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Abstract	-	This	study	presents	a	comparative	analysis	of	the	U-Net	and	Residual-Unet	(Res-Unet)	architectures	
for	the	task	of	automated	polyp	segmentation	in	gastrointestinal	tract	images.	The	models	were	evaluated	on	
the	 Kvasir-SEG	 dataset,	 a	 challenging	 medical	 imaging	 dataset	 containing	 1000	 polyp	 images	 and	 their	
corresponding	segmentation	mask.	The	quantitative	evaluation	showed	that	the	Res-Unet	models	generally	
outperformed	the	standard	U-Net	models	on	 the	validation	sets	 in	 terms	of	 the	Dice	coefficient,	a	common	
metric	for	segmentation	performance.	The	most	performant	model	was	the	Res-Unet	with	Sigmoid	activation	
and	 Binary	 Cross-Entropy	 (BCE)	 loss,	 which	 achieved	 the	 highest	 Dice	 coefficient	 on	 the	 validation	 set.	
However,	 the	 overall	 segmentation	performance	was	 limited,	with	 the	best	Dice	 coefficient	 on	 the	 test	 set	
struggling	to	reach	above	0.6.	The	analysis	revealed	that	this	was	likely	due	to	the	small	size	of	the	dataset	and	
the	 imbalanced	 representation	 of	 polyps	 with	 varying	 sizes	 and	 levels	 of	 obstruction.	 To	 address	 these	
limitations,	the	author	recommends	either	merging	the	Kvasir-SEG	dataset	with	additional	similar	datasets	or	
performing	extensive	data	augmentation.	Additionally,	experimenting	with	hybrid	loss	functions	that	combine	
pixel-level	 classification	 and	 region-level	 segmentation	 objectives	 could	 lead	 to	more	 robust	 and	 clinically	
relevant	segmentation	models.	These	improvements	could	make	the	automated	polyp	segmentation	systems	
more	valuable	for	medical	image	analysis	and	decision	support	in	healthcare	applications.	
	

_________________________________________________________	
	
	
1	–	INTRODUCTION	
	
The	 field	 of	 medical	 image	 analysis	 has	 seen	
significant	advancements	in	recent	years,	thanks	
to	 the	 sudden	 progress	 in	 deep	 learning	
techniques,	 particularly	 for	 tasks	 such	 as	 MR	
images	 denoising,	 automatic	 disease	
classification,	 automatic	 labelling,	 etc.	 Another	
key	application	of	deep	 learning	 in	the	medical	
field	 is	 the	 task	 of	 image	 segmentation,	where	
the	 goal	 is	 to	 partition	 an	 image	 into	 relevant	
regions	 or	 objects.	 In	 the	 context	 of	 medical	
imaging,	 accurate	 segmentation	 of	 anatomical	
structures	and	pathological	elements	can	have	a	
big	 impact	on	disease	detection,	diagnosis,	and	
treatment	planning,	such	as	surgery	preparation.	
	
One	 of	 the	 most	 common	 deep	 learning	
architectures	 used	 for	 segmentation	 tasks	 on	
medical	images	is	the	U-Net	architecture,	which	
is	particularly	well-suited	 for	 the	segmentation	
of	 complex	 medical	 images,	 such	 as	 those	
obtained	 from	 endoscopic	 procedures	 [1].	 One	
modified	version	of	the	U-Net,	the	Residual-UNet	
architecture,	 incorporates	 residual	 connections	
into	 the	 U-Net	 structure	 and	 has	 also	 shown	

promising	 results	 in	 medical	 image	
segmentation	tasks	[2].	
	
Instead	of	focusing	on	segmenting	images	from	
MR	 or	 CT	 scanners,	 we	 chose	 to	 work	 on	 a	
dataset	 containing	 images	 from	 the	
gastrointestinal	(GI)	tract,	containing	anatomical	
landmarks	 and	 clinically	 significant	 elements	
called	 polyps.	 A	 polyp	 is	 an	 abnormal	 growth	
that	varies	in	shape	and	size	and	develops	on	the	
lining	of	the	colon	or	the	rectum	and	protrudes	
from	their	inner	lining	(fig.	1).	They	develop	due	
to	an	overgrowth	of	cells	in	the	intestinal	lining,	
with	factors	like	age,	diet	and	genetics	increasing	
their	 risk	 of	 formation.	 Polyps	 are	 important	
because	 they	 can	 be	 precursors	 to	 colorectal	
cancer	 [3].	 Screening	 tests	 like	 colonoscopies	
can	 detect	 polyps	 early.	 If	 found,	 polyps	 are	
usually	 removed	 to	 prevent	 them	 from	
potentially	 developing	 into	 colorectal	 cancer	
over	time.	Identifying	and	removing	polyps	early	
is	 a	 key	 strategy	 to	 prevent	 colorectal	 cancer,	
which	 is	 one	 of	 the	 leading	 causes	 of	 cancer-
related	deaths	[4].	
	



	
Fig.	1:	Sample	image	of	a	polyp	from	Kvasir	dataset	
	
The	 use	 of	 automatic	 segmentation	 of	
pathological	 elements	 in	 images	 captured	with	
endoscopic	 equipment	 could	 be	 particularly	
important	for	remote	hospitals	with	little	to	no	
access	to	specialists	 in	specific	fields	[5].	These	
hospitals	 or	 clinics	 could	 benefit	 from	 the	
performance	 of	 a	 model	 trained	 on	 careful	
manual	segmentation	 from	experts	 in	 the	 field,	
as	it	could	provide	valuable	insights	and	support	
for	 early	 disease	 detection	 and	 diagnosis,	
ultimately	 improving	 patient	 outcomes	 in	
underserved	regions.	
	
	
2	–	BACKGROUND	
	
2.1	–	Computer	vision	with	medical	images	
	
Computer	 vision,	 a	 subfield	 of	 artificial	
intelligence,	has	proven	to	be	a	powerful	tool	for	
analyzing	and	interpreting	medical	images.	The	
application	 of	 computer	 vision	 techniques	 to	
medical	imaging	data	has	revolutionized	various	
aspects	 of	 healthcare,	 including	 disease	
diagnosis,	 surgery	 planning,	 image	 denoising	
and	 automated	 labeling.	 By	 leveraging	 deep	
learning	 models,	 computer	 vision	 systems	 can	
automatically	extract	valuable	information	from	
medical	 images,	 such	 as	 the	 presence	 of	
pathological	 structures,	 the	 segmentation	 of	
anatomical	 regions,	 and	 the	 quantification	 of	
specific	features,	volumes,	and	flow	rates	[6].	

One	of	the	main	advantages	of	computer	vision	
in	 the	medical	 domain	 is	 to	 be	 able	 to	 handle	
large	volumes	of	images	quickly	and	efficiently.	
With	 the	 progress	 in	 medical	 imaging	
technologies,	such	as	computed	tomography	and	
magnetic	 resonance	 imaging,	 the	 amount	 of	
available	 imaging	 data	 has	 increased	
exponentially.	 Computer	 vision	 algorithms	 can	
process	 these	 large	 datasets,	 identify	 patterns,	
and	 provide	 consistent	 and	 accurate	 analyses,	
which	 can	 assist	 healthcare	 professionals	 in	
making	more	informed	decisions.	
	
2.2	–	Image	segmentation	
	
Image	 segmentation	 is	 an	 important	 task	 in	
computer	 vision,	 particularly	 in	 the	 context	 of	
medical	 image	 analysis.	 It	 splits	 an	 image	 into	
different	 regions	 representing	 a	 specific	
structure	of	interest.	It	can	be	used	for	tasks	such	
as	 organ	 delimitation,	 lesion	 detection,	 and	
tumor	characterization	[6].	
	
2.3	–	U-Net	Architecture	
	
The	 U-Net	 architecture	 is	 a	 commonly	 used	
convolutional	 neural	 network	model	 for	 image	
segmentation,	particularly	in	the	field	of	medical	
image	analysis.	It	was	developed	by	researchers	
at	the	University	of	Freiburg	and	consists	of	an	
encoder	and	a	decoder.	The	U-Net	architecture	
has	been	widely	adopted	and	used	for	different	
medical	 imaging	 tasks,	 demonstrating	 its	
effectiveness	 in	 segmenting	 a	 wide	 range	 of	
anatomical	structures	and	pathological	regions.	
	
2.4	–	Res-Unet	Architecture	
	
The	Res-Unet	architecture	is	a	variant	of	the	U-
Net	model	that	incorporates	residual	learning,	a	
technique	 that	 attempts	 to	 improve	 the	
performance	 and	 stability	 of	 deep	 neural	
networks.	 Residual	 learning	was	 introduced	 in	
the	ResNet	 architecture	 to	 try	 and	address	 the	
problem	of	vanishing	or	exploding	gradients	that	
can	occur	 in	very	deep	neural	networks	 [9].	 In	
the	context	of	medical	 image	segmentation,	the	
Res-Unet	architecture	combines	the	advantages	
of	 the	 U-Net	 structure	 with	 the	 benefits	 of	
residual	 learning.	 The	 integration	 of	 residual	
learning	 into	 the	 U-Net	 architecture	 has	 been	
shown	 to	 enhance	 the	 model's	 performance,	



particularly	in	challenging	medical	imaging	tasks,	
such	as	the	segmentation	of	complex	anatomical	
structures.		
	
	
3	–	DATA	
	
3.1	–	Dataset	details	
	
For	 this	 project’s	 task	 of	 medical	 image	
segmentation,	we	 focus	on	 a	dataset	 known	as	
Kvasir,	which	was	part	of	a	Kaggle	challenge	on	
"Multi-Class	Image-Dataset	for	Computer	Aided	
Gastrointestinal	Disease	Detection".	This	dataset	
provides	 a	 valuable	 resource	 for	 researchers	
interested	in	developing	automated	systems	for	
the	 detection	 and	 classification	 of	 various	 GI	
tract	conditions	[7].		
	
This	 dataset	 is	 a	 comprehensive	 collection	 of	
images	 from	 the	 GI	 tract,	 collected	 using	
endoscopic	 equipment	 in	 gastroenterology	
departments	of	hospitals	in	Norway.	The	images	
have	 been	 carefully	 annotated	 and	 verified	 by	
medical	 experts,	 including	 experienced	
endoscopists	 from	 the	 Cancer	 Registry	 of	
Norway	 (CRN).	 The	 CRN	 is	 an	 independent	
institution	 under	 the	 Oslo	 University	 Hospital	
Trust,	 responsible	 for	 the	 national	 cancer	
screening	programs	and	conducting	research	to	
prevent	cancer	deaths	through	early	detection.		
	
The	Kvasir-SEG	dataset	is	a	subset	of	the	Kvasir	
dataset,	specifically	focused	on	the	task	of	polyp	
segmentation.	It	contains	1000	polyp	images	and	
their	corresponding	ground	truth	segmentation	
masks.	The	image	resolutions	in	the	Kvasir-SEG	
dataset	 range	 from	 332x487	 to	 1920x1072	
pixels.	We	used	this	subset	of	the	Kvasir	dataset	
for	the	scope	of	this	segmentation	project.	
	
The	 Kvasir-SEG	 dataset	 presents	 a	 unique	
challenge	 due	 to	 the	 complexity	 of	 segmenting	
areas	 of	 different	 shape	 and	 size,	 sometimes	
disrupted	by	cropped	squares	masking	patient-
identifiable	 confidential	 information.	
Overcoming	 these	 challenges	 is	 crucial	 for	 the	
successful	 deployment	 of	 automated	
segmentation	systems	in	real-world	settings.	
	
	
	

3.2	–	Preprocessing	
	
The	images	are	resized	to	a	fixed	size	of	256x256	
pixels.	 For	 the	 input	 images,	 the	 original	 3-
channel	color	images	are	kept	as-is,	maintaining	
the	RGB	color	representation.	However,	 for	the	
segmentation	 masks	 used	 as	 our	 labels,	 the	
original	RGB	masks	are	converted	to	grayscale	in	
order	to	work	with	a	single-channel	binary	mask.	
The	grayscale	mask	is	then	expanded	to	have	a	
single	 channel	 dimension,	 resulting	 in	 a	 3D	
tensor	 with	 shape	 (256,	 256,	 1).	 The	
segmentation	 mask	 data	 is	 stored	 as	 Boolean	
values,	 where	 True	 represents	 the	 foreground	
(the	polyp)	and	False	represents	the	background	
(no	presence	of	polyp).	
	
	
4	–	PROPOSED	METHOD	
	
4.1	–	Architectures	
	
4.1.1	–	Unet	
	
The	 U-Net	 architecture	 is	 characterized	 by	 its	
encoder-decoder	 structure	 and	 the	 use	 of	 skip	
connections,	which	is	commonly	represented	in	
a	 U-shape	 to	 easily	 visualize	 the	 interaction	 of	
the	 skip	 connections	between	 the	 encoder	 and	
the	 decoder	 (fig.	 2).	 This	 infrastructure	 allows	
the	 model	 to	 combine	 local	 and	 global	
information	 to	 produce	 accurate	 segmentation	
results	[8].	
	

	
	
Fig.	2:	Layout	of	the	U-Net	architecture	[8]	
	
The	 encoder	 part	 of	 the	 model	 represents	 the	
contracting	path.	It	is	responsible	for	extracting	
relevant	 features	 from	 the	 input	 image.	 It	



consists	of	a	series	of	convolutional	layers,	max-
pooling	 layers,	and	dropout	regularization.	The	
convolutional	 layers	 learn	 to	 extract	 features,	
and	 the	 pooling	 layers	 reduce	 the	 spatial	
dimensions	 of	 the	 feature	 maps	 to	 try	 and	
capture	 the	 hierarchical	 representation	 of	 the	
input.	The	model	we	used	has	5	encoder	blocks.	
	
The	bridge	 layer	 connects	 the	encoder	and	 the	
decoder	 branches	 of	 the	 network.	 This	 set	 of	
convolutional	 layers	 strive	 to	capture	 the	most	
abstract	 features	 from	 the	 input	 and	 applies	
dropout	 regularization	 to	 prevent	 the	 model	
from	overfitting.	
	
The	 decoder	 part	 of	 the	 model	 represents	 the	
expanding	 path.	 It	 reconstructs	 the	
segmentation	map	 from	 the	 features	 extracted	
by	 the	 encoder.	 It	 is	 made	 of	 a	 series	 of	 up-
sampling	 blocks	with	 convolutional	 layers	 and	
dropout	 regularization.	 The	 up-sampling	
increases	 the	 spatial	 dimensions	of	 the	 feature	
maps.	The	convolutional	layers	learn	to	combine	
the	 up-sampled	 feature	 maps	 with	 the	 skip	
connections	 to	 produce	 the	 final	 segmentation	
map.	Our	model	has	5	decoder	blocks.	
	
The	 skip	 connections	 concatenate	 the	 feature	
maps	 from	 the	 encoder	 layers	 with	 the	
corresponding	 feature	 maps	 in	 the	 decoder	
layers,	 which	 allows	 the	 model	 to	 retain	
important	 spatial	 information	 that	 could	 have	
been	 lost	 during	 the	 downsampling	 process	
otherwise.	Our	model	has	5	skip	connections.	
	
4.1.2	–	Residual-Unet	(Res-Unet)	
	
This	 architecture	 is	 very	 similar	 to	 the	 classic	
implementation	 of	 the	 U-Net	 architecture.	 The	
main	 difference	 is	 the	 addition	 of	 residual	
connections	 in	 the	 encoder	 and	 decoder	
branches	 (fig.	 3).	 The	 residual	 connections	
create	 shortcut	 connections	 that	 bypass	 the	
convolutional	 layers	 within	 the	 encoder	 and	
decoder	 blocks	 and	 add	 the	 input	 of	 the	 block	
directly	 to	 the	 output	 of	 that	 same	 block.	 This	
improves	 the	 gradient	 flow	 by	 providing	 an	
alternate	path	 for	 the	gradients	 to	 flow	 in	case	
the	model	 faces	 an	 issue	 of	 vanishing	 gradient	
[9].	As	a	result,	these	residual	connections	help	
increase	the	capability	of	the	model	to	propagate	
important	features	through	the	network,	which	

is	supposed	to	help	improve	the	performance	for	
our	task	of	image	segmentation.	
	

	
Fig.	3:	Layout	of	the	Res-Unet	architecture	[10]	
	
	
4.2	–	Loss	Functions	
	
In	 the	 scope	 of	 this	 project,	 we	 experimented	
with	 two	 different	 loss	 functions.	 The	 Binary	
Cross	Entropy	(BCE)	loss,	and	the	Soft	Dice	Loss.		
	
BCE	loss	is	a	loss	function	that	is	well-suited	for	
segmentation	tasks	because	it	directly	optimizes	
the	 pixel-wise	 classification	 accuracy.	
Essentially,	it	encourages	the	model	to	correctly	
predict	the	class	label	(polyp	or	background)	for	
each	 pixel,	 which	 is	 crucial	 for	 medical	 image	
segmentation	 task	 where	 we	 attempt	 to	
precisely	define	lesions	or	pathological	elements.	



The	other	 loss	 function	we	considered	was	 the	
Soft	 Dice	 Loss	 function.	 This	 loss	 function	 is	
specifically	 designed	 to	 optimize	 the	 Dice	
Coefficient,	 which	 is	 our	 key	 metric	 for	 this	
project.	 By	 directly	 maximizing	 the	 overlap	
between	 the	 predicted	 segmentation	 and	 the	
ground	 truth,	 the	Soft	Dice	 loss	 tries	 to	ensure	
that	 the	 model	 prioritizes	 the	 accurate	
segmentation	of	the	clinically	relevant	regions.	
	
4.3	–	Metrics	
	
Accuracy	is	a	common	metric	that	measures	the	
proportion	 of	 correctly	 classified	 pixels	 (or	
voxels	 for	 3D	 imaging	 such	 as	MRI)	 out	 of	 the	
total	 number	 of	 pixels	 in	 the	 image.	 In	 the	
context	of	medical	image	segmentation,	accuracy	
represents	 the	 overall	 agreement	 between	 the	
predicted	 segmentation	 mask	 and	 the	 ground	
truth	segmentation.	
	
However,	the	Dice	coefficient	is	a	metric	that	is	
more	robust	and	specifically	designed	for	tasks	
such	as	segmentation	[11].	This	 is	why	we	will	
base	our	quantitative	analysis	on	Dice	coefficient	
comparisons.		The	Dice	coefficient	measures	the	
overlap	 between	 the	 predicted	 segmentation	
and	the	ground	truth	segmentation.	It	is	defined	
as	follow:	

	
	
The	Dice	Coefficient	ranges	from	0	to	1,	where	1	
indicates	 perfect	 overlap,	 and	 0	 indicates	 no	
overlap.	 The	 Dice	 Coefficient	 is	 particularly	
useful	 in	 medical	 image	 segmentation	 tasks	
because	 it	 focuses	 on	 the	 accuracy	 of	 the	
segmentation	of	 the	 target	regions,	rather	 than	
the	overall	image	accuracy.	This	makes	the	Dice	
Coefficient	more	sensitive	to	the	performance	of	
the	 model	 on	 the	 clinically	 relevant	 regions,	
which	is	the	primary	concern	for	our	application.	
	
4.4	Output	Layer	Activation	Function	
	
For	 this	 project,	 we	 experimented	 with	 3	
different	 output	 layer	 activation	 functions:	 the	
sigmoid	 function,	 the	 arctangent	 function,	 and	
the	 cumulative	 distribution	 function	 of	 the	
normal	distribution	(CDF).	

The	 sigmoid	 function	 is	 a	 commonly	 used	
activation	function	that	maps	any	input	value	to	
a	 value	 between	 0	 and	 1.	 It	 is	 often	 used	 for	
binary	 classification	 tasks,	 where	 the	 output	
represents	the	probability	of	an	input	belonging	
to	 one	 of	 two	 classes,	 in	 our	 case:	 polyp	 or	
background.	The	sigmoid	function	is	defined	as:		
	
	

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) 	= 	
1

1 + 𝑒!"	
	
	
The	 sigmoid	 function	 has	 a	 smooth,	 S-shaped	
curve,	 making	 it	 suitable	 for	 modeling	
probabilities	 or	 introducing	 non-linearity	 in	
neural	networks.	
	
The	arctangent	function	maps	any	input	value	to	
a	 value	 between	 -π/2	 and	 π/2	 (approximately	
1.57	and	1.57).	This	activation	function	is	often	
used	 when	 the	 output	 needs	 to	 be	 bounded	
within	a	specific	range,	such	as	when	predicting	
angular	 quantities	 or	 circular	 data	 [12].	 We	
defined	the	arctangent	function	as	follow:	
	
	

𝑎𝑡𝑎𝑛_𝑎𝑐𝑡(𝑥) 	= 	𝜀 + (1-2 × 𝜀) ×
0.5 + 𝑎𝑡𝑎𝑛(𝑥)

𝜋 	
	
	
The	 small	 constant	 epsilon	 is	 added	 to	 the	
function	for	numerical	stability.	
	
Finally,	the	normal	CDF	maps	any	input	value	to	
a	 value	 between	 0	 and	 1,	 representing	 the	
probability	that	a	random	variable	drawn	from	a	
standard	normal	distribution	(with	mean	0	and	
standard	deviation	1)	is	less	than	or	equal	to	the	
input	 value.	 This	 activation	 function	 can	 be	
useful	 when	 the	 output	 needs	 to	 represent	 a	
probability	or	a	value	that	is	naturally	bounded	
between	0	and	1	[13].	We	defined	the	CDF	as:		
	
	

𝐶𝐷𝐹(𝑥) 	= 	 (0.5	 × 𝜀) 	× 	𝑒𝑟𝑓(
𝑥
√2
) + 	0.5	

	
	
The	eft	function	is	the	error	function.	
	
	



4.5	-	Learning	Rate	
	
The	 choice	 of	 learning	 rate	 was	 made	 after	
performing	 hyperparameter	 optimization	 on	 5	
epochs.	We	used	 the	maximum	dice	 coefficient	
obtained	for	all	7	models	used,	to	identify	which	
learning	rate	to	use	for	each	model	combination.	
Every	 model	 saw	 better	 performance	 with	 a	
learning	rate	of	5e-5.	
	
4.6	-	Early	Stopping	
	
Using	 the	 Unet	 architecture	 with	 certain	
combinations	 of	 loss	 functions	 and	 output	
activation	 function	would	 see	 the	 loss	 function	
increasing	somewhere	around	50	epochs	(fig.	4).	
For	this	reason,	we	decided	to	implement	early	
stopping	and	evaluate	the	models’	performance	
at	50	epochs.	
	
	

	
Fig.	4:	Training	and	validation	loss	of	the	U-Net	model	
over	100	epochs	
	
	
4.7	-	Models	Presentation	
	
To	 evaluate	 the	 performance	 of	 different	
architectural	choices	for	polyp	segmentation,	we	
implemented	 and	 trained	 7	 different	 models.	
The	models	varied	in	their	architecture,	output	
activation	function	and	loss	function	used	during	
training.	The	first	3	models	were	based	on	the	U-

Net	 convolutional	neural	network	architecture.	
The	 remaining	 4	 models	 were	 build	 using	 the	
Residual	 U-Net	 architecture.	 The	 7	 different	
models	are	defined	below	(table	1).		
	
1	 U-Net	 Sigmoid	 BCE	
2	 U-Net	 Normal	CDF	 BCE	
3	 U-Net	 Sigmoid	 Soft	Dice	
4	 Res-Unet	 Sigmoid	 BCE	
5	 Res-Unet	 Normal	CDF	 BCE	
6	 Res-Unet	 Sigmoid	 Soft	Dice	
7	 Res-Unet	 Arctangent	 Soft	Dice	

	
Table	1:	Models	presentation	(Left	to	right:	model	number,	
model	architecture,	output	layer	activation	function,	loss	
function)	
	
	
5	-	RESULTS	
	
5.1	-	Quantitative	evaluation	
	
5.1.1	-	Loss	
	
The	 validation	 loss	 for	 two	 models	 (4	 and	 5)	
starts	 going	 back	 up	 around	 the	 20th	 epoch,	
indicating	 that	 these	 models	 are	 starting	
overfitting	(fig.	6).	This	is	likely	due	to	the	small	
size	 of	 the	 dataset	 (only	 1000	 examples)	
combined	with	the	complexity	of	the	models.	As	
noted	 earlier,	 we	 had	 already	 chosen	 to	
implement	 early	 stopping	 after	 noticing	 that	
most	models	saw	a	similar	increase	in	loss	after	
the	 50th	 epoch.	 The	 small	 dataset	 size	 coupled	
with	the	models	complexity	seems	to	be	leading	
to	 overfitting,	 which	 may	 lead	 the	 models	 to	
struggle	 to	generalize	well	beyond	 the	 training	
data.	
	

	
Fig.	5:	Training	losses	of	all	7	models	over	50	epochs	



	
Fig.	6:	Validation	losses	of	all	7	models	over	50	epochs	
	
	
5.1.2	-	Dice	coefficient	
	
The	4	Res-Unet	models’	Dice	coefficient	increase	
more	 rapidly	 than	 the	 3	 U-Net	 models’	 Dice	
coefficient,	 on	 both	 the	 training	 and	 validation	
sets	 (fig.	 7	 &	 8).	 Although	 the	 Dice	 coefficient	
generally	increases	with	the	number	of	epochs,	
the	 values	 show	 a	 lot	 of	 variability	 every	 5	
epochs.	 Therefore,	 the	 final	 Dice	 coefficient	
values	 collected	 should	 be	 treated	 as	
approximate	 indicators	 of	 the	 models’	
performance	(table	2).	
	
After	 50	 epochs	 of	 training,	 3	 of	 the	 Res-Unet	
models	 outperform	all	U-Net	models	while	 the	
3rd	U-Net	model	maintain	a	similar	performance	
to	 that	 of	 model	 5	 (which	 is	 a	 the	 lowest	
performing	 Res-Unet	 model	 on	 the	 validation	
set).	
	

	
Fig.	7:	Dice	coefficients	for	all	7	models	on	the	training	set	
over	50	epochs	
	

	
Fig.	8:	Dice	coefficients	for	all	7	models	on	the	validation	
set	over	50	epochs	
	
	
The	most	performant	model	appears	to	be	model	
4,	 which	 is	 the	 Res-Unet	 with	 the	 Sigmoid	
activation	 function	 and	 the	 BCE	 loss	 (table	 2).	
This	 suggests	 that	 the	 Res-Unet	 architecture,	
combined	with	the	appropriate	loss	function	and	
activation,	 can	 lead	 to	 improved	 segmentation	
performance	 compared	 to	 the	 standard	 U-Net	
model,	even	with	the	limited	dataset	size.	
	
Model	#	 Validation	Dice	Coefficient	

1	 0.5282	
2	 0.5553	
3	 0.6132	
4	 0.6817	
5	 0.6118	
6	 0.6702	
7	 0.6379	

	
Table	2:	Final	Dice	coefficient	on	the	validation	set	for	all	
7	models	after	50	epochs	of	training	
	
5.1.3	-	Performance	on	test	set	
	
Models	1,	3	and	5	perform	on	the	test	set	as	well	
as	they	did	on	the	validation	set,	indicating	good	
generalization.	 However,	 models	 2,	 4,	 6	 and	 7	
perform	 slightly	 less	 well	 on	 the	 test	 set,	
suggesting	 they	 have	 more	 difficulty	
generalizing	beyond	the	validation	set	(table	3).	
This	 is	 likely	due	 to	 the	 small	 dataset	 size	 and	
potential	distribution	shifts	between	the	training,	
validation,	and	test	sets,	which	would	have	been	
made	more	prominent	given	the	small	size	of	the	
dataset.	Among	the	3	best	performing	models	(3,	
5	and	6),	two	of	them	are	the	U-Net	and	Res-Unet,	
both	with	Sigmoid	activation	and	Soft	Dice	Loss	



function,	 suggesting	 this	 to	 be	 a	 strong	
combination	 of	 design	 choices	 on	 this	 dataset.	
regardless	of	the	architecture	choice.	
	
Model	#	 Test	Dice	Coefficient	

1	 0.5512	
2	 0.4530	
3	 0.5877	
4	 0.5474	
5	 0.5820	
6	 0.5823	
7	 0.5492	

	
Table	3:	Average	Dice	coefficient	 for	all	7	models	on	the	
test	set	
	
5.2	-	Qualitative	evaluation	
	
Overall,	 the	 qualitative	 performance	 of	 all	
models	 appears	 similar	 for	 the	 well	 predicted	
masks	 across	 all	 models,	 and	 similar	 for	 the	
wrongly	predicted	masks	across	all	models.	The	
well	predicted	masks	show	clear	contours	(fig.	9),	
sometimes	with	small	areas	being	misclassified	
with	 low	 confidence	 as	 can	be	 seen	with	parts	
that	are	less	opaque	than	the	predicted	mask	(fig.	
10).	 The	 models	 excelled	 at	 capturing	 the	
contours	of	 elliptical	 shapes	 that	were	 entirely	
visible	in	the	images,	but	struggled	with	partially	
obstructed	 polyps,	 where	 the	 obstruction	 was	
due	to	the	cropping	box	in	the	lower	left	corner	
(fig.	11).		
	

	
Fig.	9:	Example	of	correctly	predicted	mask	(Left	to	right:	
original	 image,	 original	 mask,	 predicted	 mask,	 original	
image	overlaid	with	predicted	mask)	
	

	
Fig.	 10:	Example	of	 correctly	predicted	mask	with	 small	
bleed	 out	 prediction	 to	 the	 right	 (Left	 to	 right:	 original	
image,	 original	 mask,	 predicted	 mask,	 original	 image	
overlaid	with	predicted	mask)	
	

	
Fig.	 11:	 Example	 of	 incorrect	 predicted	 mask	 due	 to	
cropping	box	(Left	to	right:	original	image,	original	mask,	
predicted	 mask,	 original	 image	 overlaid	 with	 predicted	
mask)	
	
As	for	the	wrongly	predicted	masks,	they	either	
overshot	by	representing	a	larger	area	than	the	
actual	 polyp	 or	 undershot	 by	 only	 covering	 a	
small	portion	of	 the	polyp.	Another	example	of	
misclassification	 happened	 when	 the	 label	
segmentation	was	made	of	2	or	more	 separate	
shapes,	in	which	case	the	models	tended	to	build	
a	mask	 for	 only	 one	 of	 the	 shapes,	 with	 some	
overshooting	(fig.	12).		
	

	
Fig.	12:	Example	of	incorrect	predicted	mask	due	to	label	
segmentation	 containing	 more	 than	 one	 shape	 (Left	 to	
right:	 original	 image,	 original	 mask,	 predicted	 mask,	
original	image	overlaid	with	predicted	mask)	
	
These	errors	could	be	due	to	class	imbalance,	not	
in	 the	 sense	 of	 “polyp”	 vs.	 “background”,	 but	
rather	 as	 groups	 representing	 polyps	 with	
different	scale	factors	and	levels	of	obstruction.	
Some	 images	had	polyps	 taking	up	most	of	 the	
image,	while	 others	 had	polyps	 that	were	 only	
small	 circular	 shapes	 in	 the	 image.	 Others	 had	
partially	 obstructed	 polyps	 due	 to	 patient	
privacy	 protection	 cropping.	 If	 these	 special	
cases	 were	 underrepresented	 in	 the	 data,	 it	
could	lead	to	a	form	of	class	imbalance	that	the	
models	struggled	to	overcome.		
	
The	 models’	 performance	 was	 also	 related	 to	
whether	 the	 polyp’s	 contour	 was	 too	 close	 or	
even	 touching	 the	 edge	 of	 the	 image.	 In	 those	
cases,	 the	 models	 tended	 to	 undershoot	 or	
overshoot	the	segmentation	(fig.	13).	
	

	
Fig.	13:	Example	of	incorrect	predicted	mask	due	to	polyp	
being	very	close	to	the	edge	of	the	image.		



6	-	Conclusion	
	
In	this	experiment,	we	were	able	to	demonstrate	
how	 Residual	 U-Net	 models	 outperformed	
regular	U-Net	models	for	a	segmentation	task	on	
medical	 images.	While	 the	comparison	allowed	
identifying	 the	 improved	 performance	 of	 the	
Res-Unet	models	over	the	U-Net	models,	the	best	
Dice	coefficients	had	trouble	reaching	above	0.6.	
The	main	issue	was	the	small	size	of	the	dataset	
(only	 1000	 examples),	 and	 the	 imbalanced	
representation	of	cases	where	 the	polyps	were	
either	 very	 large,	 very	 small,	 very	 close	 to	 the	
edge	of	the	image,	or	partially	obstructed.		
	
To	 improve	 the	 results,	we	would	 recommend	
either	merging	this	dataset	with	another	similar	
dataset	 of	 segmented	 images	 from	 endoscopic	
procedures	or	performing	extensive	and	careful	
data	 augmentation	 on	 the	 current	 dataset.	 By	
careful,	 we	 mean	 that	 only	 certain	 forms	 of	
image	transformation	would	be	considered	valid	
given	 the	nature	of	 the	dataset:	horizontal	 and	
vertical	 flips,	 or	 combination	of	 both	would	be	
acceptable.	 Slight	 changes	 in	 brightness	
intensity	 would	 also	 be	 acceptable.	 However,	
any	form	of	cropping	or	rotation	that	isn’t	by	a	
multiple	of	90	degrees	might	result	in	the	polyps	
being	 cropped	 out	 of	 the	 image,	 since	 many	
images	have	the	polyps	very	close	to	the	edge	of	
the	 image,	 or	 appear	 already	 very	 zoomed	 in.	
Any	transformation	that	would	make	the	image	
quality	 slightly	 worse,	 such	 as	 blurs	 or	 too	
drastic	 a	 change	 in	brightness	 intensity	 should	
be	 avoided,	 to	 avoid	 adding	 representational	
shift	 in	 the	 dataset,	 since	 most	 of	 the	 images	
appear	 very	 bright	 and	 clear.	 We	 also	 suggest	
manually	 separating	 the	 images	by	 “classes”	of	
polyp	 representation	 (size,	 obstruction	 level,	
proximity	 to	 the	 edge	 of	 the	 image,	 etc),	 and	
performing	 data	 augmentation	 in	 a	 way	 that	
resolves	the	possibility	of	class	imbalance	within	
the	 dataset.	 This	 careful	 data	 augmentation	
implementation	 would	 not	 only	 increase	 the	
number	of	 examples	but	 also	help	 fix	 the	 class	
imbalance	mentioned	earlier.	
	
Experimenting	with	different	loss	functions	and	
output	 layer	 activations	 yielded	 noticeable	
differences,	 showing	 that	 tuning	 these	 design	
choices	based	on	the	dataset	can	be	fruitful.	One	
continuation	of	this	work	could	be	to	implement	

a	combination	of	the	BCE	loss	and	the	Soft	Dice	
loss	 as	 a	 hybrid	 loss	 function	 that	 encourages	
both	 accurate	 pixel-level	 classification	 and	
region-level	segmentation.	This	complementary	
approach	 could	 lead	 to	 more	 robust	 and	
clinically	relevant	segmentation	models,	making	
them	valuable	 tools	 for	medical	 image	analysis	
and	decision	support	in	healthcare	applications.	
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