
Analyzing the Performance of 3D Pose Estimators to
Optimize Humanoid Robot Control

CS231N Project Report Spring 2024

Ethan Whitmer
Stanford University

Dept. of Mechanical Engineering
erw12@stanford.edu

Abstract

This project aims to analyze the ability of current 3D
Pose Estimators to accurately control the end effectors of
a humanoid robot in 3D space using a single 2D (monoc-
ular) video feed. Two models (VideoPose3D (pre-trained),
and a Baseline Neural Net) were used on two datasets (Hu-
manEva and a small self-collected dataset) to predict 3D
joint locations based on pixel space joint key-points. The
predictions of these models were fed into three controllers,
one that just controls for the position of the hands (base-
line), one that uses task Null-Space to control the angles
of the robot’s joints, and one that uses task Null-Space to
control the position of the robot’s joints.

Overall the third controller performed remarkably bet-
ter than the first two, indicating that secondary joint posi-
tion data plays a key role in controlling a humanoid robot.
The baseline models outperformed the pre-trained Video-
Pose3D model on both datasets, especially on the self-
collected dataset. This was largely due to the baseline’s
increased ability to accurately perceive movement directly
at the camera, something that other models struggled with.
The Base model combined with the Null-Space position con-
troller was able to achieve a mean hand position error of
0.0541 meters on the HumanEva test video, and the base-
line model, combined with the Null-Space angle controller
was able to achieve a mean hand position error of 0.0808
meters on the self-collected test video.

Figure 1. Toro Robot in Simulation

1. Introduction
Human Pose Estimation has been a longstanding prob-

lem in the fields of Computer Vision and Robotics. In re-
cent years, strides have been made to train models that can
accurately predict the 3D positions of human joints from
video, however, accurate pose estimation is just one part of
the robotics pipeline. This project will focus on the larger
problem of mapping a human’s movements onto a robotic
avatar using just a 2D monocular video feed. Such a map-
ping would allow for efficient, accurate teleoperation with-
out the need for haptic devices, camera arrays, wearable
trackers, or other specialized cameras, greatly increasing
the convenience of teleoperation setups.

Specifically, this project analyzed and evaluated the
use of 2 models, a current state-of-the-art pose estimation
model[1][2] and a baseline feed-forward neural net[3], to
control the motion of the Toro [4] robot in simulation (Fig
1). Models were evaluated on how well Toro’s end effec-
tors (hands) were able to track the movement of a person
in a video using three different control schemes (described
below). The overarching goal of this project is to evalu-
ate what the most important aspects of a model are for hu-
manoid control. Note that only upper body control was con-
sidered for this project in order to avoid the complicated
problem of humanoid robot locomotion.

Figure 2. Video to Robot Pipeline

There are 3 main processing steps within this project’s
pipeline (Fig 2), the first takes a monocular video of a sin-
gle subject as input and passes it through a pretrained Detec-
tron2 algorithm[5], which outputs a temporal array of pixel
locations of the subject’s joints (x, y coordinates in pixel

1

space of each joint for every video frame). These joint key-
points are then passed through the model (VideoPose3D[2],
or the baseline[3]), these models then output the predicted
3D locations of each joint (x, y, z coordinates in world space
of each joint for every video frame), which are transformed
into Toro’s reference frame and then used to control the
robot’s hand (end effector) positions.

2. Related Work
2.1. 3D Pose Estimation

There are many different strategies for estimating the 3D
position of the joints of a subject. [1] offers an excellent
overview of the near-current state of the field. There are two
main categories for pose estimation, the first is a model that
processes a single frame of footage at a time, it has no ac-
cess to previous or future data points in a video. This project
uses one such model as described in [3] as a baseline (figure
3 above shows the architecture). This model trains and pre-
dicts on already extracted 2D key points. Some other mod-
els, however, train and predict directly on the image data.
They typically use a CNN [6] or GCN (Graphical Convo-
lutional Network) [7]. This can be an effective method as
some information is lost when 2D key-points are extracted,
but the compute required for such models is much larger. In
particular, GCNs show promise as human poses are often
represented using a skeletal framework (see figure 3), this
skeletal framework is a graph, so using a model designed
for graphs makes sense.

Figure 3. Baseline Model Architecture

The second main category for pose estimation contains
models that use a time sequence of data to train and pre-
dict. This project evaluates the use of one such model [2],
that performs convolutions across the temporal axis to make
predictions on an entire sequence of data at once. This is in
contrast to other methods that use recurrent networks such
as LSTMs [8]. Temporal convolutions are nice because they
do not suffer from the same vanishing/exploding gradient
issues that commonly occur in recurrent models, but they
suffer in practicality because they often lack the ability to
make real-time predictions on data. LSTMs on the other
hand can perform very well on time-sequenced data with-
out needing access to future data. In particular [9] makes
use of two LSTMs in parallel to predict the 2D Pose skele-
ton of a subject, and local image patches of each joint, and
then integrates both sets of features to make a final 3D depth
prediction.

2.2. Humanoid Robotic Control

Teleoperational control of a humanoid robot also has
many different strategies, [10] offers a survey of many cur-
rent popular methods. Much of humanoid teleoperation is
done using a haptic or exoskeleton system [11]. These types
of controllers are great because they can provide very accu-
rate smooth control, but they are often expensive and require
extensive setup. [12] and [13] both use teleoperation for
dexterous manipulators using a monocular video feed. They
found success using CNNs but did not scale the system for
full-body motion. [14] Discusses learning on monocular vi-
sion to teach efficient full body control, they achieved some
success but were severely limited by the vision-based pose
estimators of the time (2007). Many vision based teleopera-
tion systems these days use either a depth-equipped camera
[15], or Motion Capture technology [16].

3. Dataset and Features
3.1. HumanEva

Two datasets were used for training and evaluation in
this project. The first was HumanEva I [17]. This is a
video dataset consisting of 10-15 second clips of subjects
performing various motions in a room. There are 3 differ-
ent camera angles for each motion, all recording in 640x480
resolution at 60 FPS. For each video, there is motion capture
data that gives the ground truth 3D positions of 20 markers
placed on the subjects, these markers are placed at each of
the subject’s joints as well as a few extra on the torso.

Figure 4. Frames from HumanEva Test Sequence

Overall there were 27769 available frames, A 14-second
clip (796 frames) was chosen for evaluation with Toro, and
the rest of the frames were split randomly into training
(21074) and validation (5269) using an 80/20 split. The
clip chosen for testing is of Subject 1 standing still, wav-
ing, and beckoning with her right hand while her left hand
lies at her side (Figure 4). This clip was chosen because the
subject’s body remains still throughout the duration and has
some interesting hand movements for Toro to try and repli-
cate. Joint pixel key-points are provided for every tracker so
a model trained on this dataset has up to 40 (20x2) potential
input features, and up to 60 (20x3) potential outputs.

2

3.2. Self Collected

The second dataset was one that I collected and prepared
myself. It has 2269 available frames, 550 were used in a clip
for evaluation with Toro (described below), and the remain-
ing frames were split randomly into training (1547) and val-
idation (172) using an 90/10 split. Everything was shot from
a single camera angle/relative position on an iPhone 11 Pro
(720p, 30 FPS). In the videos, I perform a variety of upper-
body movements while keeping my lower body relatively
stationary. While I perform these motions, an Optitrack
system[18] measures the real-time location of 3 trackers,
one on each of my hands, and my head, in the room. This
data is then transformed to be within the Toro’s frame of
reference, an advantage of this is that predictions from mod-
els trained on this data can be fed directly into a controller.
These measurements were then carefully synced with the
video and sampled at each video frame to produce ground
truth measurements for this dataset.

The purpose of this dataset is to evaluate the performance
of the system for a specific robotic control scenario. Many
pose estimation models are trained to be robust against a
variety of camera positions, angles, and resolutions, for
robotic control, however, there will likely be a specific setup
the user has with a relatively consistent camera position.
The question then becomes, can a simple model trained on
even just a few minutes of footage from this specific sce-
nario outperform a larger more general model?

Figure 5. Frames from Self-Collected Test Sequence

The test sequence for this dataset is 18 seconds long and
consists of me raising my arms up, then out, left, and right,
and then moving them in a circle. Figure 5 shows frames at
each of the 4 (up, out, left, right) extremes. This test video
was chosen to evaluate the system’s performance in each
of the cardinal directions and for general upper body/arm
control. Note that the existing Inference API in [2] was used
to process videos into 2D joint key-points via Detectron2.
This produces 17 joint key-points per frame, so a model
trained on this dataset has up to 34 (17x2) potential input
features and up to 9 (3x3) potential outputs.

4. Methods
4.1. Control Schemes

Three control schemes were implemented for this
project. The first (Eqn. 1) is the most simple (a baseline)
and represents a simple operational space PD controller.
Here xd represents the desired hand position (model predic-
tion), x and ẋ represent the position and velocity of robot’s
end effector (hand), kp and kv are positional and damping
gains, Jv is the robot’s jacobian at the end effector, and Γ is
the vector of torques to apply at each joint (note that these
equations are simplified and do not include the mass matri-
ces, Coriolis force, or gravity force compensators that are
used in control). This scheme is convenient for its simplic-
ity but can result in inefficient poses that limit motion.

Γ = JT
v (kp(xd − x)− kvẋ) (1)

The second control scheme (Eqn. 2) is similar to the first,
but attempts to keep the posture of the robot as ”neutral” as
possible. Controlling the position of the robot’s hands re-
quires 6 degrees of freedom (3 coordinates per hand), Toro,
however, has many more degrees of freedom than 6 (39 to-
tal). This controller still uses PD control to move the hands
to the desired location, but now uses the extra degrees of
freedom to attempt to keep the angle at each joint as close
to 0 (neutral initial position) as possible. This helps prevent
the robot from twisting up and ensures a wide range of mo-
tion is always available. Here q and q̇ are the angles and
angular velocities at each joint, qd is the desired joint angle
(0), and N represents the null space of the jacobian.

Γ = JT
v (kp(xd−x)−kvẋ)+NT (kpj(qd−q)−kvj q̇) (2)

The third control scheme (Eqn. 3) is similar to the sec-
ond, but instead of using null space control to keep the joint
angles close to 0, it uses null space control to match the
posture of the subject, specifically the head, shoulder, el-
bow, and feet positions. This controller is designed to eval-
uate the importance of human posture in robotic control.
Robot arms are not human arms and therefore their ideal
posture may differ from that of a human’s. Here nd are
the perceived positions of the subject’s shoulders and el-
bows, while n and ṅ are the positions and velocities of the
robot’s shoulders and elbows. Note that because there was
no ground truth data available for the self-collected dataset,
this controller was not used with the baseline model trained
on the self-collected dataset.

Γ = JT
v (kp(xd−x)−kvẋ)+NTJT

v (kp(nd−n)−kvṅ) (3)

3

4.2. Models

4.2.1 Baseline

Two models were used in evaluation for this project. The
first is the baseline feed-forward neural net described in [3].
This model’s architecture is shown above in Figure 3, it con-
sists of 2 outer blocks, each containing 2 linear, batchnorm,
ReLU, dropout combos in sequence, connected with a resid-
ual. Input and output coordinates are flattened for training.

I trained/tuned four of these models using PyTorch [19],
two on each dataset. The models trained on HumanEva had
an input field of 40 (20 joints x 2 coords) and an output field
of 27 (9 joints x 3 coords), the output joints of interest are
the 9 joints used by Controller 3. The models trained on the
Self Collected dataset had an input field of 34 (17 joints x 2
coords) and an output field of 6 (2 hands x 3 coords).

For the two models on each dataset, a true baseline
model and a modded baseline model were used. The true
baseline models replicated the architecture and training
procedure described in [3] they were trained using a
standard mean squared error (MSE) loss function (Eqn. 4).
For the modded baseline models, architectural parameters
were allowed to vary during tuning, also a weighted (MSE)
loss function (Eqn. 5) was used where wi is an assigned
weight associated with each output.

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2 (4)

LWeighted MSE =
1

N

N∑
i=1

wi(yi − ŷi)
2 (5)

For the Self-Collected dataset, a tunable weight param-
eter to every x (camera direction) coordinate output was
added. During experimentation, models seemed to particu-
larly struggle with accurately predicting movement that was
directed at the camera. During such movement, the joint
pixel key-points do not change much, so it can be difficult
to discern any movement. Increasing the weight of these
outputs should help the model combat this error. For the
HumanEva modded baseline model, a tunable hand weight
parameter that increases the weight of the hand coordinates
was added. This helps ensure that the hand locations are as
accurate as possible while still predicting useful positions
for the other joints to be used by Controller 3.

4.2.2 VideoPose3D

The second model used in this project is the pre-trained
VideoPose3D Model [2]. This model was trained on Human
3.6M [20], a dataset similar to HumanEva but much larger.
This model uses dilated temporal convolutions to predict 3D
joint positions from 2D joint pixel key-points. This strat-
egy offers an advantage over the baseline model because it

utilizes the inherent information stored in time-sequenced
data. Given that human bodies move continuously the 3D
location of a joint of one point can never be too far from
the next, meaning that extra information may be learned by
looking at previous and future data. This helps to boost ac-
curacy but limits the model’s ability to predict on real-time
data as an entire sequence must be predicted on at once, that
is, that is, the model must see the last frame of the video be-
fore predicting on the first frame. This is in contrast to an
RNN or LSTM which do not require future data.

4.3. Model Output to Control Scheme

The last piece of this puzzle is connecting the model pre-
dictions to the controllers. Outputs from models not trained
on the Self Collected dataset are in some unknown camera
of world reference frame. In order to be useful for control,
they must be transformed into Toro’s reference frame. This
involves 3 transformations, a scale, a shift, and a rotation.
An identical procedure is used to transform both the ground
truth and predicted positions for fairness in evaluation.

The initial positions of the subject’s shoulders and head
were used to perform these three transformations. To scale
the data, every point was multiplied by dT /di where dT is
the known distance between Toro’s shoulder joints, and di
is the measured distance between the initial shoulder posi-
tions. To shift the data, a vector representing the difference
between Toro’s head and the measured head positions was
added to every data point. Finally, to rotate the data, every
point was multiplied by the rotation matrix required to ro-
tate the plane formed by the 3 shoulder/head points to be
along the YZ world plane, this is done by finding the vector
normal to the plane formed by the 3 points, and rotating it to
be parallel to a vector pointing in the positive X direction.

This transformation works well but does make several
critical assumptions. The first is that all humans are equally
proportional, the data is scaled based on shoulder width
which is not directly correlated to human wingspan, if a
subject’s proportions are very different than Toro, their
hands may move outside of Toro’s reachable workspace.
This issue could be fixed by using a more detailed per-
subject calibration phase before operation. A second as-
sumption is that the subject’s initial position has good pos-
ture, not facing away from the camera. That is, the shoul-
ders are not twisted relative to the torso, the head is not bent
extremely forward or backward, and the camera can see the
subject’s chest (otherwise 180◦rotation errors may occur).

After the transformation, the predictions are smoothed
using a sliding average with window size 4, alleviating jit-
ters that tend to be inherent to model predictions and can
be detrimental to robotic control. Finally, because the con-
troller runs at a much faster frequency than the video frame
rate, the model predictions are linearly interpolated between
each frame to provide continuous smooth control.

4

5. Experiments and Results
5.1. Model Training

Table 1: Mean Squared Errors for Baseline Models

Shown in Table 1 are the mean squared errors for each of
the 4 trained models on the training, validation, and testing
sets. The Base HumanEva model followed the same pro-
cedure as described in [3], and was trained for 100 epochs,
this shows clear evidence of overfitting as the train MSE
is much lower than the Valid and Test MSE. For the Base
Modded Model, L2 regularization was added, the batch size
was lowered to 64, the learning rate was decreased, and the
model was trained for 200 epochs. This clearly reduces the
overfitting, resulting in better Valid and Test MSEs despite
a worse training MSE.

Similarly for the Base Model trained on the Self
Collected dataset, there are some signs of overfitting and
altogether worse performance. For the modded version of
this model L2 regularization was added, batch size was
lowered to 32 to accommodate the smaller data set, and the
model was trained for 200 epochs. The parameter space
was also increased by adding an extra outer block in an
effort to decrease bias. These changes helped improve
performance massively, cutting down the MSEs by a factor
of 3. For reference the VideoPose3D model performed
slightly worse on the HumanEva dataset with an MSE
of 0.00412, and quite a bit worse on the Self-Collected
dataset with an MSE of 0.02268. Understandably though,
considering it was trained on a separate dataset.

5.2. Controller Results

Shown in Table 2 are the mean per joint position errors
(Eqn. 6) in meters for each model with each controller
where N is the number of joints, f is the number of frames,
and Pj(i) is the position vector of the ith joint during the
jth frame, here N = 2 as only the hand positions are be-
ing evaluated. The results are broken up into 3 categories
to identify the main source of error. The first is the error
between the model predictions and the ground truth pre-
dictions, this is essentially the square of the model’s MSE
loss post-transformation. The second category is the error
between the model predictions and the actual positions of
Toro’s hands, this is essentially a measure of how well the
controller is tracking the desired hand locations. Finally
there is the error between the ground truth positions and
Toro’s actual hand positions, this is the overall metric for
how well the system performs.

LMPJPE =
1

f

f∑
i=1

1

N

N∑
j=1

||Pj(i)− P̂j(i)||2 (6)

It is clear that the majority of the error comes from the
model predictions, this indicates that in the goal of accu-
rate control, improving models should be focused on more
than improving control schemes. One interesting observa-
tion is that while the Base Modded HumanEva model per-
formed slightly better than the Base HumanEva model on
the test set, post-transformation, the Base model performed
slightly better (on the order of 3 millimeters). This indicates
that the transformation process is not perfectly one-to-one,
which makes sense as models may predict different shoul-
der/head initial positions than the ground truths, resulting
in slightly different transformations being applied. Overall
the best result on the HumanEva test clip was on the Base
model using Controller 3, with around 5 centimeters of av-
erage error, and the best result on the Self-Collected test clip
was the Base Modded model using Controller 2.

5

The best controller/model combo for each test clip can
be viewed by following the video links below.
HumanEva Test Clip,
Self-Collected Test Clip

On both the HumanEva dataset and especially the Self-
Collected dataset the trained models tended to perform bet-
ter than the pre-trained VideoPose3D model. On the Self-
Collected dataset, a large part of this was due to an increased
ability to perceive motion directed at the camera. In Figure
6, you can see that when I stick my arms straight out in the
video (increasing the x coordinate), there is practically no
response from the VideoPose3D model, whereas, in Figure
7, there is a clear response to drastic x coordinate motion by
the Base Modded Model. This increased response is likely
due to a combination of the added weights, training on a
single camera angle, and using a small dataset (the model
can ”overfit” to the specific camera setup).

Figure 6. Hand Coords for VideoPose3D Self-Collected Test Clip

Figure 7. Hand Coords for Base Modded Self-Collected Test Clip

In terms of controller performance, Controller 3 per-
formed the best across the board, providing mean errors
between 1 and 3.5 centimeters. This was closely followed
by Controller 1, which averaged slightly worse, followed

by Controller 2 which averaged between 2.5 and 4.5 cen-
timeters in average error. These levels of error are decent
for most control tasks, however, tasks that require a greater
deal of precision, such as operating a keypad, would likely
require a fine-tuned controller. It is important to recognize
that Controller 1 is not typically viable to use in a real world
environment as it often results in the robot contorting its
joints in strange ways (see Figure 8). This is not a problem
in simulation as the base joint is fixed in space and not sub-
ject to gravity, but would not work well in the real world.
For real-world control, something like Controller 2 is often
used, this does increase error as some control torque is now
being used to control joint angles, but it does help to avoid
singularities and kinked limbs. At a bare minimum, some
task should be assigned to control all degrees of freedom.

Figure 8. Contorted Toro Position while using Controller 1

The results demonstrate that a positional null space con-
troller such as Controller 3 can perform better than a angular
null space controller. This indicates that the natural motion
of our bodies when humans move their hands is useful in-
formation to provide to a robot. Such information is much
more difficult to acquire, but it appears that when possible,
models for pose estimation should ideally be trained on data
containing these secondary joint positions even if said joints
are not immediately required for the task. An excellent ex-
ample of the advantage this offers is shown in Figure 9.

Figure 9. Toro Waving using Controller 2 and Controller 3

6

https://drive.google.com/file/d/1HerOxcQKerh5K1Vj6FsEHCCyZ1_pysiu/view?usp=sharing
https://drive.google.com/file/d/1701EVWiZnK1oSATwBDVG5_KEH_gjmnQC/view?usp=sharing

The two Toros waving in Figure 9 are both using the
Base Modded Model to predict on the HumanEva test clip.
When using Controller 2, Toro keeps its shoulders perfectly
aligned with its pelvis during this motion as the Null Space
control is instructing it to. When using Controller 3, how-
ever, Toro twists its upper body slightly moving the shoul-
der connected to the waving arm back. This is a very sub-
tle subconscious motion that we humans tend to do when
we lift one of our arms (try lifting one arm naturally with
your elbow bent and observe the motion of our shoulders),
such motion makes it much easier to perform motions with
our raised arm (try tensing your shoulders, waving with one
arm, then relaxing your shoulders and waving), by moving
the base joint (shoulder) of our arm back, which in turn de-
creases the amount that we have to bend our elbow, allowing
it a more natural position. It is a small motion that makes
a large impact that would be quite difficult to hardcode into
a controller, but our model provides the data to do this au-
tomatically when it predicts the shoulder joint locations of
the subject. It is many small things like this that allow Con-
troller 3 to outperform Controller 2 and demonstrates the
importance of driven secondary joint control.

6. Conclusion and Future Work
6.1. Conclusion

Overall the baseline models trained on small datasets
outperformed the larger pre-trained model. This is indica-
tive of the importance of camera angle, position, and subject
when it comes to pose estimation. The pre-trained model
still performed remarkably well, a testament to its robust
nature. Slight modifications to the architecture and train-
ing procedure described in [3] decreased overfitting and al-
lowed for slight improvements on the HumanEva dataset,
and significant improvements on a small Self-Collected
dataset. In particular, the ability to better predict move-
ment toward and away from the camera greatly aided these
model’s performance.

A control scheme that controlled for the position of the
hands as a primary task and used that task’s Null Space to
control the location of secondary joints outperformed a base
controller with no Null Space Control and a controller that
used Angle-based Null Space Control. This highlighted the
importance of secondary joint data as a way to encode the
natural movement of a human body. The best controller
for the HumanEva test clip had an average mean positional
error of around 1.76 centimeters which, when coupled with
the base model produced an overall average error of 5.41
centimeters. The best controller/model combo on the Self-
Collected test clip had an average error of 8.08 cm. This
level of error are acceptable for rudimentary control tasks,
but any detail-oriented control tasks would likely require a
more fine-tuned controller and better-performing model.

6.2. Future Work

There is a lot more work that I would have loved to do
on this project given more time/resources. To start with,
there were many models that I wanted to test but just didn’t
have time to implement and or train. Specifically using
an LSTM such as the one described in [21] is something
I would be very interested in. Robotic control is inherently
a time-sequenced problem, there are no abrupt jumps or dis-
continuities that should in smooth robotic control. Employ-
ing a recurrent model that capitalizes on this time sequence
would likely be a good strategy to minimize error. Also
training a CNN or recurrent model to predict joint positions
directly from video data such as described in [6] would be
very interesting I think. It is great that 2D key-points al-
low such accurate prediction because they make our mod-
els much simpler, but I imagine there must be some im-
portant information for 3D pose prediction in the frames
themselves that is lost when converting to 2D key-points.
Also finding a better transformation method from predic-
tions to world space would be very interesting, using frame-
by-frame transformations, or even trying to learn a transfor-
mation to apply are two possible methods.

Another very interesting avenue is orientation control.
When attempting to use a robotic end effector, the position
is only half of the battle (and usually the easier half). Con-
trolling the orientation of an end effector is just as important
in order for it to be able to properly interact with its environ-
ment. Orientation prediction is not nearly as widespread as
position prediction, although one key example comes from
[22]. This is largely due to a lack of well annotated data,
many pose datasets only use a single tracker per joint to
track motion meaning only positional data is available, the
nice thing about an Optitrack setup is that each joint has
a rigid body of trackers associated with it, meaning that it
can output real-time orientation data for each joint. Such a
system will likely be essential for collecting enough data to
make serious headway in orientation prediction. Collecting
such data and training models on it would make a fantastic
project of its own.

Finally, there is the aspect of more complex/general hu-
manoid robot motion. This project just focused on a very
small and simple subset of the wide range of motion avail-
able from a humanoid robot. In particular, unlocking the
lower body opens up wide range of control questions that
need to be answered. Walking/Locomotion has been a long-
standing problem in humanoid control, maintaining balance
during a stride is often the main issue, augmenting existing
controllers for this using leg joint data and videos would
be another very interesting path to explore. Not to mention
the whole world of control possibilities that reinforcement
learning and generative AI opens up. In conclusion, there is
a lot more work that could be done on the subject.

7

7. Contributions
This project was done tangentially to another project I

am working on for CS225A, Experimental Robotics. For
that project we are using the Optitrack outputs directly
in real time to control Toro’s hands in order to play a
simulated game of volleyball against an autonomous
opponent. As part of that project, I collaborated with
Rhea Malhotra (rheamal@stanford.edu) and Oskar Wendt
(wendt@stanford.edu) to write the code that converts the
Optitrack data into Toro’s frame of reference. That code
was used in this project to convert the Optitrack data
in the Self-Collected dataset. We have not written our
final report for that class yet, but I will email a copy of the
PDF to my assigned TA mentor by June 11th once it is done.

Also as part of CS225A, skeleton code was provided for
simulating Toro, but I built each of the three controllers
specifically for this project. The repo for the Sai2 libraries
used for control and simulation is linked below.

https://github.com/manips-sai-org

In order to interface with Detectron2 to gather joint
key-point data and use VideoPose3D, I followed steps 1-5
of the INFERENCE.md document from this Github Repo.
I also used code from this repo to generate the input and
reconstruction portions of the video demos.

https://github.com/facebookresearch/VideoPose3D/tree/main

Everything else was done by me (Ethan Whitmer) for
CS231N.

8

https://github.com/manips-sai-org
https://github.com/facebookresearch/VideoPose3D/tree/main

References
[1] J. Wang, S. Tan, X. Zhen, S. Xu, F. Zheng, Z. He, and

L. Shao, “Deep 3d human pose estimation: A review,” Com-
puter Vision and Image Understanding, vol. 210, p. 103225,
2021.

[2] D. Pavllo, C. Feichtenhofer, D. Grangier, and M. Auli,
“3d human pose estimation in video with temporal con-
volutions and semi-supervised training,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[3] J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple
yet effective baseline for 3d human pose estimation,” CoRR,
vol. abs/1705.03098, 2017.

[4] J. Englsberger, A. Werner, C. Ott, B. Henze, M. A. Roa,
G. Garofalo, R. Burger, A. Beyer, O. Eiberger, K. Schmid,
and A. Albu-Schäffer, “Overview of the torque-controlled
humanoid robot toro,” in 2014 IEEE-RAS International Con-
ference on Humanoid Robots, pp. 916–923, 2014.

[5] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Gir-
shick, “Detectron2.” https://github.com/
facebookresearch/detectron2, 2019.

[6] Z. Li, X. Wang, F. Wang, and P. Jiang, “On boosting single-
frame 3d human pose estimation via monocular videos,” in
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.

[7] L. Zhao, X. Peng, Y. Tian, M. Kapadia, and D. N. Metaxas,
“Semantic graph convolutional networks for 3d human pose
regression,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019.

[8] M. R. I. Hossain and J. J. Little, “Exploiting temporal infor-
mation for 3d pose estimation,” CoRR, vol. abs/1711.08585,
2017.

[9] B. X. Nie, P. Wei, and S.-C. Zhu, “Monocular 3d human
pose estimation by predicting depth on joints,” in 2017
IEEE International Conference on Computer Vision (ICCV),
pp. 3467–3475, 2017.

[10] K. Darvish, L. Penco, J. Ramos, R. Cisneros, J. Pratt,
E. Yoshida, S. Ivaldi, and D. Pucci, “Teleoperation of hu-
manoid robots: A survey,” IEEE Transactions on Robotics,
vol. 39, no. 3, pp. 1706–1727, 2023.

[11] J. Ramos and S. Kim, “Dynamic locomotion synchronization
of bipedal robot and human operator via bilateral feedback
teleoperation,” Science Robotics, vol. 4, no. 35, p. eaav4282,
2019.

[12] A. Handa, K. Van Wyk, W. Yang, J. Liang, Y.-W. Chao,
Q. Wan, S. Birchfield, N. Ratliff, and D. Fox, “Dexpilot:
Vision-based teleoperation of dexterous robotic hand-arm
system,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 9164–9170, 2020.

[13] Q. Gao, J. Li, Y. Zhu, S. Wang, J. Liufu, and J. Liu, “Hand
gesture teleoperation for dexterous manipulators in space
station by using monocular hand motion capture,” Acta As-
tronautica, vol. 204, pp. 630–639, 2023.

[14] J. B. Cole, D. B. Grimes, and R. P. N. Rao, “Learning full-
body motions from monocular vision: dynamic imitation in
a humanoid robot,” in 2007 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 240–246, 2007.

[15] A. Sripada, H. Asokan, A. Warrier, A. Kapoor, H. Gaur,
R. Patel, and R. Sridhar, “Teleoperation of a humanoid robot
with motion imitation and legged locomotion,” in 2018 3rd
International Conference on Advanced Robotics and Mecha-
tronics (ICARM), pp. 375–379, 2018.

[16] L. N. M., D. Dajles, and F. Siles, “Teleoperation of a hu-
manoid robot using an optical motion capture system,” in
2018 IEEE International Work Conference on Bioinspired
Intelligence (IWOBI), pp. 1–8, 2018.

[17] L. Sigal, A. Balan, and M. Black, “Humaneva: Synchronized
video and motion capture dataset and baseline algorithm for
evaluation of articulated human motion,” International Jour-
nal of Computer Vision, vol. 87, pp. 4–27, 03 2010.

[18] G. Nagymate and R. Kiss, “Application of optitrack mo-
tion capture systems in human movement analysis a system-
atic literature review,” Recent Innovations in Mechatronics,
vol. 5, 07 2018.

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An impera-
tive style, high-performance deep learning library,” CoRR,
vol. abs/1912.01703, 2019.

[20] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Hu-
man3.6m: Large scale datasets and predictive methods for
3d human sensing in natural environments,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 7, pp. 1325–1339, 2014.

[21] H. Coskun, F. Achilles, R. DiPietro, N. Navab, and
F. Tombari, “Long short-term memory kalman filters: Re-
current neural estimators for pose regularization,” in Pro-
ceedings of the IEEE International Conference on Computer
Vision (ICCV), Oct 2017.

[22] L. Yang, Z. Qi, Z. Liu, S. Zhou, Y. Zhang, H. Liu, J. Wu, and
L. Shi, “A light cnn based method for hand detection and ori-
entation estimation,” in 2018 24th International Conference
on Pattern Recognition (ICPR), pp. 2050–2055, 2018.

9

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	. Introduction
	. Related Work
	. 3D Pose Estimation
	. Humanoid Robotic Control

	. Dataset and Features
	. HumanEva
	. Self Collected

	. Methods
	. Control Schemes
	. Models
	Baseline
	VideoPose3D

	. Model Output to Control Scheme

	. Experiments and Results
	. Model Training
	. Controller Results

	. Conclusion and Future Work
	. Conclusion
	. Future Work

	. Contributions

