shown in algorithm 2 in page 8. To keep terms consistent
with the original paper, here we name fw as critic and gθ as
generator. In WGAN’s algorithm 2 there are parts I high-
light in blue, and these blue lines are differences between
training algorithms of WGAN versus GAN. From this com-
parison we can see the main difference lies in the loss func-
tion, and the root reason of the loss functions being different

is that in GAN we assume the discriminator (critic) outputs
a probability of the input image being real data, however
in WGAN we do not have this assumption. Thus WGAN’s
critic’s output is not restricted to be between 0 and 1, so
there is not a threshold to determine whether an input im-
age is real or generated. Under this setting, design of loss
function just encourages the critic (discriminator) to make
the output scalar bigger for real input images and smaller
for generated ones.

4.3. f-GAN

In the original paper for vanilla GAN [4] the authors rec-
ognize that one perspective to see training procedure of the
generator is minimizing a variant of the Jensen-Shannon di-
vergence between the model distribution and the real data
distribution:

DJS(pdata||pg) =
1

2
DKL(pdata||

pdata + pg
2

)

+
1

2
DKL(pg||

pdata + pg
2

)

(6)

where pg is the generator’s distribution, and pdata is real
data’s true distribution, and DKL is Kullback-Leibler di-
vergence. In the work by S. Nowozin et.al [7] the authors
propose a training method which generalize the Jensen-
Shannon divergence discussed above to f -divergence fam-
ily, also known as Ali-Silvey distances.

Df (P ||Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx (7)

where P and Q are two distributions with continuous den-
sity functions p and q respectively, and X is the domain for
p and q. f : R+ −→ R is the generator function which
is convex and lower-semicontinuous, and f(1) = 1. The
original f -GAN paper provides a list of common choices of
f -divergences, and here I list two of them, Pearson χ2 di-
vergence which I used in my experiments, and GAN diver-
gence, which is derived from Jensen-Shannon divergence,
for the purpose of demonstration. Both Pearson χ2 and
GAN divergences are listed in table 1, with a function T ∗

derived as

T ∗ = f ′
(
p(x)

q(x)

)
dx (8)

The original f -GAN paper proved validness of equation
9 as a loss function, which can be calculated using the f -
divergence definitions in table 1

min
θ

max
w

Ex∼P [Tw(x)]− Ex∼Qθ
[f∗(Tw(x))] (9)

where Qθ is the generative model parameterized by θ
and Tw is the discriminator, named ”variational function”
in the f -GAN paper, parameterized by w. We assume this
variational function Tw is represented as gf (Vw(x)), and
can rewrite the loss function as:

min
θ

max
w

Ex∼P [gf (Vw(x))] + Ex∼Qθ
[−f∗(gf (Vw(x)))]

(10)

where Vw : X −→ R is implemented with a neural network,
and gf : R −→ domf∗ is an output activation function. Ta-
ble 2 provides Vw and gf for Pearson χ2 and GAN diver-
gences, as provided arbitrarily in the original f -GAN paper,
and after filling Vw and gf for Pearson χ2 into equation 10
we get f -GAN algorithm 3 in page 9. In this algorithm
illustration there are parts I highlight in red, and these red
lines are differences between training algorithms of f -GAN
versus GAN. From this comparison we can see the main
difference lies in the loss function, plus activation function
for each neural network. In my experiment I used Pear-
son χ2 as an example to demonstrate implementations of f -
divergences other than Jensen-Shannon divergence, and this
choice leads to different loss functions and different final-
layer activations for both generator and discriminator.

5. Experiment results
5.1. Experimental settings

As the purpose of this experiment is to compare image
generation qualities by vanilla GAN, WGAN, and f -GAN,
I implemented corresponding algorithms as described in Al-
gorithms 1, 2, and 3 in page 8 and 9. For f -GAN I choose
Pearson χ2 divergence as the optimization goal. Meanwhile
I also test two different designs for generator / discrimina-
tor (critic) networks, one with only fully connected layers
and the other design with convolutional layers. So there are
6 training-testing runs, for 3 types of GANs and each type
has two different generator/discriminator network designs.
In this design of experiment settings I achieve comparison
on two dimensions:

• Performance differences in image generation qualities,
between GAN, WGAN, and Pearson χ2 f -GAN.

• Performance differences in feature extraction qualities,
between pure fully-connected networks and convolu-
tional networks.

For the fully-connected networks and convolutional net-
works, I reuse the network designs used in GAN part of
CS231N assignment 3, as these network designs are proven
to work, and my focus in this project is not designing these
networks but on comparing vanilla GAN versus WGAN
versus f -GAN architectures.

5.2. Metrics

For handwritten digit image generation there is no good
quantified metric to measure generation quality, as human
handwriting styles is not easy to quantify. However dur-
ing experiments I found that by putting generated images
side by side we can use human intuition to determine which
one is better. For the ones with lower qualities they usu-
ally have observable flaws, e.g. written stokes are distorted
too much from human writing habits, etc. These observable
flaws make it possible to use human judgement as image
generation quality measurement.

5.3. Hyper parameters

Other than usual network training hyper parameters in-
cluding learning rate, batch size etc., in the original paper
for Wasserstein GAN (WGAN) the authors discussed about
one hyper parameter which is weight clipping threshold, for
the purpose of enforcing a Lipschitz constraint. Also dur-
ing my own experiment I introduced another hyper param-
eter which is gradient clipping threshold, and this makes
WGAN having two non-usual hyper parameters.

5.4. Results and discussions

5.4.1 Comparison between GAN variants

In figure 1 I compare generated digit images by vanilla
GAN in first row, WGAN in second row, and f -GAN in
third row, respectively. Also images in the left column are
generated using features extracted by fully connected lay-
ers, and images in the right column are generated using fea-
tures extracted by convolutional network.

• To compare vanilla GAN vs. WGAN vs. f -GAN
using features extracted by fully-connected layers,
WGAN and f -GAN’s performance are not comparable
to vanilla GAN, as only vanilla GAN generates recog-
nizable digits, though the digit images are of low qual-
ity with scattering noises.

• Vanilla GAN vs. WGAN vs. f -GAN using features
extracted by convolutional networks generate digit im-
ages of similar qualities, while I observe that Pear-
son χ2 f -GAN generates with arguably better qual-
ity because its handwriting style aligns better with
human handwriting habits. Most generated digits
are readable, with small numbers of them being dis-
torted. Meanwhile these three GAN variants’ gener-
ations have recognizable different styles, for example
WGAN’s digit images have thicker strokes.

• Fully connected layers vs. convolutional networks.
We can observe that convolutional networks extract
higher-quality image features, because for each GAN
variant it performs better using features extracted by
convolutional networks.

Name Df (P ||Q) Generator f(u) T ∗(x)

Pearson 2
∫ (q(x)−p(x))2

p(x) dx (u− 1)2 2
(

p(x)
q(x) − 1

)
GAN

∫
p(x) log 2p(x)

p(x)+q(x) + q(x) log 2q(x)
p(x)+q(x)dx− log(4) ulog(u)− (u+ 1) log(u+ 1) log p(x)

p(x)+q(x)

Table 1. Pearson 2 and GAN f -divergences Df (P ||Q) and corresponding generator functions. GAN is derived from Jensen-Shannon
divergence as DGAN = 2DJS − log(4).

Name Output activation gf domf∗ Conjugate f∗

Pearson 2 v R 1
4 t

2 + t
GAN -log(1 + exp(−v)) R -log(1− exp(t))

Table 2. Final layer activation functions, conjugate f∗ and corresponding domain, for Pearson 2 and GAN f -divergences.

5.4.2 WGAN hyper parameter tuning

In figure 2 I focus on WGAN’s performance under differ-
ent hyper parameter settings. Each row corresponds to one
gradient clipping threshold value, and each column corre-
sponds to one weight clipping threshold value. One obser-
vation not reflected in the figures is that for the one setting
with no gradient clipping and no weight clipping, I observed
exploding network weights causing loss to the level of 1e6,
and the generated images are not stable and much distorted.
The final result of my hyper parameter search is using gradi-
ent clipping threshold at 7.5e−8 and weight clipping thresh-
old at 0.001 which is the same as the original WGAN paper
suggested.

• On weight clipping threshold dimension, we can ob-
serve that if the value is too small (0.00001) than we
only see noise caused by vanishing gradients because
too many weights are clipped. Meanwhile if the values
is too large (0.1) the result is not stable.

• On gradient clipping threshold dimension, we have
similar conclusion that too small clipping threshold
(1e − 10) has a high probability to cause vanishing
gradient thus more random noisy images, and too large
clipping threshold (1e−5) makes the network unstable
and thus generates more distorted digits.

Also looking at the degree of distortion in subplots (a),
(b), (d), and (e) in figure 2, as for these 4 plots both clip-
ping thresholds are not extremely small to cause vanishing
gradient, my observation is that gradient clipping threshold
has a bigger impact on the generator performance, as both
plots (d) and (e) are better formed compared to (a) and (b)
respectively.

6. Conclusions

In this project I implement WGAN and Pearson χ2

f -GAN, and compare images generated by them versus
vanilla GAN. Two types of generator / discriminator (critic)
networks are implemented, one with only fully-connected

layers and the other with convolutional layers. To con-
clude this project, the experimental results prove that un-
der help of features extracted by convolutional layers, both
WGAN and Pearson χ2 f -GAN generate images with qual-
ities comparable to vanilla GAN, and Pearson χ2 f -GAN’s
generation has slight better performance in some dimen-
sions including mimicking human handwriting styles.

There are other observations not directly from compar-
ing different types of GANs, including: 1) convolutional
neural networks provide significantly better features for im-
age learning and generating, compared to fully-connected
networks, and 2) WGAN has more hyper parameters to
tune, and it is sensitive to weight and gradient clipping
thresholds, especially to gradient clipping threshold.

7. Future works
In my experiments I have one observation for WGAN

hyper parameter which is not aligned with the observation
in the original WGAN paper, that the original paper em-
phasizes importance of weight clipping and does not men-
tion gradient clipping, however in my experiments I find
that given weight clipping threshold is not extremely small,
gradient clipping has larger impact on WGAN’s generation
quality. There are multiple possibilities causing the differ-
ences in tuning methods, including differences in building
generator and critic, and interactions between weight and
gradient clipping thresholds, etc. In the future I will work
on more experiments on the possibilities mentioned above
and try to resolve this non-alignment.

8. Contributions and acknowledgements
This is a one-person project for CS231N, all experiments

and documentation are completed by the sole author him-
self. This project is not shared by any other class, and there
is no non-CS231N external collaborators. Python code for
the experiments are developed based on CS231N assign-
ment 3 code, with re-written ipynb notebooks, re-written
GAN training methods, and new loss function methods.
Data pre-processing code and generator/discrimnator net-
work designs are re-used.

(a) Vanilla GAN without Conv layers (b) Vanilla GAN with Conv layers

(c) WGAN without Conv layers (d)WGAN with Conv layers

(c) f -GAN without Conv layers (d) f -GAN with Conv layers

Figure 1. Digit images generated by Vanilla GAN, WGAN, and f -GAN, with and without Convolution layers for feature extractions,
respectively.

(a) gradient threshold: 1e− 5 (b) gradient threshold: 1e− 5 (c) gradient threshold: 1e− 5

(a) weight threshold: 0.1 (b) weight threshold: 0.001 (c) weight threshold: 0.00001

(d) gradient threshold: 7.5e− 8 (e) gradient threshold: 7.5e− 8 (f) gradient threshold: 7.5e− 8

(d)weight threshold: 0.1 (e)weight threshold: 0.001 (f) weight threshold: 0.00001

(g) gradient threshold: 1e− 10 (h)gradient threshold: 1e− 10 (i) gradient threshold: 1e− 10

(g)weight threshold: 0.1 (h)weight threshold: 0.001 (i)weight threshold: 0.00001

Figure 2. Digit images generated by WGAN with features extracted by Convolutional networks. Different gradient threshold and weight
threshold settings are applied.

References
[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan,

2017. 1, 2, 3
[2] Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized de-

noising auto-encoders as generative models, 2013. 1
[3] Y. Bengio, Éric Thibodeau-Laufer, G. Alain, and J. Yosinski.

Deep generative stochastic networks trainable by backprop,
2014. 1

[4] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial networks, 2014. 1, 2, 3

[5] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998. 2

[6] Y. LeCun, C. Cortez, and C. C. Burges. The MNIST Hand-
written Digit Database. http://yann.lecun.com/
exdb/mnist/, revised 2020. 2

[7] S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training gener-

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Algorithm 1 GAN. k is number of steps to apply to the discriminator.
In the original paper k = 1.
for number of training iterations do

for k steps do
Sample minibatch of m noise samples z(1), ..., z(m) from noise prior pg(z)
Sample minibatch of m image samples x(1), ..., x(m) from data generating distribution Pr(x)
Update the discriminator with chosen optimizer using gradient:

∇θd
1
mΣm

i=1[logD(x(i)) + log(1−D(G(z(i))))]
end for
Sample minibatch of m noise samples z(1), ..., z(m) from noise prior pg(z)
Update the discriminator with chosen optimizer using gradient:

∇θg
1
mΣm

i=1 log(1−D(G(z(i))))
end for

Algorithm 2 WGAN. k is number of steps to apply to the discriminator and c is weight clipping threshold.
In the original paper k = 5 and c = 0.01.
for number of training iterations do

for k steps do
Sample minibatch of m noise samples z(1), ..., z(m) from noise prior pg(z)
Sample minibatch of m image samples x(1), ..., x(m) from data generating distribution Pr(x)
Update the discriminator with chosen optimizer using gradient:

∇w[
1
mΣm

i=1fw(x
(i)) + 1

mΣm
i=1fw(gθ(z

(i)))]
w←− clip(w, -c, c)

end for
Sample minibatch of m noise samples z(1), ..., z(m) from noise prior pg(z)
Update the discriminator with chosen optimizer using gradient:

∇θ
1
mΣm

i=1fw(gθ(z
(i)))

end for

ative neural samplers using variational divergence minimiza-
tion, 2016. 1, 2, 3

Algorithm 3 f -GAN. k is number of steps to apply to the discriminator.
In the original paper k = 1.
for number of training iterations do

for k steps do
Sample minibatch of m noise samples z(1), ..., z(m) from noise prior pg(z)
Sample minibatch of m image samples x(1), ..., x(m) from data generating distribution Pr(x)
Apply gf as final layer activation function. For Pearson 2 it is identical function.
Update the discriminator with chosen optimizer using gradient:

∇w[
1
mΣm

i=1gf (Vw(x
(i)))− 1

mΣm
i=1f

∗(gf (Vw(z
(i))))], which for Pearson 2 is:

∇w[
1
mΣm

i=1Vw(x
(i)) + 1

mΣm
i=1

(
1
4Vw(z

(i))2 + Vw(z
(i))

)
]

end for
Sample minibatch of m noise samples z(1), ..., z(m) from noise prior pg(z)
Update the discriminator with chosen optimizer using gradient:

∇w[
1
mΣm

i=1f
∗(gf (Vw(z

(i))))], which for Pearson 2 is:
∇w[− 1

mΣm
i=1

(
1
4Vw(z

(i))2 + Vw(z
(i))

)
]

end for

